

# **Introduction to Text Analysis using Natural Language Processing (NLP)**

# **Understanding the Basics and Applications in Healthcare**

21 August 2024 12:00 – 13:00

Dr. Wanchana Ponthongmak, Ph.D.

Dr. Wanchana Ponthongmak, Ph.D.

**Position**: Lecturer

Email: wanchana.pon@mahidol.edu

Office Location: 4th Floor, Sukho Place Building, Sukhothai

Road. Dusit, Bangkok 10300, Thailand.



• 2018 - 2022 Ph.D. Data Science for Healthcare, Mahidol University

• 2010 - 2014 M.Sc. (Health Informatics), Mahidol University

• 2006 - 2009 B.Sc. (Public Health), Mahidol University

• 2000 - 2005 Boonwattana school

#### Current & previous positions

• 2023-Present Lecturer, CEB, Faculty of Medicine Ramathibodi Hospital

2020-2023 Research Assistant, CEB, Faculty of Medicine Ramathibodi Hospital

• 2013-2014 Secretariat, Asia eHealth Information Network

• 2012-2018 Research Assistant, Thai Health Information Standards Development Center



## Area of Interests

- Artificial Intelligence (AI)
- Machine Learning (ML)
- Deep Learning (DL)
- Big Data
- Natural Language Processing (NLP)



## Outlines

- What is NLP and how does it work?
- Common NLP techniques
- Applications and use cases utilizing NLP in healthcare



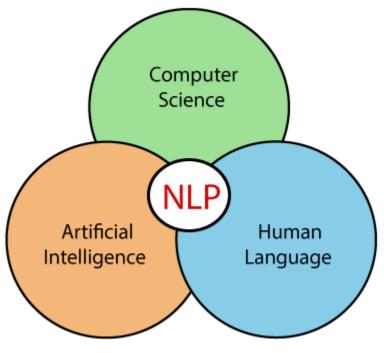
## What is NLP?

"A field of computer science, artificial intelligence, and computational linguistics concerned with the interactions between computers and human (natural) languages, and, in particular, concerned with programming computers to fruitfully process large natural language corpora."

Jurafsky, D., & Martin, J. H. (2009).

"A collection of methods used to process, analyze, and understand natural languages by leveraging computational techniques"

Manning, C. D., & Schütze, H. (1999)





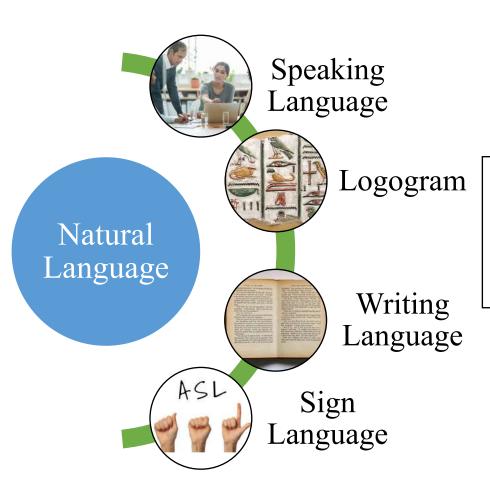
# What is natural language?

"A language that has developed in a community and has been passed down through generations through social interaction. It is acquired by individuals naturally as part of their development, without conscious planning or premeditation."

David Crystal, 2010

"Any human language that has evolved naturally through use and social interaction, rather than being artificially created or constructed.

ChatGPT4-o, 2024



#### Natural Language

Any language evolved naturally in **humans** through use and repetition without conscious planning and premeditation.



# How about these languages?



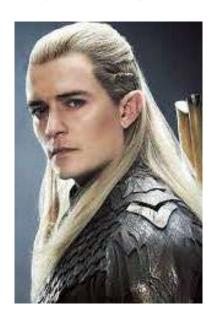
Klingon





Dothraki





Elvish





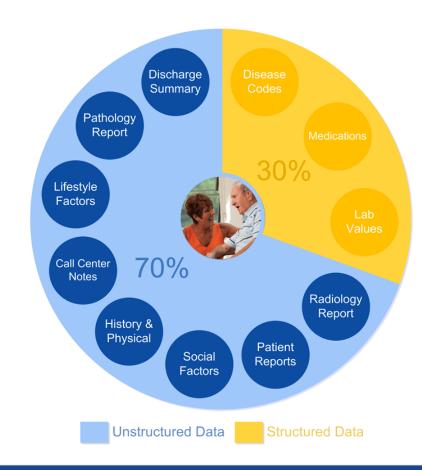
#### Non-Natural Language

Any language evolved in non-humans through usage.

