
Colorectal Liver Metastasis

Christine Rojawat F2 Surgical Oncology

Contents

- Introduction
- Evaluation
- Surgical Management
 - Resectability
 - Types of surgical mangement
 - Repeated resection
 - Resection margin
- Timing of Perioperative Chemotherapy
- Disappearing CRLM

Introduction

- CRC cancer 3rd most common cancer diagnosis
- 2nd most common cancer-related death
- In CRLM resection can cure 20% and 5-year OS now can exceed to 50%
- Factors
 - Medical fitness
 - Technical consideration
 - Disease biology

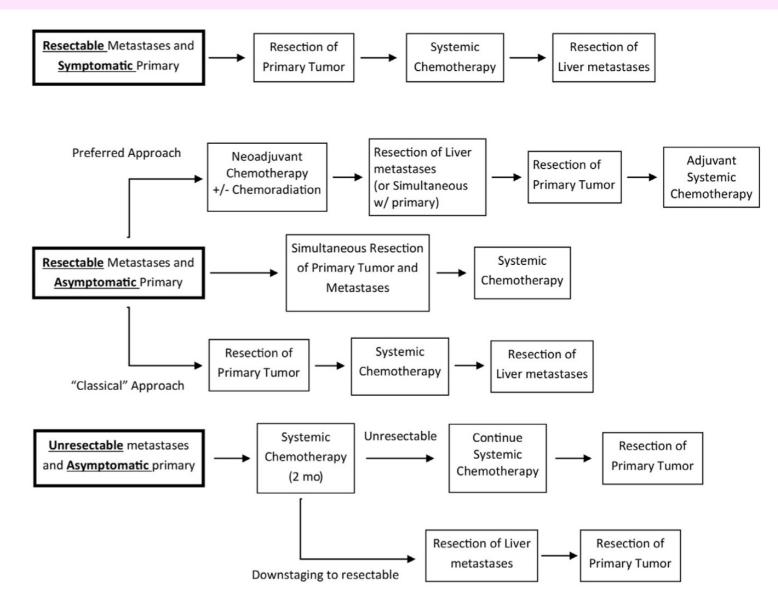
Introduction

- CRC cancer 3rd most common cancer diagnosis
- 2nd most common cancer-related death
- In CRLM resection can cure 20% and 5-year OS now can exceed to 50%
- Factors treating CRLM
 - Medical fitness
 - Technical consideration
 - Disease biology

Vascular inflow Outflow Biliary drainage

Introduction

- CRC cancer 3rd most common cancer diagnosis
- 2nd most common cancer-related death
- In CRLM resection can cure 20% and 5-year OS now can exceed to 50%
- Factors treating CRLM
 - Medical fitness
 - Technical consideration
 - Disease biology

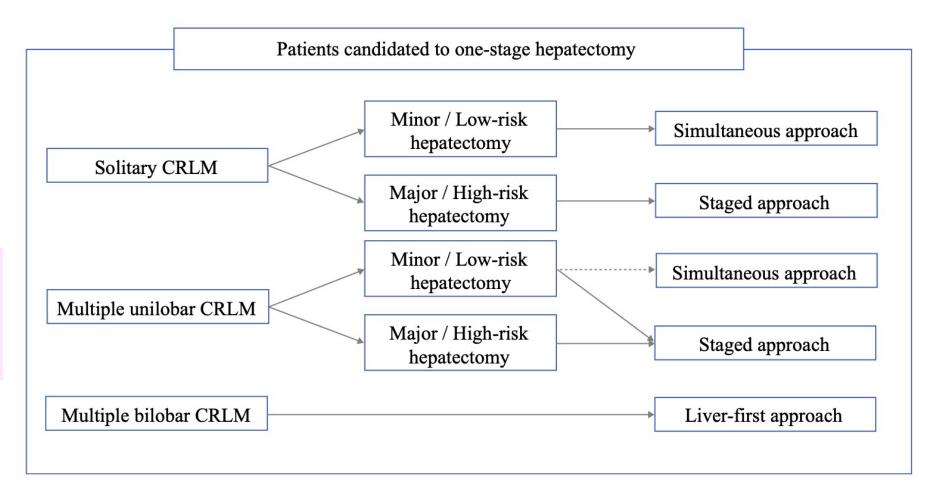

```
    Disease burden

            size / number / distribution CRLM

    Disease biology

            rate of disease progression / extrahepatic
            disease / synchronous or metachronous /
            1º tumor sidedness / RAS,BRAF mutation status
            / MSI status
```

Approach to Synchronous CRLM


EGOSLIM, Chakedis J, Schmidt CR. Surgical Treatment of Metastatic Colorectal Cancer. Surg Oncol Clin N Am. 2018

