MENT DF

Surgical Planning For BR & LA PDAC in Open Surgery F1 CHUNLACHES CHAIJAREENONT

Outline

Anatomy of the Peripancreatic Vessels and Nerves

- Definition of BR/LA PDAC
- Artery-First Approach
- Portomesecteric Vein Resection and Reconstruction
- Management of Arterial Involvement
- DP-CARS
- ► RAMPS vs DPS

Anatomy of the Peripancreatic Vessels and Nerve Plexuses

Celiac and SMA

FIGURE 2.37 In approximately 25% of individuals, the right hepatic artery arises partially or completely from the superior mesenteric artery (A, C, E); in a similar proportion of patients, the left hepatic artery may be partially or completely replaced by a branch arising from the left gastric artery, coursing through the gastrohepatic omentum to enter the liver at the base of the umbilical fissure (D, F). Rarely, the right or left hepatic arteries originate independently from the celiac trunk or branch after a very short common hepatic artery origin from the celiac, and the gastroduodenal artery may originate from the right hepatic artery (B, C). Multidetector computed tomography (CT) angiogram demonstrating an accessory right hepatic artery (arrow) arising from the superior mesenteric artery (G). Multidetector CT angiogram demonstrating a replaced left hepatic artery arising from the left gastric artery (H). Another common arterial variant is the hepatic trifurcation (I).

SMA

Fig. 1 a Schematic posterior surface view of the pancreas depicting the four divisions of the SMA: A. retropancreatic, B. interpancreaticoduodenal, C. preduodenal, D. intramesenteric. b Schematic view from the right. The pancreas head is shifted to the left by Kocherization

- French anatomists first divided the SMA into 4 segments:
 - 1. retropancreatic
 - 2. interpancreaticoduodenal
 - 3. preduodenal

•

4. intramesenteric

The right hepatic artery arises from the retropancreatic segment in 7.5–18% of cases, on which the pancreas body lies.

- The inferior pancreatoduodenal artery (IPDA) and first jejunal artery leave the interpancreaticoduodenal segment where the uncinate process closely abuts this artery.
- The middle colic artery and some jejunal arteries have their origins from the interpancreaticoduodenal to the preduodenal segment.

IPDA, JA, JV

FIGURE 5. Imaging analysis. A, Patterns of the IPDA root. In total, 132 IPDAs branched from the common trunk with JA, whereas 45 came independently and 7 came from a replaced hepatic artery. * indicates IPDA. B, Most of IPDAs originate from the right dorsal aspect of the SMA. C, The point of SMA abutment by invasive tumor in 20 patients. D, Patterns of JV course in 160 patients.

SMV-PV

FIGURE 2.38 A, The superior mesenteric vein (SMV) at the root of the lesser omentum is usually a single trunk; two, or sometimes even three, branches may unite as the vessel enters the tunnel beneath the neck of the pancreas (shaded) to form a superior mesenteric trunk. This trunk ascends behind the neck of the pancreas and is joined by the splenic vein (SV), which enters it from the left to form the portal vein (PV), which emerges from the retroperitoneal upper border of the neck of the pancreas and ascends toward the liver within the free edge of the lesser omentum, lying behind the bile duct and the hepatic artery and surrounded by the lymphatics and nodes of the lesser omentum. During this course, it receives blood through the coronary vein (CV), which communicates with esophageal venous collaterals, which connect with the gastric vein and the esophageal plexus. Sometimes a separate right gastric vein enters the PV in this area. A superior pancreaticoduodenal vein often enters the PV just above the level of the pancreas, and several smaller veins enter the SMV and PV from the right side beneath the neck of the pancreas. As the PV ascends behind the common bile duct and common hepatic duct, it approaches the hilus of the liver and bifurcates into two branches, a larger right (RPV) and a smaller left portal vein (LPV). The branch on the left courses below the left hepatic duct to enter the umbilical fissure, in company with the left hepatic artery, and subsequently branches to supply the left liver segments (II-IV). Just before its entry into the umbilical fissure, it gives off a major caudate vein, segment I, which runs posteriorly and laterally to the left. Sometimes this vein consists of two or more branches; the right portal branch, which is much shorter in length before its entry into the liver, divides at the extremity of the hilus into the right anterior (RAS) and posterior (RPS) sectional branches and is accompanied by the respective arterial branches and biliary tributaries. B, The division of the portal vein may arise more proximally, however, and C, the right anterior and posterior sectional portal veins may arise independently from the portal venous trunk. IMV, Inferior mesenteric vein.

Surgical Planning for BR & LA PDAC in Open Surgery: Chunlaches Chaijareenont (F1)(26/03/67) AT'S Surgery of the Liver, Biliary Tract and Panc Slide 71/48 lition, 2023

Nerve Plexus

FIGURE 1. Anatomy and concept of systematic mesopancreas dissection using the supracolic anterior approach. A, Frontal view of the mesopancreas, which is represented as the neurovascular bundle connecting the pancreas head to the right celiac ganglion (pIPh-I) and the SMA (pIPh-II). In this schema, the IPDA forms a common trunk with the JA. B, Transverse view of the pancreas head, mesopancreas, and mesojejunum. The dissection lines of each dissection level are indicated.

Inoue Y, et al. Pancreatoduodenectomy with systematic mesopancreas dissection using a Surgical Planning for BR & LA PDAC in Open Surgery: Chunlaches Chaijargenent (Eb)(26/03/67) ery-first approach. Ann Surg. 2015; 262; 6: 1092-18 ide 8/48

Definition

CRITERIA DEFINING RESECTABILITY STATUS AT DIAGNOSIS^a

Resectability Status	Arterial	Venous
Resectable	• No arterial tumor contact (celiac axis [CA], superior mesenteric artery [SMA], or common hepatic artery [CHA]).	 No tumor contact with the superior mesenteric vein (SMV) or portal vein (PV) or ≤180° contact without vein contour irregularity.
Borderline Resectable ^b	 Pancreatic head/uncinate process: Solid tumor contact with CHA without extension to CA or hepatic artery bifurcation allowing for safe and complete resection and reconstruction. Solid tumor contact with the SMA of ≤180°. Solid tumor contact with variant arterial anatomy (ex: accessory right hepatic artery, replaced right hepatic artery, replaced CHA, and the origin of replaced or accessory artery) and the presence and degree of tumor contact should be noted if present, as it may affect surgical planning. 	 Solid tumor contact with the SMV or PV of >180°, contact of ≤180° with contour irregularity of the vein or thrombosis of the vein but with suitable vessel proximal and distal to the site of involvement allowing for safe and complete resection and vein reconstruction. Solid tumor contact with the inferior vena cava (IVC).
	<u>Pancreatic body/tail</u> : • Solid tumor contact with the CA of ≤180°.	
Locally Advanced ^{b,c}	Head/uncinate process: • Solid tumor contact >180° with the SMA or CA. <u>Pancreatic body/tail</u> : • Solid tumor contact of >180° with the SMA or CA.	• Unreconstructible SMV/PV due to tumor involvement or occlusion (can be due to tumor or bland thrombus).

^a Al-Hawary MM, Francis IR, Chari ST, et al. Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the Society of Abdominal Radiology and the American Pancreatic Association. Radiology 2014;270:248-260.

^b Solid tumor contact may be replaced with increased hazy density/stranding of the fat surrounding the peri-pancreatic vessels (typically seen following neoadjuvant therapy); this finding should be reported on the staging and follow-up scans.

^c Distant metastasis (including non-regional lymph node metastasis), regardless of anatomic resectability, implies disease that should not be treated with upfront resection.

Continued

Anatomy classification for BR-PDAC

Fig. 2. Classification of the duodenal margin of SMV invasion. Group A: SMV invasion not exceeding the superior border of the duodenum (SB), Group B: SMV invasion not exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceeding the inferior border of the duodenum (IB), and Group D: SMV invasion exceedi

Fig. 3. Flow diagram of the 307 patients who had been enrolled for treatment of chemoradiotherapy (CRT) followed by surgery (CRT-S) at Mie University Hospital from February 2005 to December 2016, and surgical outcomes in the subjects of 235 patients according to classification of duodenal margin of SMV invasion (Groups A, B, C and D). Invasion (-): invasion negative, invasion (+): invasion positive, Local: unresected due to local factors such as major artery invasion, Mets: unresected due to the development of distant metastases.

8TH ed. AJCC

Table 1. Definitions for T, N, M

American Joint Committee on Cancer (AJCC) TNM Staging of Pancreatic Cancer (8th ed., 2017)

- **Primary Tumor** Т TX Primary tumor cannot be assessed No evidence of primary tumor **T0** Carcinoma in situ Tis This includes high-grade pancreatic intraepithelial neoplasia (PanIn-3), intraductal papillary mucinous neoplasm with highgrade dysplasia, intraductal tubulopapillary neoplasm with high-grade dysplasia, and mucinous cystic neoplasm with high-grade dysplasia **T1** Tumor ≤2 cm in greatest dimension Tumor ≤0.5 cm in greatest dimension T1a Tumor >0.5 cm and <1 cm in greatest dimension T1b T1c Tumor 1–2 cm in greatest dimension
- **T2** Tumor >2 cm and \leq 4 cm in greatest dimension
- T3 Tumor >4 cm in greatest dimension
- **T4** Tumor involves the celiac axis, superior mesenteric artery, and/or common hepatic artery, regardless of size

- N Regional Lymph Nodes
- NX Regional lymph nodes cannot be assessed
- N0 No regional lymph node metastases
- N1 Metastasis in one to three regional lymph nodes
- N2 Metastasis in four or more regional lymph nodes

M Distant Metastasis

- M0 No distant metastasis
- M1 Distant metastasis

Table 2. AJCC Prognostic Groups

	Т	Ν	Μ
Stage 0	Tis	N0	M0
Stage IA	T1	NO	M0
Stage IB	Т2	NO	M0
Stage IIA	Т3	NO	M0
Stage IIB	T1, T2, T3	N1	M0
Stage III	T1, T2, T3	N2	M0
	Τ4	Any N	M0
Stage IV	Any T	Any N	M1

Artery-First Approach

Fig. 1 Diagram showing the six approaches to the superior mesenteric artery: S, superior approach; A, anterior approach; P, posterior approach; L, left posterior approach; R, right/medial uncinate approach; M, mesenteric approach

Fig. 1 Schematic representation of the four segments of the SMA (a retropancreatic, b interpancreaticoduodenal, c preduodenal, d intramesenteric) and different artery-first approaches. Please note that every type of artery-first allows the early identification of one specific segment of the vessel [2-column fitting image]