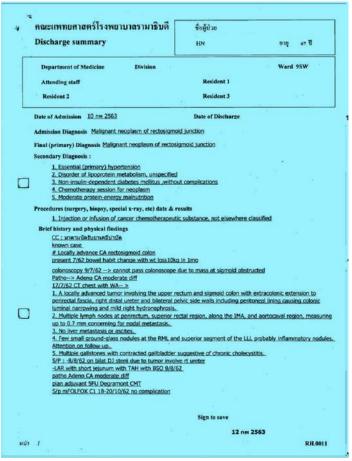


# Why do we care about NLP?

- ~70% of data in hospitals are unstructured data.
- Text data are an extremely rich source of information.
- But extracting insights from them can be hard and timeconsuming due to its unstructured nature.







## Unstructured data



Voice form (wave)

**Textual form** 



# Mahidol University Faculty of Medicine Ramathibodi Hospital Department of Clinical Epidemiology and Biostatistics Structured data

+ Add a patient

|      |                    |             |            | PATIENTS    |                | DOCTORS MI |                   | EDICAL CERTIFICATE  |               | BMI DATA           |                   |
|------|--------------------|-------------|------------|-------------|----------------|------------|-------------------|---------------------|---------------|--------------------|-------------------|
| le   | Edit Insert        | Format Help | Check BMI  |             |                |            |                   |                     |               |                    |                   |
|      | ~ <u>A</u> •       | . в 1       | U ≣ →      | * * Con     | mmon 🕶 🕥       |            |                   |                     |               |                    |                   |
| atie | ent name           |             |            |             |                |            |                   |                     |               |                    |                   |
|      | Α                  | В           | С          | D           | E              | F          | G                 | Н                   | I             | J                  | K                 |
| 1    | Patient name       | Blood group | Height (m) | Weight (kg) | Blood pressure | Patient ID | Allergies         | Chronic condition   | Date of birth | Employer           | Occupation        |
| 2    | Julia Howard       | A-          | 1.78       | 56.00       | 90/60          | FG00012020 | none              | none                | 12/03/1991    | IBM                | Software engine   |
| 3    | Danny D. Perkins   | B+          | 1.73       | 78.00       | 140/90         | FG00012021 | none              | Arthritis, diabetes | 10/08/1944    | Chandlers          | Tour bus driver   |
| 4    | Ed H. Birch        | B-          | 1.73       | 77.00       | 130/80         | FG00012022 | peanuts           | Heart disease       | 11/02/1947    | Sunflower Market   | Facilitator       |
| 5    | Kevin Grasty       | 0-          | 1.73       | 123.00      | 110/60         | FG00012023 | none              | none                | 09/05/1981    | Grass Roots Yard   | Phlebotomist      |
| 6    | George Sawyer      | A+          | 2.06       | 81.00       | 150/85         | FG00012024 | none              | Asthma              | 09/12/1978    | S&W Cafeteria      | Studio camera o   |
| 7    | Luis Heer          | B-          | 1.85       | 91.00       | 120/75         | FG00012024 | none              | Osteoporosis        | 07/10/1964    | Hoyden             | Adult literacy te |
| 8    | John M. Drake      | 0+          | 1.91       | 87.00       | 115/70         | FG00012025 | seasonal allergic | none                | 12/10/1974    | Witmark            | Rolling machine   |
| 9    | Robert R. Reich    | A+          | 1.75       | 74.00       | 135/80         | FG00012027 | shellfish         | none                | 03/03/1985    | Team Uno           | Travel adviser    |
| 10   | Cathy Bower        | AB-         | 1.85       | 95.00       | 120/70         | FG00012028 | none              | Arthritis           | 09/03/1975    | Simply Appraisals  | Dermatology nu    |
| 11   | Melissa Baker      | AB+         | 1.75       | 98.00       | 110/70         | FG00012029 | none              | none                | 12/12/1989    | Consumers Food     | CCO               |
| 12   | Arham Akel         | A-          | 2.03       | 74.00       | 115/90         | FG00012020 | none              | none                | 07/02/2000    | Elek-Tek           | Tumbling barrel   |
| 13   | Debra K. Richards  | B-          | 1.88       | 77.00       | 110/60         | FG00012031 | none              | adenitis            | 03/08/1966    | Britches of George | Payroll and ben   |
| 14   | Harry Baynes       | B-          | 1.73       | 91.00       | 115/70         | FG00012032 | pollen            | none                | 08/11/1945    | Federated Group    | Automation and    |
| 15   | Paul Bazile        | 0-          | 1.60       | 69.00       | 120/70         | FG00012033 | none              | none                | 02/03/1958    | The Wall           | Mental health ai  |
| 16   | Janina Schaefer    | AB-         | 1.80       | 59.00       | 90/60          | FG00012034 | none              | anhidrosis          | 05/10/1969    | Food Fair          | Residential advi  |
| 17   | Pelegrino Ávila Pa | A+          | 1.91       | 97.00       | 110/65         | FG00012035 | none              | none                | 06/06/1959    | Carl Durfees       | Reservation and   |
| 18   | Isabel Evans       | B-          | 1.68       | 122.00      | 130/80         | FG00012036 | mushrooms         | none                | 06/10/1977    | Purity Supreme     | Cost accountant   |