Surgical Strategy in Synchronous CRLM

FIG. 4 Treatment strategy of synchronous colorectal liver metastases according to hepatic tumor burden and scheduled hepatectomy. *CRLM* colorectal liver metastases

Resection of primary tumor (simultaneous)

- Minor hepatectomy morbidity 15.1% - mortality 1.4%
- Major hepatectomy morbidity 36.1% - mortality 8.3%

Choices of Local Treatemnt

SPECIAL ARTICLE

Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up $\stackrel{\scriptstyle \rightarrowtail}{\rightarrowtail}$

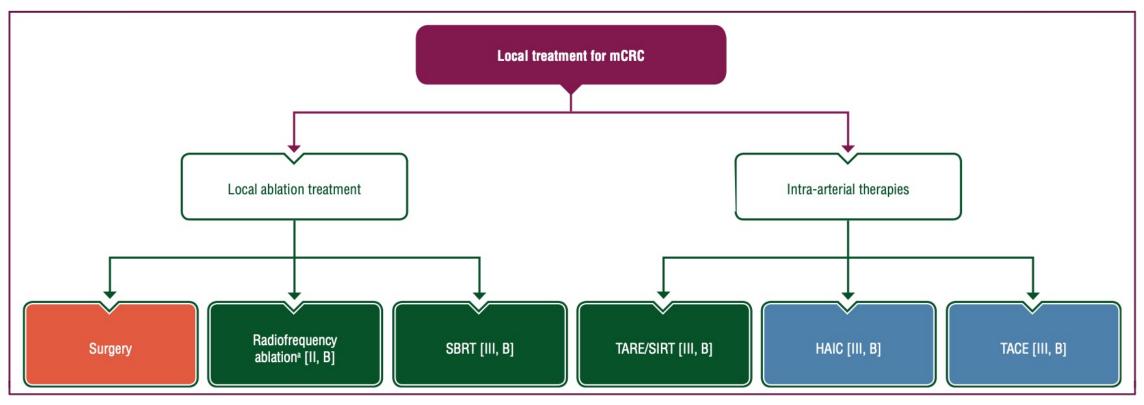


Figure 1. Local treatment of CRC metastases. Purple: general categories or stratification; red: surgery; dark green: radiotherapy; blue: systemic anticancer therapy; white: other aspects of management.

CRC, colorectal cancer; CRLM, colorectal liver metastasis; HAIC, hepatic arterial infusion chemotherapy; mCRC, metastatic colorectal cancer; OMD, oligometastatic disease; SBRT, stereotactic body radiotherapy; SIRT, selective internal radiotherapy; TA, thermal ablation; TACE, transarterial chemoembolisation; TARE, transarterial radioembolisation.

^aIn patients with unresectable CRLMs only, or OMD in the liver, TA can be considered for small metastases [III, B]. In patients with lung-only metastases or OMD including lung lesions, TA may be considered along with resection, according to tumour size, number, location, the extent of lung parenchyma loss, comorbidity or other factors [III, B].

Outcome of Curative Intent Liver Resection of CRLM

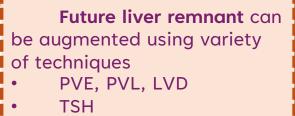
Series Author, Year	Patients (n)	Median DFS (mo)	DFS (%)	Median OS (mo)	<mark>OS</mark> (%)	Operative Mortality Rate (%)	Major Complication Rate (%)	Minor Resection Rate (%)
Fong et al, ⁶ 1999	1001	_	—	69	5-y: 37 10-y: 22	2.8	31	37
Pawlik et al, ⁴⁵ 2005	557	_		74	5-y: 58	0.9	· ·	42.7
Nordlinger et al, ¹⁷ 2008; Nordlinger et al, ¹⁸ 2013 (RCT)	364	11–18	3-y: 28.1–36.2	54.3–61.3	5-y: 47.8–51.2	1.3	16–25	21
Rees et al, ⁴⁴ 2008	929	—	_	42.5	5-y: 36 10-y: 23	1.5	25.9	36.2
de Jong et al, ⁴⁶ 2009	1669	23	5-у: 30	36	5-y: 47.3	_	—	55
House et al, ⁴⁷ 2010	1600		5-y: 33	64	5-y: 43	1	44	39

Box 1

Defining resectability in patients with colorectal liver metastasis

Patient selection criteria for potentially curative resection of hepatic metastases Ability to obtain R0 resection: no tumor present at margin Adequate postoperative liver volume and function

- At least 20% of total liver volume with normal function
- At least 30% if any chemotherapy-associated liver injury
- At least 40% if any hepatic fibrosis or cirrhosis from other causes
- At least two functional contiguous segments with intact portal and arterial inflow, venous outflow, and biliary drainage