Fig. 2 Schematic presentations of the four approaches. **a** Supracolic right posterior approach. The retropancreatic portion of the SMA is taped. The arrow indicates the dissection site and direction. **b** Infracolic anterior approach. The SMV is taped, and the SMA is retracted by tweezers. **c** Supracolic anterior approach. The SMV is taped, and the SMA is retracted by tweezers. **d** Infracolic left posterior approach. The arrow indicates the direction of the dissection

A. Supracolic right posterior approach
B. Infracolic anterior approach (Nakao)
C. Supracolic anterior approach (Medial uncinate)
D. Infracolic left posterior approach

Category	Author	Year	Order of procedures								
			Dissection of		Division of	Division of					
			Kocherization	SMA	Jejunum	Stomach	CBD ^a	Pancreas			
Supracolic right posterior	Pessaux	2006	1	2	4	5	3	6			
	Varty	2005	1	3	4 ^b	5	2	6			
	Popescu	2007	1	3	5 ^b	4	2	6			
	Shah	2013	1	2	6	3	4	5			
	Zimmitti	2016	T	2	4	3	6	5			
	Pędziwiatr	2017	1	2	5	4	3	6			
	Vallance	2017	1	2	4	5	3	6			
Infracolic anterior	Nakao	1993	6	1	4	3	2	5			
	Horiguchi	2007	3	4	5	2	1	6			
	Weitz	2010	1 ^c	2	4	5	3	6			
	Mizuno	2014	6	1	5 ^b	2	3	4			
	Zhu J	2016	6	1	5	2	4	3			
Supracolic anterior	Hackert	2010	1	4	3 ^b	5	2	6			
	Inoue	2015	1	2	3	4	5	6			
	Zhang	2017	1	3	2	4	6	5			
Infracolic left posterior	Kurosaki	2011	1 ^d	2	4 ^b	3	6	5			
-	Kawabata	2012	1 ^d	2	5	4	3	6			

ND not described

^aIncluding dissection of the hepatoduodenal ligament, division of the common bile duct (CBD) and exposition of the portal vein

^bDivision of the ligament of Treitz is described before or after division of the jejunum

^cIncluding the Cattel–Braasch maneuver d: reversed Kocher maneuver

Approach	Indication(s)	Advantages	Disadvantages
Posterior ¹²	Posteromedial tumour in head/neck, especially involving PV-SMV Periampullary tumour extending from body to head	Early identification of SMA involvement Identification of replaced RHA Enables adequate retropancreatic Iymphadenectomy Early identification of SMV involvement and facilitates <i>en bloc</i> resection	Difficult in patients with peripancreatic inflammation and adhesions around head of pancreas
Medial uncinate ^{18,22}	Malignant tumours of uncinate process	 Early identification of SMA involvement at uncinate Early ligation of IPDA minimizes bleeding Useful approach in peripancreatic inflammation with difficulty tunnelling above PV Useful approach for total pancreatectomy as mobilization can be achieved without transecting gland 	Late identification of replaced RHA
nferior infracolic (mesenteric) ¹⁹	Locally advanced tumours with questionable infiltration of SMA at its origin from aorta Malignant tumours of uncinate and ventral pancreas	Early identification of replaced RHA Allows better exposure and dissection of region posterior to SMA Early ligation of IPDA minimizes bleeding	Difficult in morbidly obese patients Difficult exposure in patients with high origin of SMA
∟eft posterior ²⁰	Tumours along uncinate and ventral pancreas	Facilitates skeletonization of SMA in retroperitoneum without kocherization of duodenum Early ligation of IPDA	Extensive dissection of SMA requiring antidiarrhoeals
nferior supracolic (anterior) ²¹	Tumours along inferior border of pancreas	 Facilitates better retroperitoneal dissection, especially with locally advanced tumours with neoadjuvant treatment 'No-touch' technique with <i>en bloc</i> kocherization theoretically prevents tumour cell dissemination 	Early division of stomach and neck of pancreas
Superior	Malignant tumours of superior border of pancreas	Early identification of CHA, coeliac and SMA involvement	Difficult exposure in patients with low origin of SMA

PV, portal vein; SMV, superior mesenteric vein; SMA, superior mesenteric artery; RHA, right hepatic artery; IPDA, inferior pancreatoduodenal artery; CHA, common hepatic artery.

	Experim	ental	Contr	ol		Odds Ratio	Udds Rat		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 9	95% Cl	
Dumitrascu et al (2010)	7	21	9	21	4.5%	0.67 [0.19, 2.33]			
Figueras et al (2008)	19	38	17	18	8.6%	0.06 [0.01, 0.49]	241		
Gall et al (2014)	1	6	1	6	0.6%	1.00 [0.05, 20.83]			
Gundara et al (2013)	24	62	18	65	8.1%	1.65 [0.78, 3.48]			
Ishizaki et al (2010)	78	175	68	112	34.4%	0.52 [0.32, 0.84]			
Kawabata et al (2012)	7	14	14	25	3.8%	0.79 [0.21, 2.92]		_	
Kawai et al (2008)	7	48	12	48	7.7%	0.51 [0.18, 1.44]			
Kurosaki et al (2011)	8	40	16	35	10.2%	0.30 [0.11, 0.82]			
Pedziwiatr et al (2017)	6	12	11	19	3.2%	0.73 [0.17, 3.11]	110	20	
Shah et al (2013)	14	72	12	38	9.5%	0.52 [0.21, 1.29]			
Wang et al (2017)	32	78	16	39	9.4%	1.00 [0.46, 2.18]			
Total (95% CI)		566		426	100.0%	0.62 [0.47, 0.81]	•		
Total events	203		194				-5/2		
Heterogeneity: Chi ² = 15.8	87. df = 10	(P = 0.1)	$ 0); ^2 = 3$	7%				1	
Test for overall effect: Z =	= 3.47 (P =	0.0005)					6.01 0.1 1 Favours [experimental] Fav	10 vours [control]	10
В	Experim	ental	Contr	ol		Odds Ratio	Odds Rat	tio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 9	5% CI	
Aimoto et al (2013)	2	19	0	19	0.5%	5.57 [0.25, 124, 19]			-
Dumitrascu et al (2010)	5	21	9	21	7.9%	0 42 [0 11 1 57]			
Figueras et al (2008)	3	38	4	18	5.7%	0.30 [0.06 1.52]			
Inque et al (2015)	6	82	15	80	16.1%	0.34 [0.13, 0.93]			
Ishizaki et al (2010)	27	175	35	112	41.4%	0 40 [0 23 0 71]			
Kawai et al (2008)	1	18	2	48	2.2%	0.49 [0.04 5 58]			
Kurosaki at al (2000)	1	40	2	35	3 3%	1 10 [0 25 5 70]			
Pal et al (2019)	4	10	7	21	5.0%	0.57 [0.14, 2.40]		_	
Paret al (2018)	4	10	2	10	1 60/	0.37 [0.14, 2.40]			
Shah at al (2012)	7	72	2	29	E 40/	0.02 [0.25, 3.35]			
Shah et al (2013)	/	72	4	30	3.4%	0.92 [0.25, 3.35]			
Valiance et al (2017)	2	70	3	20	5.5%	0.00 [0.11, 4.05]			
Vvang et al (2017)	0	18	4	39	0.0%	0.73 [0.19, 2.75]			
2nou et al (2014)	1	15		15	1.1%	1.00 [0.06, 17.62]			
Total (95% CI)		695		542	100.0%	0.52 [0.37, 0.73]	•		
Total events	69		89					2	
Heterogeneity: Chi ² = 6.66	6, df = 12 (P = 0.88	$(3); ^2 = 0\%$, ,			0.01 0.1 1	10	10
Test for overall effect: Z =	= 3.70 (P =	0.0002)					Favours [experimental] Fav	vours [control]	
C								•	
•	Experim	ental	Contr	ol		Odds Ratio	Odds Rat	io	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 9	5% CI	
Aimoto et al (2013)	1	19	2	19	2.4%	0.47 [0.04, 5.70]			
Figueras et al (2008)	22	82	46	80	42.4%	0.27 [0.14, 0.52]			
Inoue et al (2015)	6	38	7	18	10.0%	0.29 [0.08, 1.07]			
Kawai et al (2008)	4	48	4	48	4.6%	1.00 [0.24, 4.25]			
Kurosaki et al (2011)	7	40	16	35	17.5%	0.25 [0.09. 0.72]			
Pal et al (2018)	5	18	7	21	5.8%	0.77 [0.19, 3.04]		-	
Pedziwiatr et al (2017)	3	12	4	19	2.9%	1.25 [0.23, 6.91]			
Shah et al (2013)	5	72	3	38	4 5%	0.87 [0.20, 3.86]		_ / /	
Wang et al (2017)	6	78	5	30	7 7%	0.57 [0.16, 1.00]			
Zhou et al (2014)	1	15	2	15	2.3%	0.46 [0.04, 5.75]			
		.0	-	.5	2.078	0.10 [0.04, 0.70]			
Total (95% CI)		422		332	100.0%	0.42 [0.29, 0.62]	•		
I otal events	60		96						
Heterogeneity: Chi ² = 7.7 Test for overall effect: Z =	3, df = 9 (F = 4.44 (P <	0.0000); I² = 0% 1)				0.01 0.1 1 Favours [experimental] Fav	10 vours [control]	10