# Real-world applications of NLP







**IBM** Tone analyser









# How does NLP work?

PRAGMATICS SEMANTICS SYNTAX 6-Levels of Linguistic **Phonemes** words literal meaning of phrases and sentences meaning in context of discourse

- NLP processes classified by level of linguistic.
- Involves several processes: tokenization, parsing, stemming, lemmatization, and more.
- Utilizes algorithms to extract meaning from text.
- Machine learning models play a crucial role in improving NLP accuracy



# Phonetics, Phonology

Speech Recognition



- Pronunciation Modeling
  - Cardiology → kar dee ALL oh jee
  - Gastrohepatic → GAS troh heh PAT ik

# Word & Morphology

- Word
  - Tokenization
  - Spelling correction
- Morphology
  - Lemmatization / Stemming
  - Morphological segmentation



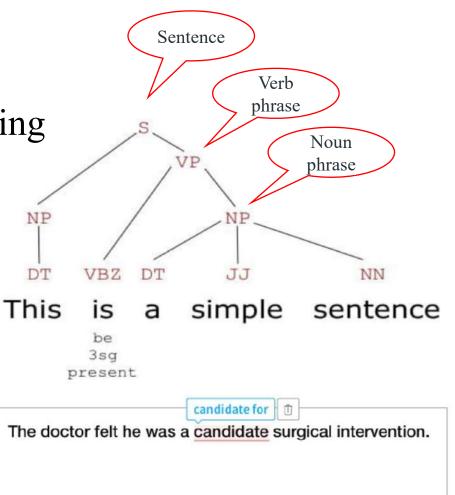
The patient was perscribed Aimidex.

# **Syntax**

• Part of speech (POS) tagging

Syntactic parsing

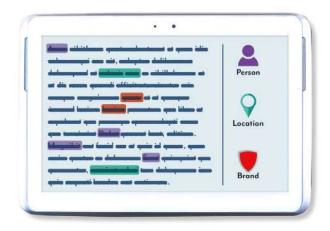
Grammar checking

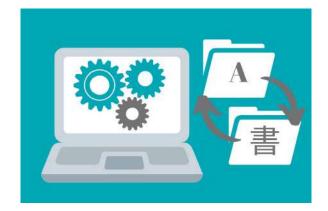




## **Semantics**

- Named entity recognition (NER)
- Machine translation



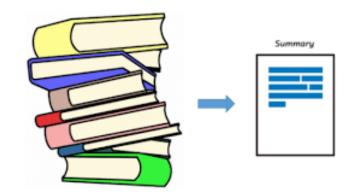




# **Pragmatics**

- Sentiment analysis
- Text summarization





https://sproutsocial.com/insights/sentiment-analysis/https://www.amperetranslations.com/blog/machine-translation-for-business-content-a-quick-guide/



# Common NLP techniques

- Text Preprocessing
- Tokenization
- POS Tagging
- NER
- Sentiment Analysis
- Text Classification
- Machine Translation
- Text Summarization
- etc.



# **Text Preprocessing**



#### Definition

• Cleaning and transforming raw text into a usable format.

#### Common Techniques

- Lowercasing
- Removing Punctuation (.,?!:;""'—-()[].../''{{}}|<>\_~)
- Removing StopWords (a, an, the, and, in, of, to, is, on, that, with, for, as, by)
- Stemming (e.g., "prescribing" -> "prescrib")
- Lemmatization (e.g., "diagnosed" -> "diagnosis")

#### Importance

- Enhances performance → improves the accuracy by reduce noise
- Normalizing textual data → ensures consistency in text analysis



## **Tokenization**

#### Definition

 Process of splitting text into individual words or phrases (tokens)

#### Common Techniques

- Word Tokenization
- Sub-word Tokenization
- Sentence Tokenization

"Patient shows symptoms of fever and cough"

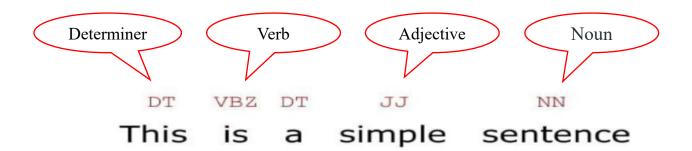
["Patient", "shows", "symptoms", "of", "fever", "and", "cough"]



# **POS Tagging**

#### Definition

- Assigning parts of speech to each word in a text
  - e.g., noun, verb, adjective.



