

A Simple Mathematical Modeling of the Sick Lobe Hypothesis

Panuwat Lertsithichai

November 2018

Breast Lobes

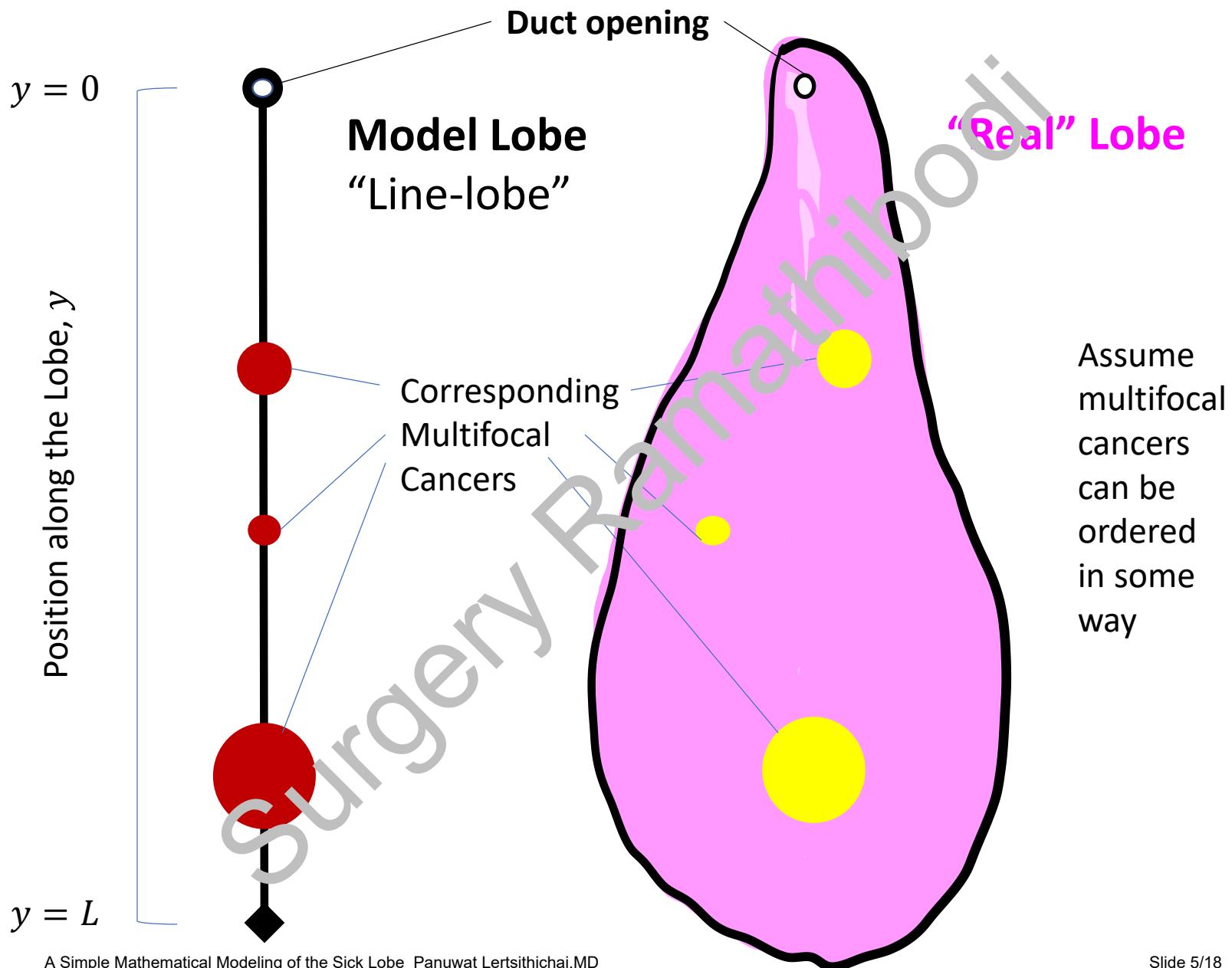
Surgery Ramathibodi

Sick Lobe Hypothesis

- Breast cancers usually occur in a breast lobe
- There is a genetic predisposition to cancer common to the whole lobe
- Thus **multifocal cancers** is common, but may sometimes be undetected, or is usually presented as a single focus of cancer