A	Experim	ental	Contr	ol		Odds Ratio	Odds Ratio
Study or Subaroup	Events	Total	Events	Total	Weight	M-H. Fixed, 95% CI	M-H, Fixed, 95% Cl
Aimoto et al (2013)	1	19	2	19	6.5%	0.47 [0.04, 5.70]	
Figueras et al (2008)	3	38	7	18	30.0%	0.13 [0.03, 0.61]	
Kawai et al (2008)	1	48	4	48	13.4%	0.23 [0.03, 2.18]	
Kurosaki et al (2011)	9	40	12	35	34.0%	0.56 [0.20, 1.54]	
Pedziwiatr et al (2017)	0	12	1	19	3.9%	0.49 [0.02, 13.11]	
Wang et al (2017)	2	78	2	39	8.9%	0.49 [0.07, 3.59]	
Zhou et al (2014)	1	15	1	15	3.2%	1.00 [0.06, 17.62]	
Total (95% CI)		250		193	100.0%	0.39 [0.20, 0.75]	◆
Total events	17		29				
Heterogeneity: Chi ² = 3.0)7. df = 6 (l	P = 0.80); $ ^2 = 0\%$				
Test for overall effect: Z :	= 2.84 (P =	0.005)	<i>,</i> ,				0.01 0.1 1 10 100
в							
	Experime	ental	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H. Fixed, 95% Cl
Aimoto et al (2013)	9	19	6	19	18.7%	1.95 [0.52, 7.31]	
Inoue et al (2015)	14	82	8	80	39.8%	1.85 [0.73, 4.70]	+
Kawabata et al (2012)	1	14	1	25	3.9%	1.85 [0.11, 32.01]	
Kurosaki et al (2011)	26	40	17	35	37.6%	1.97 [0.78, 4.97]	
Total (95% CI)		155		159	100.0%	1.91 [1.08, 3.40]	▲
Total events	50		32				
Heterogeneity: Chi ² = 0.0)1, df = 3 (l	P = 1.00); l ² = 0%				
Test for overall effect: Z	= 2.21 (P =	= 0.03)					Eavours [experimental] Eavours [control]
c							Taroare [experimental] Taroare [control]
•	Experim	nental	Cont	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Dumitrascu et al (2010)	1	21	1	21	11.6%	1.00 [0.06, 17.12]	All and a second s
Kurosaki et al (2011)	1	40	2	35	25.3%	0.42 [0.04, 4.88]	
Pal et al (2018)	1	18	3	21	31.8%	0.35 [0.03, 3.73]	
Wang et al (2017)	3	78	2	39	31.2%	0.74 [0.12, 4.62]	
Total (95% CI)		157		116	100.0%	0.57 [0.19, 1.73]	-
Total events	6		8				
	4 df = 3 (F)	P = 0.931	$ ^2 = 0\%$				
Heterogeneity: Chi ² = 0.4	-, ui - 0 (i	0.00					0.01 0.1 1 10 10

SMA first for PD: intraabdominal infections (A), diarrhea (B) and postoperative haemorrhage (C).

Fig. 3. Forest plot of intraabdominal infections (A), diarrhea (B) and postoperative haemorrhage rate (C) in patients who received SMA-PD compared with S-PD.

A	Even	rimontal		~	ontrol			Moon Difference	Moon Difforence
Study or Subgroup	Mean	erimental SD	Total	Mean	ontrol	Total	Weight	Mean Difference	Mean Difference
Dumitraccu et al (2010)	202.86	105 12	21	435 71	210 17	21	7 7%	-142 85 L268 35 -17 351	←
Gundara et al (2013)	292.00	31	25	435.71	219.17	17	10.1%	-242.00 [-264.97 -219.03]	
Horiguchi et al (2007)	678	329	18	1 225	375	18	4.9%	-547 00 [-777 46 -316 54]	
Inoue et al (2015)	435	174.8	82	642.5	164.4	80	9.7%	-207 50 [-259 74 -155 26]	
Ishizaki et al (2010)	446	302	175	1 062	605	112	7.9%	-616 00 [-736 65 -495 35]	•
Kawabata et al (2012)	1.070	170.1	14	1,330	340	25	6.7%	-260.00 [-420.32, -99.68]	• • • • •
Kawai et al (2008)	728	222.9	48	867	334.8	48	8.1%	-139 00 [-252 78 -25 22]	
Kurosaki et al (2011)	1.307	823	40	1.352	823	35	2.7%	-45.00 [-418.35, 328.35]	+
Nagakawa et al (2015)	162.7	18.5	10	463.8	97.9	22	9.8%	-301.10 [-343.59, -258.61]	•
Pal et al (2018)	855.6	607.3	18	973.8	783.5	21	2.1%	-118.20 [-555.24, 318.84]	+
Pedziwiatr et al (2017)	408.3	166.3	12	391.7	180.7	19	7.8%	16.60 [-107.72, 140.92]	· · · · · · · · · · · · · · · · · · ·
Shah et al (2013)	601	250.3	72	1.371.5	471.8	38	6.7%	-770.50 [-931.26, -609.74]	•
Wang et al (2017)	534	81.5	78	756	220.7	39	9.2%	-222.00 [-293.59, -150.41]	•
Zhou et al (2014)	407	202	15	423	253	15	6.6%	-16.00 [-179.84, 147.84]	· · · ·
Total (95% CI)			628			510	100.0%	-264 84 1-336 10 -193 581	
Heterogeneity: Tau ² = 120	987 26 CH	$hi^2 = 124$	63 df =	= 13 (P <	0 00001). I2 = 0	0%	204.04 [000.10; 100.00]	
Test for overall effect: 7 =	7 28 (P <	0 00001	٥٥, ui - ۱	- 15 (1- 5	0.00001), 1 = 3	0 /0		-100 -50 0 50 1
	1.20 (1 4	0.00001	/						Favours [experimental] Favours [control]
R									
D	Euro		-1					Maan Difference	Maan Difference
Study or Subarrown	Exp	enment	Tetel	Maan	ontroi	Tetal	Malaht	Wean Difference	Mean Difference
Study or Subgroup	Mean	50	Total	<u>Mean</u>	50	Total	weight	IV, Random, 95% CI	IV, Random, 95% CI
Dumitrascu et al (2010)	228.57	75.78	21	332.38	85.84	21	6.5%	-103.81 [-152.78, -54.84]	·
Figueras et al (2008)	380	79	38	383	67	18	6.6%	-3.00 [-42.86, 36.86]	
Gall et al (2014)	198	88.9	6	240	133.3	6	5.0%	-42.00 [-170.20, 86.20]	
Gundara et al (2013)	380	55.56	25	395	51.85	17	6.6%	-15.00 [-47.89, 17.89]	
Horiguchi et al (2007)	451	89	18	530	186	18	5.7%	-79.00 [-174.26, 16.26]	
Inoue et al (2015)	453.5	35.93	14	484	53.04	25	6.7%	-30.50 [-58.54, -2.46]	
Ishizaki et al (2010)	578	112	175	360	108	112	6.7%	218.00 [192.01, 243.99]	
Kawabata et al (2012)	614	289.5	82	568	385.9	80	5.5%	46.00 [-59.25, 151.25]	
Kawai et al (2008)	339	225.2	48	357	225.9	48	5.8%	-18.00 [-108.24, 72.24]	
Kurosaki et al (2011)	516	95	40	526	95	35	6.5%	-10.00 [-53.10, 33.10]	
Nagakawa et al (2015)	522.5	89.6	10	562.2	164.8	22	5.8%	-39.70 [-128.17, 48.77]	
Pal et al (2018)	321.1	54	18	357.6	55.8	21	6.6%	-36.50 [-71.02, -1.98]	
Pedziwiatr et al (2017)	466.7	53.8	12	425	85.1	19	6.5%	41.70 [-7.20, 90.60]	
Shah et al (2013)	208.1	46.3	72	322	33.8	38	6.8%	-113.90 [-129.06, -98.74]	
Wang et al (2017)	313	162.2	78	384	190.3	39	6.2%	-71.00 [-140.73, -1.27]	• • • • • • • • • • • • • • • • • • •
Zhou et al (2014)	255	57	15	264	54	15	6.6%	-9.00 [-48.73, 30.73]	
Total (95% CI)			672			534	100.0%	-15.82 [-72.49, 40.85]	
Heterogeneity: Tau ² = 12	2311.17: 0	Chi ² = 49	2.95. d	f = 15 (F	< 0.000	001): l ²	= 97%		F F F
Test for overall effect: Z	= 0.55 (P	= 0.58)				.,,.			-100 -50 0 50
	0.00 (i	0.00)							Favours [experimental] Favours [control]
C									
•	Ex	perimer	ntal		Control			Mean Difference	Mean Difference
Study or Subgroup	Mear	n SD	Tota	I Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Dumitrascu et al (2010) 19.57	7 12.89	21	19.9	12.87	21	5.8%	-0.33 [-8.12, 7.46]	+
Figueras et al (2008)	16.2	2 10	38	3 28.6	10	18	7.0%	-12.40 [-18.01, -6.79]	-
Gall et al (2014)	16.2	2 2	e	3 25.2	3.5	6	8.3%	-9.00 [-12.23, -5.77]	-
Gundara et al (2013)	12	2 9.63	25	5 12	3.7	17	7.9%	0.00 [-4, 16, 4, 16]	+
Inque et al (2015)	27	7 4 67	14	1 27	6 74	25	8.2%	0.00 [-3.60, 3.60]	+
Kawabata et al (2012)	30	0 7	82	56	14.5	80	8 2%	-26 00 [-29 52 -22 48]	÷
Kurosaki et al (2011)	45	4 24	40	49.9	15	35	5 1%	-4 40 [-13 34 4 54]	-+
Nagakawa et al (2015)	10.4	5 24	40	10.0	37	22	8 80/	0.10 [-2.05, 2.25]	+
Pal of al (2018)	13.70	9 12 2	40	14 20	6.0	24	6.7%	0.10 [-2.00, 2.20]	+
Paretar (2016)	13.78	0 12.2	10	14.29	0.2	21	0.7%	-0.51 [-0.74, 5.72]	
Pedziwiatr et al (2017)		9 1.3	12	. 9	3	19	9.0%	0.00 [-1.54, 1.54]	
Shah et al (2013)	8.46	5 2.06	72	9.47	3.59	38	9.1%	-1.01 [-2.25, 0.23]	.]
wang et al (2017)	14	4 1.4	78	5 19	2.4	39	9.1%	-5.00 [-5.81, -4.19]	1
Zhou et al (2014)	16.8	8 8.2	15	15.6	7.8	15	6.9%	1.20 [-4.53, 6.93]	T
Total (95% CI)		1	431			356	100.0%	-4.49 [-7.54, -1.43]	
Heterogeneity: Tau ² = 2	26.48; Ch	$1i^2 = 247$.54, df	= 12 (P	< 0.0000	01); l² =	95%		-100 -50 0 50
Test for overall effect:	Z = 2.88 ((P = 0.00)	4)						Favours [experimental] Favours [control]

SMA first for PD: blood loss (A), operation time (B) and postoperative stay (C).

Fig. 4. Forest plot of blood loss (A), operative time (B) and postoperative stay (C) in patients who received SMA-PD compared with S-PD.

Fig. 5. Forest plot of R0 resection rate (A), local recurrence rate (B), liver recurrence rate (C), peritoneum recurrence rate (D) and lung recurrence rate (E) in patients who received SMA-PD compared with S-PD.