#### Importance

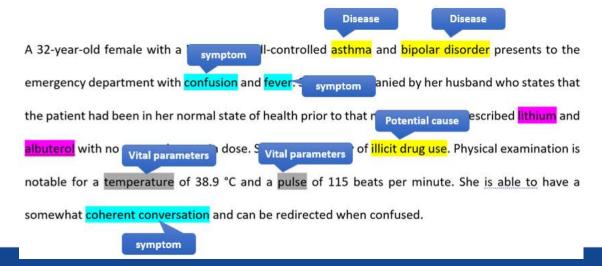
• Grammatical Structure → Understand sentence syntactic structure



## NER

#### Definition

- Identifying and classifying entities in text
  - e.g., people, locations, organizations
  - e.g., diseases, medications, procedures, medical terms





# Sentiment Analysis

#### Definition

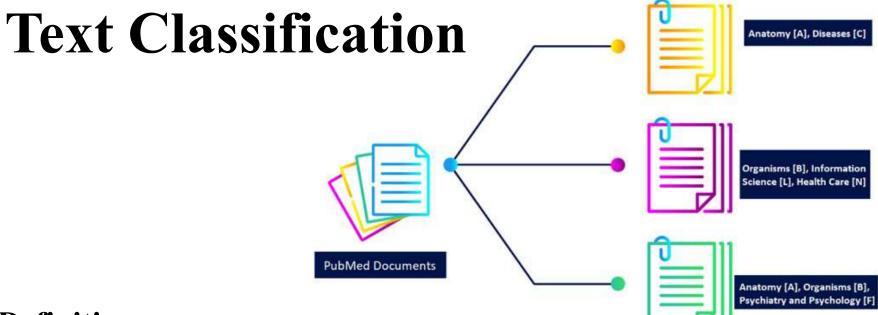
- Determining the emotional tone of a text
  - e.g., positive, negative, neutral

#### • Example of tasks

- Analyzing patient feedback to understand patient satisfaction
- To find support evidence for sentiment
  - "The treatment was excellent, but the wait time was too long."







#### Definition

Categorizing text into predefined classes

#### Common Techniques

- Supervised Learning
  - Naive Bayes, SVM, neural networks, etc.
- Unsupervised Learning
  - Clustering similar texts without labeled data



## **Machine Translation**

#### Definition

Automatically translating text from one to another language

#### Common Techniques

- Rule-Based Machine Translation
- Statistical Machine Translation
- Neural Machine Translation





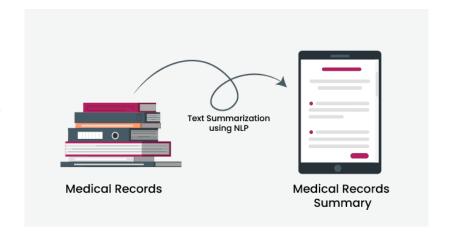
## **Text Summarization**

#### Definition

 Condensing text to its essential points while preserving meaning

#### Common Techniques

- Extractive Summarization
- Abstractive Summarization





# Applications and use cases utilizing NLP in healthcare

- In Faculty of Medicine, Ramathibodi Hospital
  - ICD-10 classification from discharge summaries
  - AI for literature screening in systematic reviews



# ICD-10 classification from discharge summaries



# Impacts of assigning the ICD (Benefits)



#### Population health

- Policy planning
- Health surveillance
- Care monitoring
- Reimbursement
- Healthcare research



#### Healthcare provider

- Patient data documentation
- Integrated care



#### **Patient**

- Quality of care
- Patient safety

www.vectorstock.com



# Impacts of assigning the ICD (Burdens)

Increase workload

- Increase workload by coding practice
- Decrease in clinical care productivities

Time consumption

- Coding practice time (charts per hour)
  - 1.43-2.08 (United States)
  - 3.75 (Canada)
  - 3-4 (Thailand)
- Prasanwong C. Medical coding practices in Thailand [Internet]. Health Systems Research Institute; 2002
- Libicki MC, Brahmakulam IT. The costs and benefits of moving to the ICD-10 code sets. Santa Monica, CA: RAND; 2004. 63 p.
- Nachimson S. Documentation, documentation, documentation. The key to ICD-10 readiness. Md Med. 2014;15(1):20.
  - พระราชบัญญัติ ระเบียบข้าราชการพลเรือน (ฉบับที่ ๒) พ.ศ. ๒๕๕๘



# Impacts of assigning the ICD (Burdens) cont.

Resource consumption

Errors from coding

Costs

• Hiring for coders (Thailand, 2015)

Nurse  $\approx \$20,000 - \$30,000 // \text{ Clerk} \approx \$15,000$ 

• Training coders (US)

>\$500 - \$1500 per one coder (2004, 2014) [20,000\text{B} to 50,000\text{B}]

- 17.1 to 76.9% of errors from manual coding (1988–2005)
- 62.1 to 92.7% of errors for principal diagnosis (2017, Thailand)

AHIMA. ICD-10-CM Field Testing Project: Report on Findings: Perceptions, Ideas and Recommendations from Coding Professionals Across the Nation. ICD-10-CM Field Testing Project: 2003

Weems, Shelley; Fenton, Susan H.. "Results from the Veterans Health Administration ICD-10-CM/PCS Coding Pilot Study" Perspectives in Health Information Management (Summer, July 2015).