The Simplified Model

- **Linear model** (Dim=1) of the sick lobe (“line-lobe”)
- Occurrence of cancer at any location/non-overlapping line segment is **independent** of one another (within the given lobe)
- Occurrences are **independent** in non-overlapping time intervals
- The *hazard of cancer* occurrence is **proportional** to length of line-lobe and follow-up time
- *Size of cancer* is a deterministic function of time



The Hazard

$$h(y, t) = 4\eta yt$$

- Where 4η is the *average number of cancer per unit length of the line-lobe, per unit time*
- The hazard *per lobe* at time t is thus

$$h(t) = 2\eta L^2 t$$

- Where L is the total length of the lobe
- Here, without loss of generality, we set $L = 1$

Average Number of Cancers

- Probability of having cancer within $[0, t]$ is
$$1 - e^{-\eta t^2}$$
- Expected number of cancers in a lobe found within $[0, t] \equiv E(N)_{[0,t]}$, is
$$\eta t^2$$
- Where the probability of $N = n$ follows the Poisson distribution with parameter ηt^2

Poisson Distribution

- Probability of Number of Cancers $N = n$ within any fixed time interval t follows a Poisson distribution if

$$P(N = n) \equiv P(n) = e^{-\lambda_t} \frac{\lambda_t^n}{n!}$$

- Where the parameter $\lambda_t = \eta t^2$ is the average/expected number of cancers occurring in time interval t
- The average of N is λ_t
- The variance of N is λ_t
- The probability of no cancer is $e^{-\lambda_t}$, etc.

Number of *Detected* Cancers

- Cancers are detected when they reach a certain size, say after a period τ
- Thus, cancers occurring for a period of time $\geq \tau$ will be (potentially) detectable
- Suppose a line-lobe has been followed for a time $t > \tau$, with a beginning at *time* = 0
- A patient with a sick lobe will have detectable cancers if at least one focus occurred within $[0, t - \tau]$

Number of Detected Cancers



Theorem*: the probability of n in $[0, t]$ (Poisson) can be written in terms of those in two independent, adjacent time segments (*non-overlapping partition*) $[0, t - \tau]$, $(t - \tau, t]$ as

$$\bullet p(n|0, t) = \sum_{j=0}^n \binom{n}{j} p(j|0, t - \tau) p(n - j|t - \tau, t)$$

Number of Detected Cancers

Probability of n in $[0, t]$ with at least 1 cancer occurring in $[0, t - \tau]$:

- $p'(n|0, t) = p(n|0, t) - p(0|0, t - \tau)p(n|t - \tau, t)$

Expected number of cancers in $[0, t]$ with at least one in the period $[0, t - \tau] \equiv E(N|1_{[0, t - \tau]})_{[0, t]}$:

- $E(N|1_{[0, t - \tau]})_{[0, t]} = \sum_0^{\infty} p'(n|0, t)n / \sum_0^{\infty} p'(n|0, t)$

Where

$$p(0|0, t - \tau) = e^{-\eta(t - \tau)^2}$$

Number of Detected Cancers

Expected number of cancers in $[0, t]$ with at least 1 in the period $[0, t - \tau] \equiv E(N|1_{[0,t-\tau]})_{[0,t]}$ can be calculated as

$$E(N|1_{[0,t-\tau]})_{[0,t]} = \left(\eta t^2 - e^{-\eta(t-\tau)^2} \eta(t^2 - (t - \tau)^2) \right) / \left(1 - e^{-\eta(t-\tau)^2} \right)$$

- Which can be rewritten as:

$$\frac{\eta(t - \tau)^2}{(1 - e^{-\eta(t - \tau)^2})} + \eta(t^2 - (t - \tau)^2)$$

- The first term is the expected number of cancers in $[0, t - \tau]$ given at least 1 had occurred by then;
- And the second is simply the expected number in the period $(t - \tau, t]$