Odds Ratio

M-H, Fixed, 95% CI

Odds Ratio

M-H, Fixed, 95% Cl

10

10

500

100

n

5	Expe	eriment	tal	c	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	I IV. Random, 95% CI
Dumitrascu et al (2010)	20.8	14.56	21	19.9	11.93	21	17.0%	0.90 [-7.15, 8.95]	+
Gall et al (2014)	16.7	5	6	13	4.3	6	20.5%	3.70 [-1.58, 8.98]	†
Kawabata et al (2012)	30.4	9.6	14	10.9	6.67	25	20.0%	19.50 [13.83, 25.17]	
Kurosaki et al (2011)	28.3	10.2	40	16.8	4	35	22.5%	11.50 [8.07, 14.93]	•
Vallance et al (2017)	25	8.9	17	21	8.9	20	19.9%	4.00 [-1.75, 9.75]	-
Total (95% CI)			98			107	100.0%	8.21 [2.14, 14.27]	•
Heterogeneity: Tau ² = 39	.41; Chi ²	= 25.79	9, df = 4	4 (P < 0	.0001);	l² = 84%	6		
Test for overall effect: Z =	= 2.65 (P	= 0.008	3)						Favours [control] Favours [experimental]

SMA first for PD: 1-year OS (A), 2-year OS (B), 3-year OS (C) and mean OS (D).

Fig. 6. Forest plot of one-year OS (A), two-year OS (B), three-year OS (C) and mean OS (D) in patients who received SMA-PD compared with S-PD.

MENT DF

Table 2

Subgroup analysis of complications stratified by SMA approach type.

studies participants (case/ OR (95%CI) Outcomes or P-value Subgroup control) **Overall complications** Left posterior 1 40/35 0.30 (0.11-0.82) 0.02 Anterior 4 291/231 0.70 (0.49-1.02) 0.06 3 73/64 0.38 (0.18-0.82) Posterior 0.01 2 90/58 0.93 (0.47–1.85) 0.84 Mesenteric Superior 1 72/38 0.52 (0.21–1.29) 0.16 Pancreatic fistula Left posterior 3 77/75 1.05 (0.40-2.70) 0.93 2 223/160 0.41 (0.23-0.71) 0.002 Anterior Posterior 3 136/116 0.39 (0.16-0.93) 0.03 3 172/138 0.47 (0.22-0.98) 0.05 Mesenteric Superior 1 72/38 0.92 (0.25-3.35) 0.89 Medical 15/15 1.00 1.00 1 uncinate (0.06 - 17.62)Delayed gastric emptying 0.39 (0.18-0.85) Left posterior 3 77/75 0.02 48/48 1.00 (0.24-4.25) 1.00 Anterior 1 38/18 0.24 (0.06-0.90) 0.04 Posterior 1 Mesenteric 3 172/138 0.37 (0.21-0.63) < 0.001 Superior 72/38 0.87 (0.20-3.86) 0.86 1 Medical 1 15/15 0.46 (0.04–5.75) 0.55 uncinate Intraabdominal infections Left posterior 2 59/54 0.54 (0.21-1.39) 0.20 48/48 0.23 (0.03-2.18) Anterior 1 0.20 38/18 0.13 (0.03-0.61) 0.009 Posterior 1 2 90/58 0.49 (0.09–2.71) 0.41 Mesenteric Medical 1 15/15 1.001.00 (0.06 - 17.62)uncinate Diarrhea 2 1.96 (0.92-4.19) Left posterior 59/54 0.08 Anterior 1 14/25 1.85 0.67 (0.11 - 32.01)82/80 1.85 (0.73-4.70) 0.19 Mesenteric 1 Postoperative haemorrhage Left posterior 2 58/56 0.38 (0.07-2.09) 0.27 Posterior 1 21/211.000.75 (0.06 - 17.12)78/39 0.74 (0.12–4.62) 1.00 Mesenteric 1

The bold means P	<	0.05.
------------------	---	-------

Table 4

Subgroup analysis of survival outcomes in pancreatic cancer patients stratified by SMA approach type.

Outcomes	studies	participants (case/control)	Effect Estimate OR/WMD (95%CI)	P-value
R0 resection				
Left posterior	1	19/19	OR: 1.29 (0.32–5.28)	0.72
Anterior	1	6/6	OR: 1.00 (0.10–9.61)	1.00
Posterior	2	102/94	OR: 4.00 (1.96–8.16)	< 0.001
Mesenteric	2	26/44	OR: 2.72 (0.38–19.59)	0.32
Medial uncinate	1	15/15	Not estimable	/
Local recurrence				
Left posterior	2	59/44	OR: 0.08 (0.03–0.27)	< 0.0001
Posterior	1	38/18	OR: 0.43 (0.08–2.37)	0.33
Mesenteric	1	14/25	OR: 0.22 (0.01–4.61)	0.33
1-year OS				
Left posterior	1	40/35	OR: 1.17 (0.34–4.03)	0.80
Anterior	2	39/42	OR: 2.72 (0.90–8.26)	0.08
Posterior	2	44/24	OR: 3.81 (1.10–13.18)	0.03
2-year OS				
Left posterior	1	40/35	OR: 2.82 (1.10–7.21)	0.03
Anterior	1	25/17	OR: 1.73 (0.45–6.69)	0.43
Posterior	3	121/101	OR: 1.65 (0.96–2.84)	0.07
3-year OS				
Left posterior	1	40/17	OR: 2.03 (0.63–6.54)	0.24
Anterior	1	25/17	OR: 2.22 (0.60–8.17)	0.23
Posterior	3	121/101	OR: 2.16 (1.24–3.77)	0.007
Mean OS				
Left posterior	1	40/35	WMD: 11.50 (8.07-14.93)	< 0.001
Anterior	1	82/80	WMD: 19.50 (16.96-22.04)	< 0.001
Posterior	3	108/100	WMD: 6.58 (0.72–12.44)	0.03

The bold means P < 0.05.

RCT

Variable	Category	ST-PD (n=75)	AFA-PD (n=78)	Total $(n = 153)$
Age (yr)		67.7 ± 10.2	67.9 ± 67.9	67.8 ± 9.7
Sex	Male	45 (60%)	44 (57%)	89 (58%)
	Female	30 (40%)	34 (43%)	64 (42%)
Diabetes Mellitus		23 (35%)	24 (32%)	47 (33%)
ASA III		42 (56.0%)	39 (50%)	81 (53%)
Preop biliary drainage		44 (59%)	43 (55%)	87 (56%)
Pathological Diagnosis	Pancreatic cancer	38 (50.6%)	51 (65.4%)	89 (58%)
	Ampullary cancer	26 (34.7%)	22 (28.2%)	48 (31.4%)
	BileDuct Cancer	9 (12%)	5 (6.4%)	14 (9.2%)
	Duodenal Cancer	2 (2.7%)	0 (0%)	2 (1.3%)
Whipple /PP	Whipple	70 (93%)	76 (97%)	146 (95.4%)
	Pylorus-preserving	5 (7%)	2 (3%)	7 (4.6%)
Pancreatic anastomosis	PJ	56 (81%)	59 (86%)	115 (83%)
	PG	13 (19%)	9 (14%)	22 (17%)
Completion pancreatectomy		6 (8.0%)	10 (12.8%)	16 (10.5%)
Vascular resection		12 (16.0%)	18 (23.1%)	30 (19.6%)

Continuous variables expressed as mean ± standard deviation, and categorical expressed as n and frequencies (%). PP indicates pylorus-preserving; PJ, pancreatojejunostomy; PG, pancreatogastrostomy; ASA, American Society of Anesthesiologists.

Variable	Category	ST-PD (n=75)	AFA-PD (n=78)	Total (n= 153)	P Value
R0 n (%)	Pancreatic and periampullary	58 (77.3%)	53 (67.9%)	111 (72.6%)	0.194
	tumors				
R0 n (%)	Pancreatic cancer	22 (57.9%)	30 (58.8%)	52 (58.3%)	0.930
At least 1 margin affected		17 (22.7%)	25 (32.1%)	42 (27.4%)	0.806
Margin affected	Transection	2 (12%)	7 (28%)	9 (21%)	0.167
(1 or more simultaneously)					
	Medial	15 (88%)	18 (72%)	33 (78%)	0.776
	Posterior	15 (88%)	14 (56%)	29 (69%)	0.069
Isolated lymph nodes		18 ± 8	18 ± 8	18 ± 8	0.969
Operation time (min) median [IQR]		330 [285-390]	360 [300-420]	340 [300–395]	0.430
Blood loss (mL)		303 ± 408	344 ± 304	324 ± 359	0.525
Intraoperative Blood Transfusion		9 (12.2%)	14 (18.2%)	23 (15.2%)	0.249
Complications	Yes	55 (73.3%)	53 (67.9%)	108 (70.6%)	0.484
	Clavien-Dindo ≥ 3	18 (24%)	16 (20.5%)	34 (22.2%)	0.699
	CCI (mean \pm SD)	26 ± 19.5	29.7 ± 24.3	27.8 ± 21	0.390
Hemorrhage		8 (10.7%)	8 (10.3%)	16 (10.5%)	1.000
Pancreatic fistula (A/B/C)		23 (31%) 11 (15%)/	16 (21%) 7 (9%)/	39 (25%) 18 (12%)/	0.194
		9 (12%)/3 (4%)	7 (9%)/2 (3%)	16 (10%/5 (3%)	
DGE		13 (17.3%)	14 (17.9%)	27 (17.6%)	1.000
GI fistula		3 (4.0%)	3 (3.8%)	6 (3.9%)	1.000
Biliary fistula		4 (5.3%)	3 (3.8%)	7 (4.6%)	0.714
Abdominal abscess		17 (22.7%)	17 (21.8%)	34 (22.2%)	1.000
Chylous fistula		5 (6.7%)	6 (7.7%)	11 (7.2%)	1.000
Diarrhea		3 (4.0%)	6 (7.7%)	9 (5.9%)	0.495
Postop. transfusion		21 (28.0%)	18 (23.1%)	39 (25.5%)	0.578
Reoperation		5 (6.7%)	5 (6.4%)	10 (6.5%)	1.000
Readmission		12 (16.0%)	5 (6.4%)	17 (11.1%)	0.073
Hospital stay (d) (median, range)		15 (11-22)	17 (13-25)	16 (11-23)	0.182
30-d Mortality		3 (4.0%)	5 (6.4%)	8 (5.2%)	0.721
90-d Mortality		3 (4.0%)	6 (7.7%)	9 (5.8%)	0.267

TABLE 2. Primary and Secondary End-point: RO Resection Rate, Margin Invasion, and Postoperative Outcomes.