Johnson K. Implementation of ICD-10: Experiences and Lessons Learned from a Canadian Hospital. 2004 Oct 15

Hsia et al. 1988; Fischer et al. 1992; Benesch et al. 1997; Faciszewski, Broste, 1997; Goldstein 1998

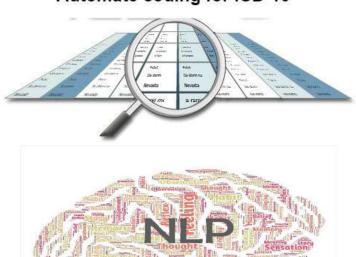
<sup>•</sup> Quan H, Li B, Saunders LD, et al. Assessing validity of ICD-9-CM and ICD-10 administrative data in recording clinical conditions in a unique dually coded database. Health Serv Res. 2008

<sup>·</sup> Sukanya C. Validity of Principal Diagnoses in Discharge Summaries and ICD-10 Coding Assessments Based on National Health Data of Thailand. Healthc Inform Res. 2017

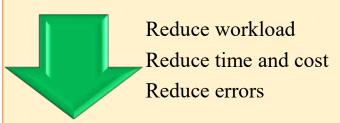


# Manual ICD coding

#### Automate coding for ICD-10



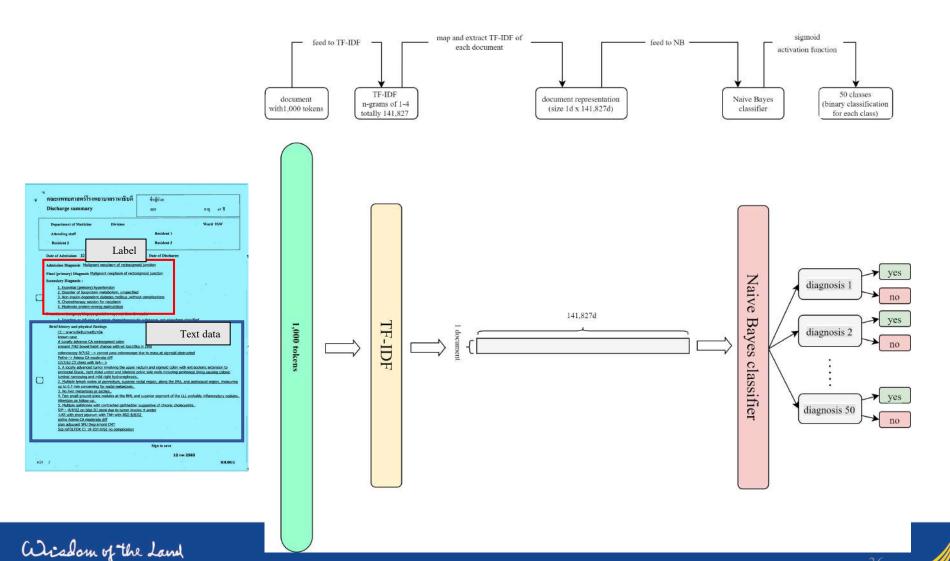




https://insightsnlp.com/why-learn-nlp



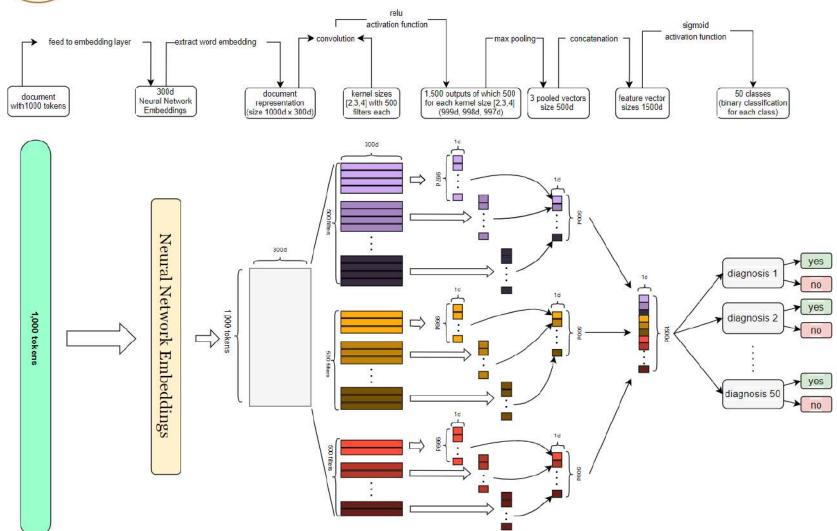
### ICD-10 classification Department of Clinical Epidemiology and Biostatistics from discharge summary