Number of Detected Cancers

- In other words

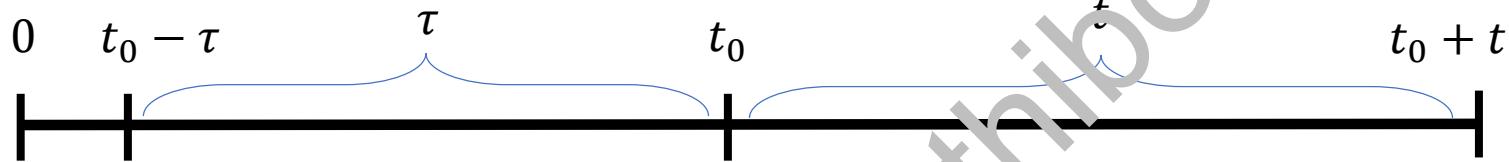
$$\frac{\eta(t - \tau)^2}{(1 - e^{-\eta(t - \tau)^2})}$$

- Is the **expected number of detected cancers** in $[0, t]$ given at least one has occurred in $[0, t - \tau]$, and

$$\eta(t^2 - (t - \tau)^2)$$

- Is the **expected number of undetected cancers** in the period $[0, t]$

Number of Multifocal Cancers & Background Risk



- A patient is found to have one detectable breast cancer at t_0 and is treated
- In the limit $\tau \rightarrow t_0$, expected number of cancers is $\eta t_0^2 + 1$ at $t_0 = \tau$
- Since only one of these is detected, the number of residual, multifocal cancers is $\eta \tau^2$
- This will be part of the **background risk** seen during the FU period, t

Simple Model of Residual Multifocal Cancer (Background Risk)

- If the “amount” of cancer per focus, e.g. **size of cancer**, is also required in addition to the number of residual foci when determining background risk
- The *simplest* but crudest way to incorporate this is to estimate the average size of a tumor occurring in an interval, then multiply by the expected number of cancers in that interval
- A *more complicated method* is to average a stochastic model

Average Amount of Residual Multifocal Cancer

Average amount occurring in a period $[0, t]$ conditional on at least one occurrence in that period, $E(R_{mj|c}) =$

$$\sum_{n=1}^{\infty} \left\{ \int_{all t_i=0}^t (\sum_{i=1}^n s(t_i, t)) f(t_i) dt_1 \dots dt_n \right\} p(n) / \sum_{n=1}^{\infty} p(n)$$

- Where $s(t_i, t)$ is the size of cancer at t given occurrence at $t_i < t$
- $p(n)$ is the probability of number of cancers n , given at least 1 in period $[0, t]$
- $f(t_i) \equiv f(t_1, t_2, \dots, t_n)$ is the *multivariate probability density* of times of cancer occurrence $t_i < t$; i labels each of the n different times; all t_i 's are independent; and the integration is n –dimensional

Average Amount of Residual Multifocal Cancer

Since all t_i 's are independent,

- $\int_{all t_i=0}^t (\sum_{i=1}^n s(t_i, t)) f(t_i) dt_1 \dots dt_n = nE(S)$
- Where $E(S) = \int_0^t s(u, t) f(u) du$ is the expected size of a tumor occurring in $[0, t]$; thus
- $E(R_{mfc}) = \sum_{n=1}^{\infty} E(S)np(n) / \sum_{n=1}^{\infty} p(n)$; or
- $E(R_{mfc}) = E(S)E(N) = \frac{E(S)\eta t^2}{1-e^{-\eta t^2}}$; or, **if only one focus of cancer is detected and excluded:**
- $E(R_{mfc}) = E'(S)\eta \tau^2$; where $E'(S)$ excludes the detected cancer

Applications

- Need to fit parts of model to observational data first ... (e.g. estimate values of η & τ)
- The estimated amount of residual breast cancer after surgery (if significant) can be used to justify more aggressive *but* limited surgery (resection of the whole sick lobe)
- And thus to develop the technology to achieve true lobar resection
- Note that a more realistic model is also required!