Surgic

Continuous variables are corpressed as mean it standard deviation or median and range; categorical variables as n (%) and [IQR]. DGE indicates delayed gastric emptying; GI, gastrointestinal.

On going trial

MAPLE-PD trial: Mesenteric Approach vs. Conventional Approach for Pancreatic Cancer during Pancreaticoduodenectomy: study protocol for a multicenter randomized controlled trial of 354 patients with pancreatic ductal adenocarcinoma.

PancER trial: Conventional partial pancreatoduodenectomy versus an extended pancreatoduodenectomy (triangle operation) for pancreatic head cancers—study protocol for the randomised controlled TRIANGLE trial.

Portomesenteric vein resection and reconstruction

Fig. 2 Resection and reconstruction of the mesenteric-portal vein axis

Sketches representing types of venous resection according to the International Study Group of Pancreatic Surgery (ISGPS)²¹ and representative operative fields. **a** ISGPS type 1: partial venous excision with direct suture closure (arrowhead). **b** ISGPS type 2: partial venous excision using a peritoneal patch (arrowheads). **c** ISGPS type 3: segmental resection with primary venovenous anastomosis (arrowhead). **d** ISGPS type 4: segmental resection with interposed prosthesis and two anastomoses. c, coronary vein; pv, portal vein; smv, superior mesenteric vein; sv, splenic vein; vc, vena cava.

Gastric venous

Sketches on the left illustrate the extent of portal venous resection (white lines in left panels and blank area in centre panels), and reconstruction techniques (arrows and arrowheads in right panels), images on the right show representative operative fields. a End-to-end anastomosis of superior mesenteric vein (smv) to portal vein (pv) (arrow in right panels), and reinsertion of splenic vein (sv) into pv (arrowhead in right panels). b End-to-end anastomosis of smv to pv (arrow in right panels), and interposition prosthesis (p) to insert sv into left renal vein (rv) (arrowhead in right panels). c End-to-end anastomosis of smv to pv (arrow in right panels), and interposition prosthesis (p) to insert sv into vena cava (vc) (arrowhead in right panels). c End-to-end anastomosis of smv to pv (arrow in right panels), and insertion of coronary vein (c) into rv (arrowhead in right panels). ct, coeliac trunk; sma, superior mesenteric artery.

Slide 26/48

Management of Arterial Involvement

Arterial resection and reconstruction

Fig. 5 Options for arterial resection and reconstruction

Sketches illustrating extent of arterial resection (blank area in top panels), and reconstruction techniques (arrowheads in bottom panels), and representative operative fields. **a** Segmental resection of common hepatic artery, and end-to-end anastomosis of common hepatic artery to proper hepatic artery (ha) (arrowhead in bottom panels). **b** Segmental resection of coeliac trunk (ct) and common hepatic artery, and interposition of autologous arterial graft between common hepatic artery and ha (arrowheads in bottom panels). **c** Segmental resection of scenario of common hepatic artery, and transposition of splenic artery (sa) to ha (arrowhead in bottom panels). **d** Segmental resection of superior mesenteric artery (sma), and transposition of splenic artery (sa) to sma (arrowhead in bottom panels). **d** Segmental resection of superior mesenteric artery (sma), and transposition of splenic artery (sa) to sma (arrowhead in bottom panels). a, aorta; pv, portal vein; rv, left renal vein; sv, splenic vein; vc, vena cava.

Arterial divesment

Fig. 4 Arterial divestment

a Sketches illustrating layers of the arterial wall (top), and planes for periarterial divestment (between periarterial nerve plexus and tunica adventitia; arrow in bottom left panel) and subadventitial divestment (between tunica adventitia and external elastic lamina; arrow in bottom right panel). **b** Representative operative field before (top) and after (bottom) periarterial divestment of the superior mesenteric artery (sma). Arrowheads in top panel denote periadventitial cuff of tumour tissue. Note venous bypass graft-first approach with postresectional shortening of venous interposition prosthesis (p), and reinsertion of coronary vein (c) into left renal vein (rv). ha, hepatic artery; tu, tumour; vc, vena cava.

MENT DF

Fig. 6 Flow chart to guide intraoperative decision-making for borderline resectable and locally advanced pancreatic ductal adenocarcinoma with involvement of the coeliac axis or superior mesenteric artery

In the absence of histologically proven arterial infiltration, level 3 dissection of the mesopancreas should be performed along with dissection of the triangle. Arterial divestment provides an option for resection in selected patients with segmental arterial involvement, especially after neoadjuvant treatment. Arterial resection and reconstruction should be reserved for selected patients with short-segment arterial infiltration and favourable general health status. SMA, superior mesenteric artery.

Table 2 Perioperative and postoperative outcomes

 Table 3 Characteristics of extended resections

					Pancreatoduodenectomy ($n = 286$)	Distal pancreatectomy (n = 122)	Total pancreatectomy ($n = 203$)	P‡
	Extended resection $(n = 611)$	Standard resection $(n = 1217)$	P‡	No. of additional organs resected*				<0.001
Type of resection			< 0.001	1	241 (84-3)	79 (64.8)	111 (54-7)	
Paparoatoduodonootomy	296 (46 9)	920 (69 2)		2	38 (13-3)	27 (22.1)	62 (30.5)	
Failcreatoduodenectority	200 (40.0)	850 (08-2)		≥3	7 (2.4)	16 (13.1)	30 (14-8)	
Distal pancreatectomy	122 (20.0)	220 (18.1)		Portal vein resection				< 0.001
Total pancreatectomy	203 (33.2)	167 (13.7)		No	23 (8.0)	72 (59-0)	12 (5.9)	
Duration of surgery (min)*	355 (284-435)	306 (248-375)	<0.001¶	Type 1	65 (22.7)	22 (18-0)	19 (9.4)	
Blood loss (ml)*	800 (500-1500)	500 (400-1000)	< 0.001	Type 2	9 (3.1)	1 (0.8)	0 (0)	
	800 (300-1300)	500 (400-1000)	<0.0011	Туре 3	171 (59-8)	23 (18.9)	164 (80-8)	
Need for transfusion	140 (22-9)	161 (13-2)	<0.001	Type 4	18 (6·3)	4 (3.3)	8 (3.9)	
No. of units transfused*	2 (2-4.5)	2 (2-3)	0.089¶	Colonic resection	49 (17.1)	34 (27.9)	34 (16-7)	0.024
Morbidity				Arterial resection	12 (4·2)	8 (6.6)	45 (22-2)	<0.001
Non-surgical	228 (37.3)	344 (28.3)	< 0.001	Gastric resection	9 (3.1)	33 (27.0)	46 (22-7)	<0.001
Non-surgical	220 (37.3)	044 (20·0)	0.001	Adrenalectomy	1 (0·3)	42 (34-4)	4 (2.0)	< 0.001
Surgical	261 (42.7)	416 (34-2)	<0.001	Small bowel resection	3 (1.0)	10 (8-2)	7 (3.4)	0.001§
Pancreatic fistula†	33 (5.4)	58 (4.8)	0.556	Nephrectomy	1 (0.3)	10 (8-2)	3 (1.5)	<0.001§
Bleeding	46 (7.5)	64 (5.3)	0.061§	Resection status				0.002
Delayed castric emptying	146 (23.9)	232 (19.1)	0.016	RO	74 (26.0)	46 (38.7)	40 (19-9)	
Delayed gastric emptying		202 (13:1)	0.001	R1	207 (72-6)	69 (58-0)	157 (78-1)	
Relaparotomy	96 (15-7)	92 (7.6)	<0.001	R2	4 (1-4)	4 (3.4)	4 (2.0)	
Mortality				Rx	1	3	2	
In-hospital	46 (7.5)	44 (3.6)	< 0.001	Morbidity		00 (10 0)	0 (0)	0.0010
30-day	26 (4.3)	22 (1.8)	0.002	Pancreatic fistula†	10 (3.5)	23 (18-9)	0 (0)	<0.001§
		$C_{L}(1,0)$	10 001	Bleeding	16 (5-6)	12 (9-8)	18 (8-9)	0.224
90-day	00 (10.8)	64 (5.3)	< 0.001	Delayed gastric emptying	72 (25-2)	27 (22-1)	47 (23-2)	0.768
ICU stay (days)*	1 (0-3)	1 (0-1)	<0.001¶	Relaparotomy	39 (13-6)	14 (11.5)	43 (21-2)	0.028
Hospital stay (days)*	14 (11–22)	12 (10–16)	<0.001¶	wortailty	17 (5.0)	4 (2.2)	25 (10.2)	0.0068
				20. dov	12 (4.5)	4 (3.3)	25 (12.3)	0.0008
				- 11 - 1 2 V	1.3 (4:3)	211:01	11 (3):41	11.2.000

90-dav

Values in parentheses are percentages unless indicated otherwise; *values are median (i.q.r.). \dagger Grades B and C according to the International Study Group on Pancreatic Fistula definition¹⁷. $\ddagger\chi^2$ test, except §Fisher's exact test and ¶Mann–Whitney U test.

Table 5 Multivariable analysis of in-hospital mortality in patientsundergoing extended pancreatectomy

	Odds ratio	Р
Total pancreatectomy versus distal pancreatectomy and pancreatoduodenec- tomy	2.37 (1.22, 4.70)	0.012
ASA grade III-IV versus grade I-II Duration of surgery (min)	2.65 (1.34, 5.52)	0.007
300–419 versus < 300 ≥ 420 versus < 300	4·99 (1·33, 32·45) 11·14 (3·20, 70·44)	0∙038 0∙001

Values in parentheses are 95 per cent confidence intervals. A total of 534 patients with complete data were included in multivariable analysis; 77 with missing values were excluded.

Table 7 Multivariable analysis of survival in patients undergoing extended pancreatectomy

		Hazard ratio	Р
Age (≥70 <i>versus</i> < 70 years)		1.41 (1.12, 1.78)	0.003
Tumour grade (G3/4 versus G1/2)		1.70 (1.37, 2.12)	<0.001
Positive lymph nodes			
2–7 versus 0–1		1.37 (1.06, 1.76)	0.016
≥8 <i>versus</i> 0–1		1.43 (1.06, 1.93)	0.018
Resection status (R2 versus R0/1)		2.06 (1.05, 4.03)	0.035
Duration of surgery (≥ 420 versus < 420 m	nin)	1.35 (1.06, 1.72)	0.016
Blood loss (≥ 1000 versus < 1000 ml)		1.26 (1.01, 1.58)	0.040

Values in parentheses are 95 per cent confidence intervals. A total of 437 patients with complete data were included in multivariable analysis; 88 with missing values were excluded.