#### **Mahidol University**

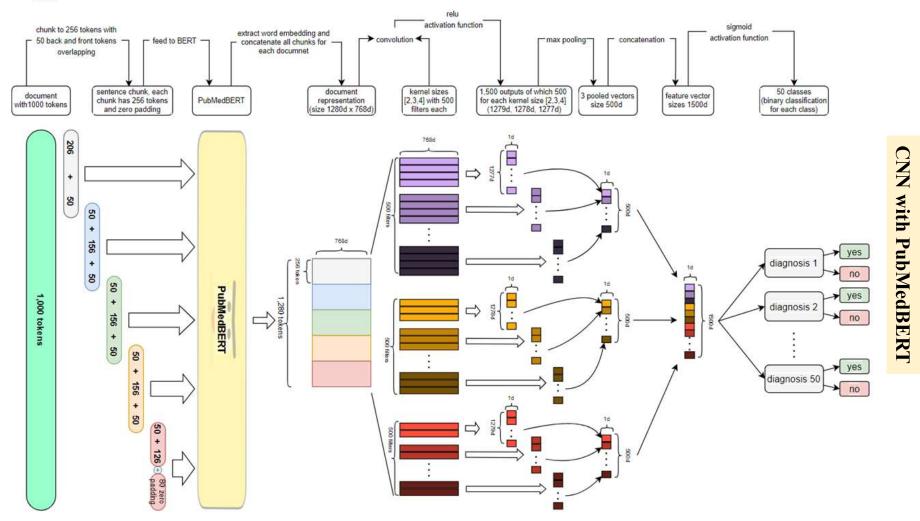
Faculty of Medicine Ramathibodi Hospital Department of Clinical Epidemiology and Biostatistics

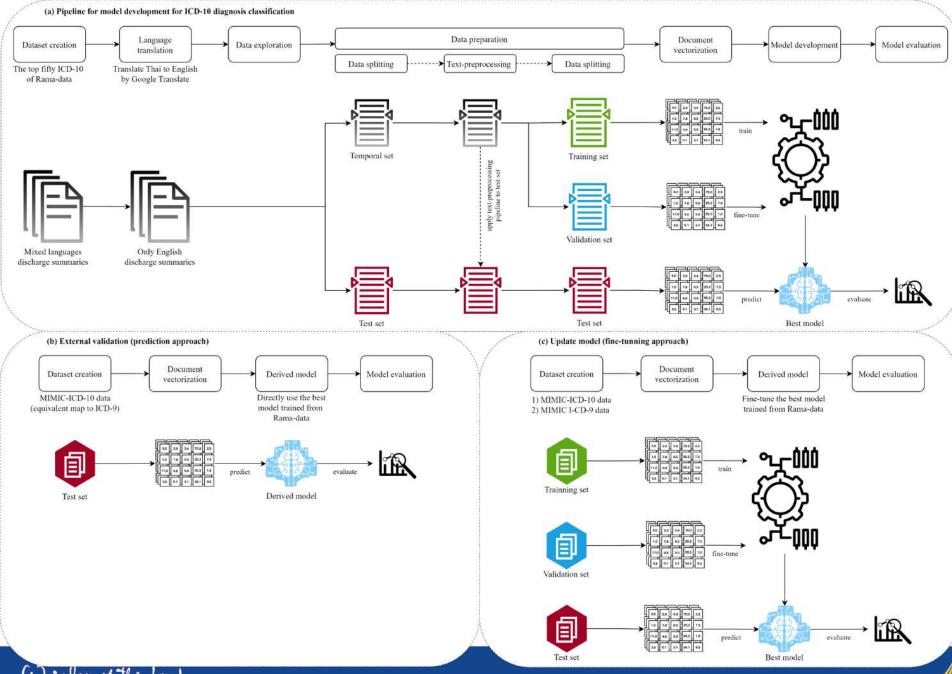




# Mahidol University Faculty of Medicine Ramathibodi Hospital

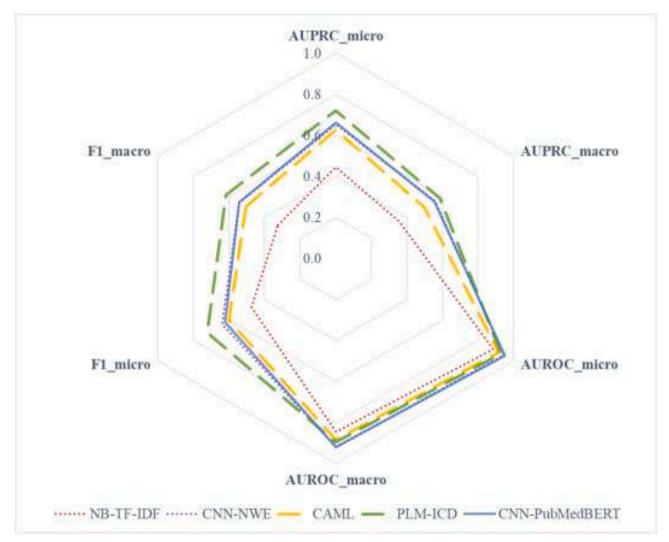
# Paculty of Medicine Ramathibodi Hospital Department of Clinical Epidemiology and Biostatistics







Department of Clinical Epidemiology and Biostatistics



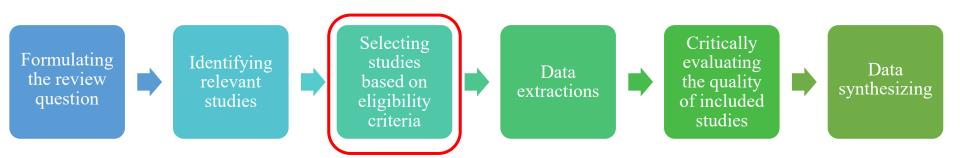


# AI for literature screening in systematic reviews

#### What is SR?

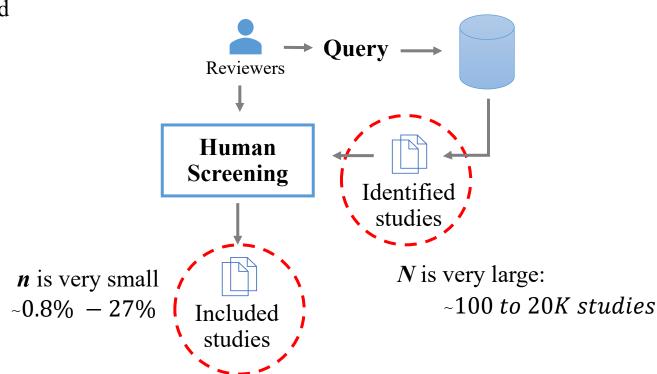
- Rigorous and comprehensive method to synthesize existing research findings on a specific topic or question.
- Commonly used in healthcare and other fields to inform decision-making, policy development, and further research.

#### **SR** processes



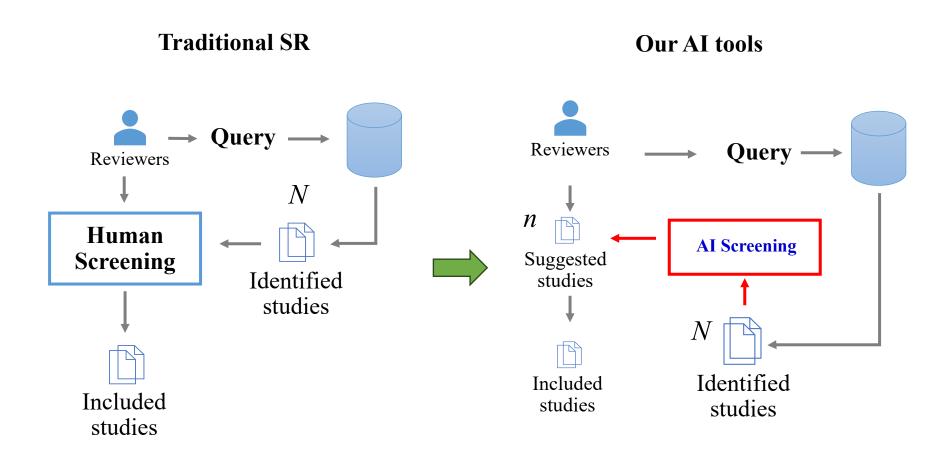
#### The challenges in SR

Workload



<sup>1)</sup> Kontonatsios G, et al., 2020

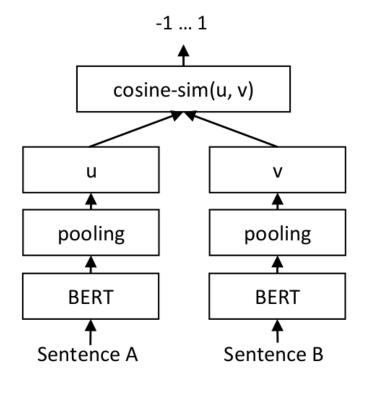
#### **Application of AI in SR**



#### **Model development framework**

| Training framework:            | Few-shot Learning |
|--------------------------------|-------------------|
| Feature vector representation: | SentenceBERT      |
| Pre-trained:                   | all-mpnet-base-v2 |
| Loss function:                 | Cosine similarity |

| batch_size                | 8                             |  |  |
|---------------------------|-------------------------------|--|--|
| epochs                    | 1                             |  |  |
| optimizer_params = {"lr"} | $2e^{-05}$                    |  |  |
| max_seq_length            | 384                           |  |  |
| word_embedding_dimension  | 768                           |  |  |
|                           | • Transformer                 |  |  |
| Layer                     | <ul><li>Pooling</li></ul>     |  |  |
|                           | <ul> <li>Normalize</li> </ul> |  |  |