Values in parentheses are percentages. *Additional resection of colon, stomach, small bowel, adrenal gland, kidney, portomesenteric vein, arteries (as defined by the International Study Group of Pancreatic Surgery⁷). †Grades B and C according to the International Study Group on Pancreatic Fistula definition¹⁷. ‡ χ^2 test, except §Fisher's exact test.

7 (5.7)

26 (9.1)

33 (16-3)

0.007§

DP-CAR

DP-CAR

Schematic showing distal pancreatectomy with *en bloc* celiac axis resection. (A) White dotted line indicates dissection plane, (B) shematic drawing collateral arterial circulation via pancreaticoduodenal arcades from superior mesenteric artery (SMA) after DP-CAR. DP-CAR, distal pancreatectomy with *en bloc* celiac axis resection; CA, celiac axis; CHA, common hepatic artery; SA, splenic artery; LGA, left gastric artery; PHA, proper hepatic artery; RGA, right gastric artery; GDA, gastroduodenal artery; RGEA, right gastroepiploic artery; IPDA, inferior pancreaticoduodenal artery; PV, portal vein; SV, splenic vein; SMV, superior mesenteric vein; IMV, inferior mesenteric vein.

Review Article

Distal pancreatectomy with *En bloc* celiac axis resection for locally advanced pancreatic body/tail cancer: A systematic review and meta-analysis

Lu Liu ^{a, b, 1}, Tian-Xiang Liu ^{b, 1}, Wan-Xia Huang ^{c, 1}, Zhong Yang ^b, Shang Wang ^a, Ming-Xu Da ^{b, *}, Yang Dong ^{d, **}

^a College of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China

^b Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China

^c College of Clinical Medicine, Ningxia Medical University, Yinchuan, China

^d The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

Table 1

The characteristics of studies.

Study	Recruited time	Country	Study design	Group si	ze	Gender	(M/F)	Age		BMI (kg/	/m ²)	NOS Score	Outcomes
				DP-CAR	DP	DP-CAR	DP	DP-CAR	DP	DP-CAR	DP		
Yamamoto, T 2018 ⁹	2001-2012	Japan	NRCS	72	323	40/32	194/129	66	69	22.06	21.90	7	a, b, d, e, f, g, h, i, m, n, o
Sugiura, T 2017 ⁸	2002-2014	Japan	NRCS	16	76	10/6	44/32	70	71	NR	NR	8	a, b, c, d, f, g, h, m, n, o
Okada, K 2013 ¹¹	2005-2010	Japan	NRCS	16	36	11/5	23/13	63	68	NR	NR	8	a, b, d, e, f, h, j, k, l, m, n
Takahashi, Y 2011 ¹²	1993-2010	Japan	NRCS	16	27	8/8	17/10	65	70	NR	NR	8	a, b, c, d, g, i, j, l, m, o
Yamamoto, Y 2012 ¹⁷	1991-2009	Japan	NRCS	13	58	10/3	39/19	64	66	NR	NR	8	a, b, c, d, e, f, g, i, j, k, n
Peters, NA 2016 ¹⁸	2004-2016	USA	NRCS	17	51	9/8	29/22	64.5	67	24.9	25.2	8	a, b, c, d, e, f, g, h, i, j, k, m
Beane, JD 2015 ¹⁹	2011-2012	USA	NRCS	20	172	6/14	57/115	64	66	25.3	26.6	8	a, c, f, g, h, j, k, l
Ham, H 2015 ²⁰	2004-2014	Korea	NRCS	7	31	3/4	16/15	58	67.5	NR	NR	7	a, b, c, e, f, h, i, j, k, m, n
Sperti, C 2010 ²¹	1989-2007	Italy	NRCS	5	49	3/2	23/26	62.8	63.8	NR	NR	7	a, c, e, f, g, h, k, l
Mayumi, T 1997 ²²	1975-1994	Japan	NRCS	6	19	4/2	NR	61.2	59.5	NR	NR	7	a, b, c, f, g, m, o
Wu, X 2010 ²³	2003-2008	China	NRCS	9	34	4/5	18/16	55.6	62.1	21.6	22.2	7	a, b, c, f, h

M/F, Male/Female; BMI, Body mass index; NOS, Newcastle–Ottawa Scale; DP-CAR, Distal pancreatectomy with En-bloc celiac axis resection; DP, Distal pancreatectomy; NRCS, Non-randomized controlled study; NR, Not reported. Outcomes: a, operation time (min); b, estimated blood loss (ml); c, length of hospital stay (day); d, portal vein resection rate; e, R0 resection rate; f, postoperative mortality; g, postoperative morbidity; h, postoperative pancreatic fistula (POPF); i, clinically relevant POPF; j, delayed gastric emptying (DGE); k, abdominal bleeding; l, reoperation rate; m, 1-year survival rate; n, 2-year survival rate; o, 3-year survival rate.

	D	P-CAR			DP			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Beane, JD 2015	333.3	113.3	20	207	85.5	172	7.9%	126.30 [75.03, 177.57]	
Ham, H 2015	383.8	63.8	7	286	86.3	31	7.2%	97.80 [41.62, 153.98]	
Mayumi,T 1997	321	134	6	294	121	19	2.4%	27.00 [-93.23, 147.23]	
Okada, K 2013	318.3	63.3	16	203	38.3	36	11.3%	115.30 [81.86, 148.74]	-
Peters,NA 2016	407.5	34.5	17	309	37.5	51	14.4%	98.50 [79.14, 117.86]	•
Sperti, C 2010	235.3	27.5	5	131	36.3	49	12.9%	104.30 [78.14, 130.46]	-
Sugiura, T 2017	360.5	62	16	263	71.3	76	11.1%	97.50 [63.15, 131.85]	-
Takahashi,Y 2011	237	63	16	203	83	27	9.2%	34.00 [-9.97, 77.97]	
Wu,X 2010	323	69	9	225	46	34	8.5%	98.00 [50.34, 145.66]	
Yamamoto,T 2018	384	157.2	72	265	95.7	323	10.4%	119.00 [81.22, 156.78]	-
Yamamoto,Y 2012	612.5	135.8	13	360	117.5	58	4.6%	252.50 [172.73, 332.27]	
Total (95% CI)			197			876	100.0%	104.67 [84.70, 124.64]	•
Heterogeneity: Tau ² =	624.39;	Chr = 2	6.87, d	f = 10 (1)	P = 0.00); ²=	63%		-500 -250 0 250 500
Test for overall effect:	Z = 10.2	7 (P < 0	.00001)					Favours [DP-CAR] Favours [DP]
					Fi	g. 2. F	orest plo	of operation time.	
						.			
	n	P.CAR			DP			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% C	I IV. Random, 95% CI
Mayumi,T 1997	1,777	2,314	6	1,636	1,320	19	0.8%	141.00 [-1803.36, 2085.36]	· · · · · · · · · · · · · · · · · · ·
Okada, K 2013	1,247.5	457.5	16	700	710	36	12.1%	547.50 [224.94, 870.06]	
Peters,NA 2016	800	150	17	515	137.5	51	19.0%	285.00 [204.33, 365.67]	
Sugiura, T 2017	1,039.5	385	16	460	441.7	76	15.5%	579.50 [366.31, 792.69]	
Takahashi,Y 2011	702	82	16	634	85	27	19.4%	68.00 [16.60, 119.40]	-
Wu,X 2010	889	352	9	706	321	34	14.2%	183.00 [-71.02, 437.02]	
Yamamoto,T 2018	1,033	985	72	553	1,606	323	13.2%	480.00 [192.88, 767.12]	
Yamamoto,Y 2012	1,867.5	1,126	13	620	543.3	58	5.8%	1247.50 [619.64, 1875.36]	
Total (95% CI)			165			624	100.0%	386.03 [205.94, 566, 12]	
Heterogeneity: Tau ² =	42718.51	; Chi ² =	58.15.	df = 7 (F	< 0.00	001); lª	= 88%		
Test for overall effect:	Z = 4.20	(P < 0.0)	001)						-1000 -500 0 500 1000
									ravous (Dr-CAR) ravous (Dr)
					Fig. 3	. Fore	st plot of	estimated blood loss.	
		DP-C	AR		DP			Risk Ratio	Risk Ratio
Study or Subgr	oup	Events	Tota	Eve	nts To	otal V	Veight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Okada, K 2013		4	16	i .	1	36	5.4%	9.00 [1.09, 74.29]	
Peters,NA 2016		1	17		2	51	8.7%	1.50 [0.14, 15.52]	
Sugiura, T 2017		5	16	i	5	76	15.2%	4.75 [1.56, 14.50]	
Takahashi, Y 201	1	4	16	i	4	27	26.0%	1.69 [0.49, 5.83]	
Yamamoto,T 20	18	24	72	2	12 3	323	38.2%	8.97 [4.71, 17.09]	-
Yamamoto,Y 20	12	3	13	1	2	58	6.4%	6.69 [1.24, 36.09]	
Total (05% CI)			150			74 4	00.0%	5 64 13 64 9 701	
Total (95% CI)		44	130	2	26		00.070	5.04 [5.01, 6.19]	•
Total events		41	c (D	0.045	20	~			
Heterogeneity: C	/n= /.1	18, di =	5 (P=	0.21);	1-= 30	70		0.0	01 0.1 1 10 1000
lest for overall e	enect: Z	= 7.62	(r < 0.	UUUU1)					Favours [DP] Favours [DP-CAR]
					<u> </u>				
					Fig. 4	Fores	t plot of	portal vein resection rate	
						5105	- Prot of		