#### **Comparison of our tool with existing tools**

#### Performance

| Tools         | Researchers               | Number<br>of SRs | Reduced<br>workload<br>(%) | Sensitivity (%) |
|---------------|---------------------------|------------------|----------------------------|-----------------|
| EPPI-Reviewer | Tsou A, et al., 2020      | 3                | 8.68 - 38.30               | 100             |
| RobotAnalyst  | Reddy SM, et al., 2020    | 1                | 30.69                      | 100             |
| Abstrackr     | Tsou A, et al., 2020      | 3                | 3.99 – 48.41               | 100             |
|               | Gates A, et al., 2018     | 4                | 9.50 - 88.40               | 79 - 96         |
| Rayyan        | Valizadeh A, et al., 2022 | 3                | 20                         | 87 - 98         |
| DistillerSR   | Hamel C, et al., 2020     | 10               | 30.00 - 72.50              | 95              |
| AISR          | This research             | 9                | 51.11 – 97.67              | 100             |



### Applications and use cases utilizing NLP in healthcare

- In other real-world setting
  - Clinical Documentation Improvement (CDI)
  - Patient Data Extraction from EHRs
  - Predictive Analytics for Patient Outcomes



# Clinical Documentation Improvement (CDI)

- 3M M\*Modal computer-assisted physician documentation (CAPD)
  - Cloud-based model helping enhance clinical documentation by using NLP
    - To identify and correct errors or omissions in patient records.
    - To assign ICD codes





# Clinical Documentation Improvement (CDI)

- Dragon Medical One
  - Uses NLP-powered speech recognition to allow clinicians to document patient encounters more accurately and efficiently





# Patient Data Extraction from EHRs

- Amazon Comprehend Medical
  - Extracts structured information like medical conditions and treatments from unstructured EHR text

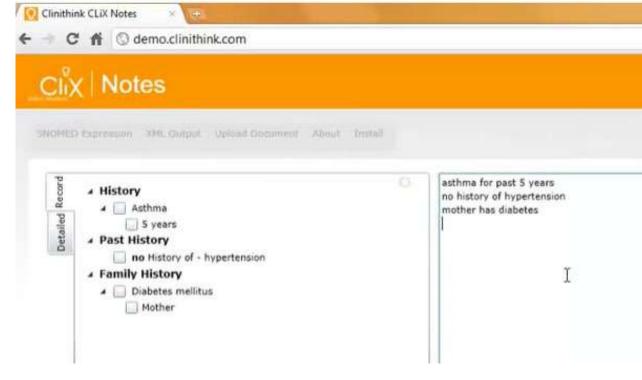




# Patient Data Extraction from EHRs

#### • Clinitink

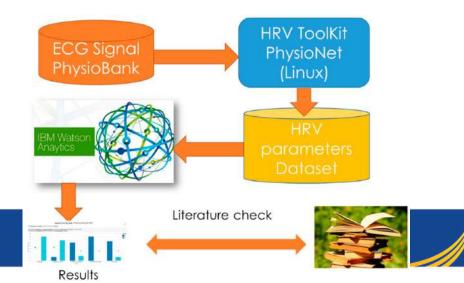
- NLP technology is used to process and analyze unstructured clinical data.
- Extract meaningful clinical information, such as diagnoses, symptoms, and procedures, and convert them into structured data.



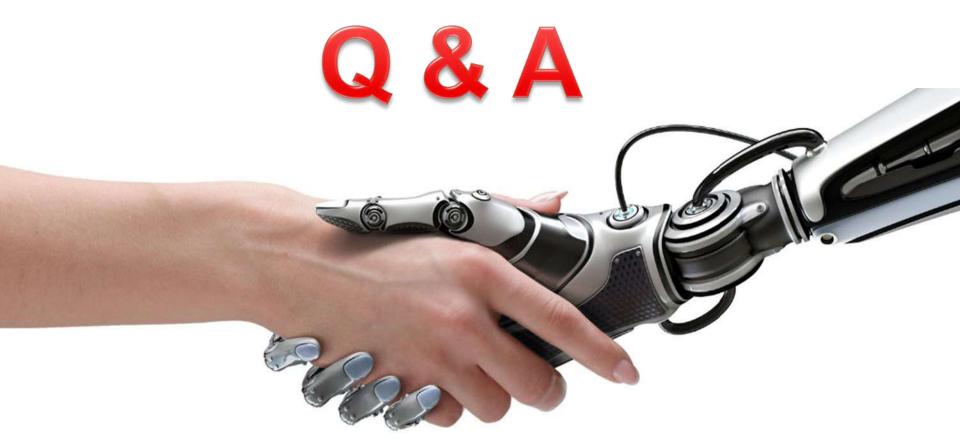
# Predictive Analytics for Patient Outcomes

- IBM Watson Health
  - Uses NLP to analyze patient records and predict outcomes like readmission risk and diseases.
  - Watson analytics to identify HF patients analyzing only the ECG summary.

Electrocardiogram (ECG)
Heart Rate Variability (HRV)







**THANK YOU**