Post operative complication of DP-CAR ~ 40-70%

DP-CAR cause gastric ischemia and gastric congestion

	DDCA	D	DD			Pick Patio	Pick Patio
Study or Subaroup	Evente	Total	Events	Total	Weight	MH Random 05% (MH Random 95% CL
13.1.1.1.vear overall st	uvival ra	te	LVCIIIS	Tota	weight	M-H, Kardoni, 35% (M-H, Kardon, 35% CI
Lom L 2015	7	7	22	21	16 5%	1 29 10 07 1 69	
Movumi T 1007	2	é	25	10	7 0%	1.20 [0.57, 1.00	
Okada K 2012	12	16	20	26	16.4%	1.01 [0.76 1.34	
Potore NA 2015	12	17	42	51	16.4%	0.01 [0.60 1.34	
Sugiura T 2017	13	16	45	76	16 206	0.91 [0.06, 1.21	
Takahachi V 2011	5	16	10	27	10.5%	0.44 [0.21, 0.96	
Vamamoto T 2019	25	72	262	222	16.0%	0.44 [0.21, 0.30	-
Subtotal (95% CI)	20	150	200	563	100.0%	0.84 [0.57, 1.23]	
Total evente	70	150	400	505	100.070	0.04[0.07, 1.20]	
Hotorogonoity: Tour = 0	21. Chiz.	- 46 41	430 Af - 6 A	~ ~ ^ ^	0001) 18-	070	
Tect for overall effect: 7	- 0 00 /0	- 40.4	0, 01 – 0 (i 7)	~ 0.0	0001), 1 =	. 07 %	
Test for overall effect. Z	- 0.90 (F	= 0.5	0				
13.1.2.2.vear overall st	uvival ra	te					
Ham H 2015	3	7	17	31	14.0%	0 78 /0 31 1 95	
Okada K 2013	8	16	19	36	21.6%	0.95 (0.53, 1.69	
Sugiura T 2017	12	16	61	76	20.3%	0.03 (0.60, 1.03	+
Vamamoto T 2018	12	72	129	323	22.010	0.42 (0.24 0.71	
Yamamoto Y 2012	3	13	27	58	12 196	0.50 (0.18, 1.39	
Subtotal (95% CI)	5	124	21	524	100.0%	0.70 [0.45, 1.10]	-
Total events	38	124	253	524	100.070	0.1 0 [0.40, 1.10]	
Heterogeneity: Tau ² = 0	15 Chi2:	- 11 11	B df = 40	P = 0.0	$2): \mathbf{z} = 64$	96	
Tect for overall effect: 7	-164/0	- 0.1	0, ui - 4 (i 2)	0.0	2), 1 = 04	70	
Test for overall eneor. 2	- 1.54 (- 0.1.	-)				
							0.01 0.1 1 10 100
							Favours [DP] Favours [DP-CAR]
	F	ig. 13.	Forest plo	t of 1-y	ear overall	survival rate and 2-year	overall survival rate.
	DD (AD	D			Dick Datio	Dick Datio
Study or Subarous	Evente	AK		Tota	J Woight	KISK Kallo	KISK Kallo M H. Eived 05% Cl
Mourmi T 1007	Events	5 1010	Event			2 11 10 45 0 041	MFH, FIXed, 95% CI
Rugiuro T 2017		4	0 . 6) I:) 7	9 2.970 c 3c.00/	2.11 [0.40, 9.01]	
Takabachi V 2014		1		2 2	0 20.0% 7 0.0%	0.00 [0.40, 1.39]	
Vamamata T 2011	10	7	0 (0 01	2 22	7 9.0% 2 61.20%	0.20 [0.04, 2.13]	
Tamamoto, 1 2016	10		2 0.	5 52	5 01.5%	0.54 [0.30, 0.99]	
Total (95% CD		110		44	5 100.0%	0.65 [0.43.0.98]	•
Total events	20		120	1 1	100.070	0.00 [0.40, 0.00]	
Hotorogeneity: Chi ² -	4 20 df -	3 (P -	0.241.12	- 20%			+ + + +
Test for overall effect:	7 = 2.04	P=0	0.4	- 25%			0.02 0.1 1 10 50
Tool for overall effect.	2 - 2.04	ų – 0.	04)				Favours [DP] Favours [DP-CAR]
			Fi	7.14 F	orest plot o	of 3-year overall survival	rate

1& 2-year OS are not difference

MENT DF

Kaplan–Meier survival curve of different treatment modalities to patients with carcinoma of the body/tail of pancreas

Distal Pancreatectomy With En Bloc Celiac Axis Resection (DP-CAR) for Locally Advanced Pancreatic Cancer

A Safe and Effective Procedure

Martin Loos, MD,* Elias Khajeh, MD, MPH,* Arianeb Mehrabi, MD,* Benedict Kinny-Köster, MD,* Mohammed Al-Saeedi, MD,* Christoph Berchtold, MD,* Katrin Hoffmann, MD,* Martin Schneider, MD,* Pegah Eslami, MD,* Manuel Feisst, MSc,† Ulf Hinz, MSc,* Thilo Hackert, MD,* and Markus W. Büchler, MD*⊠

TABLE 2. Intraoperative and Pathologic Data of Patients Undergoing Distal Pancreatectomy With En bloc celiac Axis Resection

Parameter	N (%)/median (IQR)
Subtotal distal pancreatectomy	33 (46.5)
Mesenterico-portal vein resection	31 (43.7)
Arterial reconstruction	7 (9.9)
Multivisceral resection	42 (59.2)
Gastrectomy	
Stomach preservation	50 (70.4)
Partial gastrectomy	17 (23.9)
Total gastrectomy	4 (5.6)
Adrenalectomy	31 (43.7)
Colon resection	6 (8.5)
Small bowel resection	5 (7)
Liver resection	3 (4.2)
Ovariectomy	2 (2.8)
Operation time (min)	278 (229–319)
Estimated blood loss (mL)	1300 (800–2000)
Negative resection margin (R0)	41 (57.7)
CRM	
CRM-	11 (15.5)
CRM+	14 (19.7)

IQR indicates interquartile range.

59% combine w multivisceral res	ith ection

TABLE 1. Basic and Pathological Characteristics of the PatientsUndergoing Distal Pancreatectomy With En bloc Celiac AxisResection

Parameter	N (%)/mean ± SD
Age (y)	61.1 ± 10.4
Sex	
Female	32 (45.1)
Male	39 (54.9)
BMI (kg/m^2)	25.0 ± 4.4
ASA	
ASA I	7 (9.9)
ASA II	37 (52.1)
ASA III	26 (36.6)
ASA IV	1 (1.4)
Tumor location	1 (11.)
Pancreas body	44 (62.0)
Pancreas tail	14 (19 7)
Pancreas body and tail	13 (18 3)
Tumor type	15 (10.5)
Ductal adenocarcinoma	66 (93.0)
Adenosquamous carcinoma	1 (1 4)
Anaplastic carcinoma	1(1.4)
Neuroendocrine carcinoma	1(1.4)
Gastric adenocarcinoma	1(1.4)
Metastasis	1(1.4)
T (category)	1 (1.4)
nT1	0
vnT 1	2 (2 8)
pT2	5(70)
vnT2	15(211)
pT3	17(23.0)
vnT3	17(23.5) 16(22.5)
pT4	6 (8 5)
p14	10(141)
yp14 N (category)	10 (14.1)
nN(category)	2(28)
pino vinN0	(2.0)
pN1	10 (26.8)
pini vmN1	19(20.0)
	22 (31.0)
	7 (9.9)
ypin2 Distant motoria	8 (11.3)
C (astagom)	9 (12.7)
G (category)	22 (45 1)
G	32 (45.1)
	0
62	28 (39.4)
G3	11 (15.5)
Neoadjuvant chemotherapy	43 (60.6)

ASA indicates American Society of Anesthesiology; BMI, body mass index.

TABLE 4. Comparison of Postoperative Outcomes Between Groups With or Without Multivisceral and/or Mesentericoportal Vein Resection

Parameter	Standard DP-CA (n = 16) N (%)/median (IQ	R DP-C and/or R) N (%)/	AR + MVR VR (n = 55) median (IQR)	Р
ICU stay (d)	0 (0–1)	1	(0-1)	0.07
Hospital stay (d)	13 (10–17)	21	(13-30)	0.003
Delayed gastric	3 (18.8)	8	(14.5)	0.70
emptying				
Gastric ischemia	0	10	(18.2)	0.10
Liver ischemia	0	4	(7.3)	0.57
Impaired wound	1 (6.2)	10	(18.2)	0.44
healing				
Bowel	0	4	(7.3)	0.57
perforation				
PPĤ	1 (6.3)	8	(14.5)	0.67
Intra-abdominal	4 (25)	11	(20.0)	0.73
abscess				
POPF	2 (12.5)	13	(23.6)	0.49
Reoperation	2 (12.5)	19	(34.5)	0.12
Major	3 (18.8)	20	(36.4)	0.24
complication				
30-day mortality	0	2	(3.6)	0.99
90-day mortality	0	6	(10.9)	0.33
IQR indicates in	terquartile range.			

DP-CAR has longer hospital stay (p<0.003) DP-CAR with MVR and/or VR has higher major morbidity and 90 day mortality TABLE 5. Trends in Outcomes of Distal Pancreatectomy With En bloc Celiac Axis Resection (2003-2022)

Parameter	2003–2013 (n = 16) N (%)/median (IQR)	2014–2022 (n = 55) N (%)/median (IQR)	Р
Subtotal distal pancreatectomy	8 (50)	25 (45.5)	0.74
Arterial reconstruction	5 (31.2)	2 (3.6)	0.005
Mesenterico-portal vein resection	6 (37.5)	25 (45.4)	0.57
Multivisceral resection	10 (62.5)	32 (58.2)	0.75
Gastrectomy		_	0.38
Stomach preservation	10 (62.5)	40 (72.7)	
Partial gastrectomy	4 (25)	13 (23.6)	
Total gastrectomy	2 (12.5)	2 (3.6)	
Adrenalectomy	7 (43.7)	24 (42.5)	0.99
Colon resection	1 (6.3)	5 (9.0)	0.99
Small bowel resection	1 (6.3)	4 (7.2)	0.99
Liver resection	0	3 (5.4)	0.99
Operation time (min)	244 (205–328)	280 (234–316)	0.61
Estimated blood loss (mL)	1150 (775–1800)	1350 (850-2000)	0.27
Negative resection margin (R0)	7 (43.7)	34 (61.8)	0.20
Major complication	6 (37.5)	17 (30.9)	0.62
30-day mortality	2 (12.5)	0	0.048
90-day mortality	4 (25)	2 (3.6)	0.021
IOR indicates interquartile range.			

Improvement of outcome after 2014

Outcomes and Risk Score for Distal Pancreatectomy with Celiac Axis Resection (DP-CAR): An International Multicenter Analysis

Sjors Klompmaker, MD¹, Niek A. Peters, MD^{2,3}, Jony van Hilst, MD¹, Claudio Bassi, MD⁴, Ugo Boggi, MD, PhD⁵, Olivier R. Busch, MD, PhD¹, Willem Niesen, MD⁶, Thomas M. Van Gulik, MD, PhD¹, Ammar A. Javed, MD², Jorg Kleeff, MD, FACS⁷, Manabu Kawai, MD, PhD⁸, Mickael Lesurtel, MD, PhD⁹, Carlo Lombardo, MD⁵, A. James Moser, MD, FACS¹⁰, Ken-ichi Okada, MD, PhD⁸, Irinel Popescu, MD¹¹, Raj Prasad, MD¹², Roberto Salvia, MD⁴, Alain Sauvanet, MD¹³, Christian Sturesson, MD¹⁴, Matthew J. Weiss, MD, FACS², Herbert J. Zeh, MD, FACS¹⁵, Amer H. Zureikat, MD, FACS¹⁶, Hiroki Yamaue, MD, PhD⁸, Christopher L. Wolfgang, MD, MS, PhD², Melissa E. Hogg, MD, FACS¹⁷, Marc G. Besselink, MD, PhD¹, and the E-AHPBA DP-CAR study group

		20 centers in	EU	JHH, UPA WMUH-	NC- Japo	USA an
FABLE 1 Patient	Baseline	Design cohort		Validation cohort		P Value
naracteristics per conort		<i>n</i> = 71	%	n = 120	%	
	Female sex	34	48	53	44	0.654
	Median age: years (IQR)	60 (52-67)		64 (58–71)		0.009
	Mean age (years)	59 ± 10.6		63 ± 10.0		
	Median BMI: kg/m ² (IQR)	24.0 (24-26.3)		24.4 (21.8-27.2)		0.353
	Mean BMI (kg/m ²)	24.3 ± 3.6		24.7 ± 4.2		
	ASA					< 0.001
	ASA 1	12	17	2	2	
	ASA 2	53	75	50	42	
	ASA 3 or 4	6	8	68	57	
	Abdominal surgery history ≥ 1	22	31	53	44	0.061
	Neoadjuvant therapy					< 0.001
	None	35	49	28	23	
	Chemotherapy	16	23	33	28	
	Radiotherapy	1	1	2	2	
	Both or chemoradiation	19	27	57	48	
	Hepatic artery embolization	16	23	46	38	0.037
	Left gastric artery embolization	6	8	19	16	0.185
	Tumor characteristics (pathology))				
	Ductal adenocarcinoma	62	87	113	94	0.194
	Median tumor size: mm (IQR)	40 (34–50)		33 (22-45)		< 0.001
	Mean tumor size (mm)	47 ± 29		34 ± 18		
	AJCC ^a					
	T stage ≥ 3	64	90	101	84	0.046
	N stage > 0	46	66	64	53	0.168
	M stage > 0	1	2	4	3	0.655

Perioperative	Design cohort		Validation cohort		P Value
	<i>n</i> = 71	%	n = 120	%	
Treated at high-volume DP-CAR centera ^a	8	11	120	100	< 0.001
Minimally invasive approach	2	3	18	15	0.012
Median operative time: min (IQR)	343 (248-425)		350 (291-447)		0.103
Mean operative time (min)	346 ± 122		380 ± 131		
Additional organs resected ^b					
None	41	58	78	65	0.361
Stomach	9	13	8	7	0.190
Liver	3	4	3	3	0.672
Kidney	3	4	3	3	0.672
Adrenal gland	17	24	31	26	0.864
DP-CAR type					< 0.001
Standard DP-CAR	52	73	79	66	
SMV/portal vein resection ^c	10	14	14	12	
Hepatic artery reconstruction	9	13	5	4	
Left gastric artery preservation/reconstruction	0	-	23	19	
Median EBL: mL (IQR)	560 (350-1450)		560 (300-1100)		0.374
Mean EBL (mL)	1015 ± 1145		996 ± 1502		
Blood transfusion for bleeding (< 72 h)	22	33	17	14	0.005
Residual status overall					0.206
R0 (> 1-mm margin)	38	55	75	63	
R1 (< 1-mm margin)	29	42	38	32	
R2 (macroscopically positive)	2	3	1	1	
90-Day outcomes					
Mortality	11	16	7	6	0.077
Clavien-Dindo 3a-4b complication	18	25	33	28	0.866
Post-pancreatectomy hemorrhage ^d	6	8	9	8	0.787
Liver ischemia/infarction	12	19	28	23	0.575
Gastric ischemia	5	7	13	11	0.452
Abdominal cavity infection	4	6	23	19	0.016
Pancreatic fistula grade B/C ^d	15	21	27	23	0.858
Delayed gastric emptying grade B/C ^d	11	15	12	10	0.495
Reoperation	10	14	6	5	0.018
Median hospital stay: days (IQR)	17 (11–26)		11 (7-21)		0.005
Mean hospital stay (days)	20 ± 14		18 ± 21		
Unplanned readmission	9	13	38	32	0.005
Long-term outcomes					
Adjuvant treatment					0.261
None	23	32	26	22	
Chemotherapy	41	58	72	60	
Radiotherapy	2	3	3	3	
Both or chemoradiation	2	3	10	8	
Unknown	3	4	10	8	
Median follow-up: days (IOR)	309 (128-617)	-	447 (207-939)	-	0.019
Median overall survival: months (95% CD)	20 (10-36)		21 (16-26)		0.019

Mean volume of 1 per year between 1 January 2014 and 31 December 2016

^bOther than celiac axis, gallbladder, pancreas, or spleen

^cExcluding side bite

^dInternational Study Group on Pancreatic Surgery (ISGPS) definition¹⁶⁻¹⁸

Risk of 90-day mortality after DP-CAR

AUC 0.79; 95% CI, 0.68–0.90

RAMPS VS DPS

MENT DF

Planes of retroperitoneal dissection for resection of adenocarcinoma of the pancreatic body and/or tail. *SMV* superior mesenteric vein, *RAMPS* radical antegrade modular pancreatosplenectomy. Reprinted from Nelson et al. with permission5

RAMPS vs DPS

Right to left

- Margin-negative: deep to the anterior renal fascia
- Transection the neck of the pancreas
- Regional lymph nodes, additionally, nodes around the hepatic artery, celiac trunk and superior mesenteric artery

Left to right

- Margin-negative: deep to the gross tumor or pancreas
- Transection margin: proximal to the gross disease
 - **Regional lymph nodes**

The efficacy of radical antegrade modular pancreatosplenectomy: A systematic review and meta-analysis

Jun Watanabe^{1,2} | Kazuma Rifu¹ | Hideki Sasanuma¹ | Kazuhiko Kotani² Naohiro Sata¹

TABLE 1 The characteristics of the include studies

Authors [ref no.]	Year	Country	Study type	Propensity score matching	RAMPS no.	Control no.	Center	Age, year	Male, %	Stage	NOS
You ²⁶	2010	Korea	Р	No	11	50	Single	61	64	NR	4
Latorre ²⁷	2013	Italy	R	No	8	17	Single	61	64	NR	6
Park ²⁸	2014	Korea	R	No	38	54	Single	63	63	I-IV	4
Trottman ²⁹	2014	USA	Р	No	6	20	Single	NR	NR	NR	3
Abe ³⁰	2016	Japan	R	No	53	40	Single	69	65	I-III	7
Kim EY ³¹	2016	Korea	R	No	30	19	Single	64	40	I-II	6
Xu ²⁵	2016	China	R	No	21	78	Single	62	52	I-IV	4
Huo ³²	2019	China	R	No	11	16	Single	64	48	I-IV	4
Kim NH ³³	2019	Korea	R	Yes	139	71	Multi	NR	NR	NR	7
Sham ¹¹	2020	USA	R	No	253	193	Multi	65	60	NR	5
Yin ³⁴	2020	China	R	Yes	101	203	Single	64	NR	NR	6
Dai ³⁵	2021	China	R	No	46	57	Single	62	50	I-III	8
Kim HS ¹²	2021	Korea	R	Yes	53	53	Multi	66	45	I-III	8

On going RCT > DPS shift to MIS

Abbreviations: NOS, the Newcastle-Ottawa Quality Rating Scale; NR, not reported; P, prospective cohort study; R, retrospective cohort study.

TABLE 2 Summary of findings

The efficacy of radical antegrade modular pancreatosplenectomy (RAMPS)

Patient or population: adults, setting: pancreatosplenectomy, intervention: RAMPS, Comparison: Control

Outcomes	Relative effect (95% CI) [*]	Patient number (Studies)	Certainty of the Evidence (GRADE)	Comments
OS	HR 0.92 (0.79 to 1.09)	1119 (9 cohort studies)	Low ^{a,b}	RAMPS resulted in little difference in OS
RFS	HR 0.72 (0.37 to 1.38)	711 (4 cohort studies)	Low ^{a,b}	RAMPS resulted in little difference in RFS
DFS	HR 0.59 (0.41 to 0.86)	792 (6 cohort studies)	Low ^{a,b}	RAMPS increased DFS
R0 resection	RR 1.06 (0.98 to 1.15)	1198 (10 cohort studies)	Low ^{a,c}	RAMPS did not increase R0 resection
Retrieved lymph nodes	MD 4.06 (2.37 to 5.76)	1468 (10 cohort studies)	Low ^{a,c}	RAMPS increased number of retrieved lymph nodes
Postoperative complications	RR 0.85 (0.51 to 1.41)	911 (7 cohort studies)	Low ^{b,c}	RAMPS did not decrease postoperative complication

CI, confidence interval; HR, hazard ratio; MD, mean difference; MD, mean difference; RR, risk ratio.

^{*}The risk in the intervention group (and its 95% CI) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). GRADE Working Group grades of evidence; High certainty: We are very confident that the true effect lies close to that of the estimated effect. Moderate certainty: We are moderately confident in the estimated effect. The true effect is likely to be close to the estimated effect, but there is a possibility that it is substantially different. Low certainty: Our confidence in the estimated effect is limited: The true effect may be substantially different from the estimated effect. Very low certainty: We have very little confidence in the estimated effect. The true effect is likely to be substantially different from the estimated effect. ^aDowngraded because of inconsistency due to statistical analysis and reporting.

^bDowngraded because of imprecision due to the small sample size.

^cDowngraded because of inconsistency due to substantial heterogeneity.

RAMPS is safe but not associated with an improvement in RFS or OS

Conclusion

- PD: artery-first approach benefit from intraoperative decision making (Point of no return)
- Arterial divestment is an option to avoid arterial resection and reconstruction
- DP-CAR should be done in highly selective cases and high volumecenter
 - Ischemic complication is concerned
 - But better OS than palliative
- DPS = RAMPS, waiting for RCT of MIS DPS