Limited extrahepatic disease that is resectable

• No portal lymphadenopathy or multiple metastatic sites Limited progression if received preoperative chemotherapy

No development of new hepatic lesions

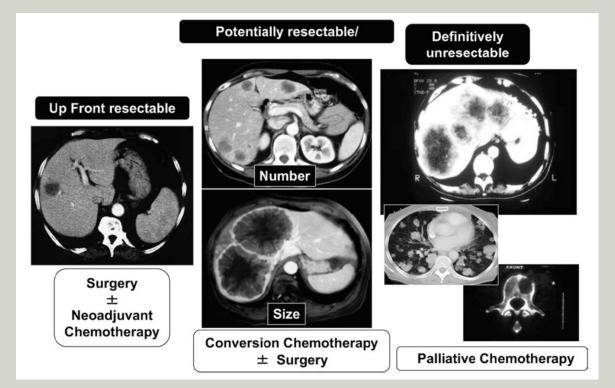
Medically fit to undergo a major operation

Data from Schwarz R, Abdalla E, Aloia T, et al. AHPBA/SSO/SSAT sponsored consensus conference on the multidisciplinary treatment of colorectal cancer metastases. HPB (Oxford) 2013;15(2):89–90; and Adams R, Aloia T, Loyer E, et al. Selection for hepatic resection of colorectal liver metastases: expert consensus statement. HPB (Oxford) 2013;15(2):91–103.

Liver partition – staged hepatectomy

Table 1

Factors used to guide use of perioperative chemotherapy with hepatic resection for metastatic CRC


Treatment Approach	Factors
Liver operation first	Low volume of liver metastases • Largest <5 cm • Unilobar disease • <5 total liver tumors • Favorable location allowing minor hepatectomy Metachronous presentation
Perioperative chemotherapy	 Higher volume of liver metastases Largest >5 cm Bilobar disease More than 4 total liver tumors Extrahepatic metastatic disease Synchronous presentation or short disease-free interval <12 mo Tumor response may change surgical strategy Decrease size of hepatic resection Achieve R0 resection May not receive postoperative chemotherapy

Management of Liver Lesions in CRLM

Resectable

Potentially Resectable / Borderline

Unresectable

To guide the purpose of treatment

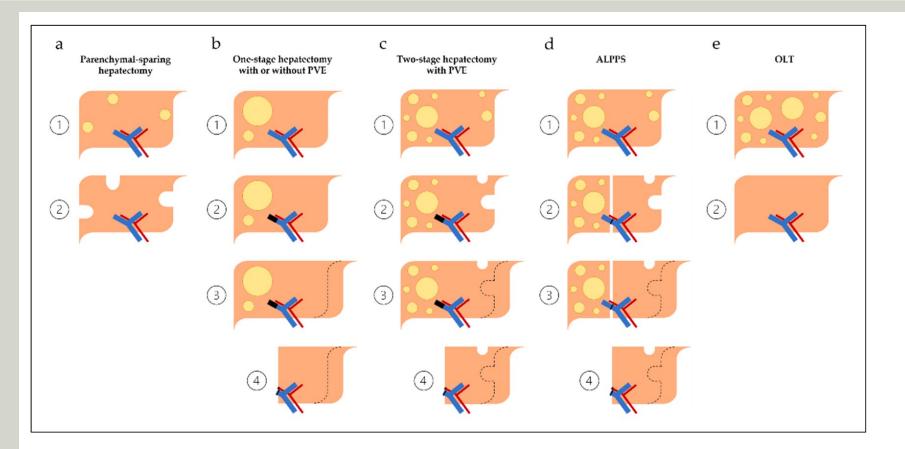

Definition

Table 1. Definitions of common colorectal liver metastases resectability	classifications.
,	

e CRLM can be completely resected, two adjacent er segments can be spared, adequate vascular low and outflow and biliary drainage can be served, and the volume of the future liver remnant l be adequate (i.e., at least 20% of the total imated liver volume) [30]. e CRLM can potentially be completely resected, but re may be technical (i.e., odds of achieving an R0
re may be technical (i.e., odds of achieving an R0
ection are reduced) and/or biological challenges , numerous liver metastases, evidence of disease gression, possible extrahepatic disease) [31].
e CRLM cannot be resected due to burden of ease (i.e., greater than 70% of the liver involved or re than six segments, invasion of both portal veins all hepatic veins) [32].
E

Ivey, G.D.; Johnston, F.M.; Azad, N.S.; Christenson, E.S.; Lafaro, K.J.; Shubert, C.R. Current Surgical Management Strategies for Colorectal Cancer Liver Metastases. Cancers 2022, 14, 1063.

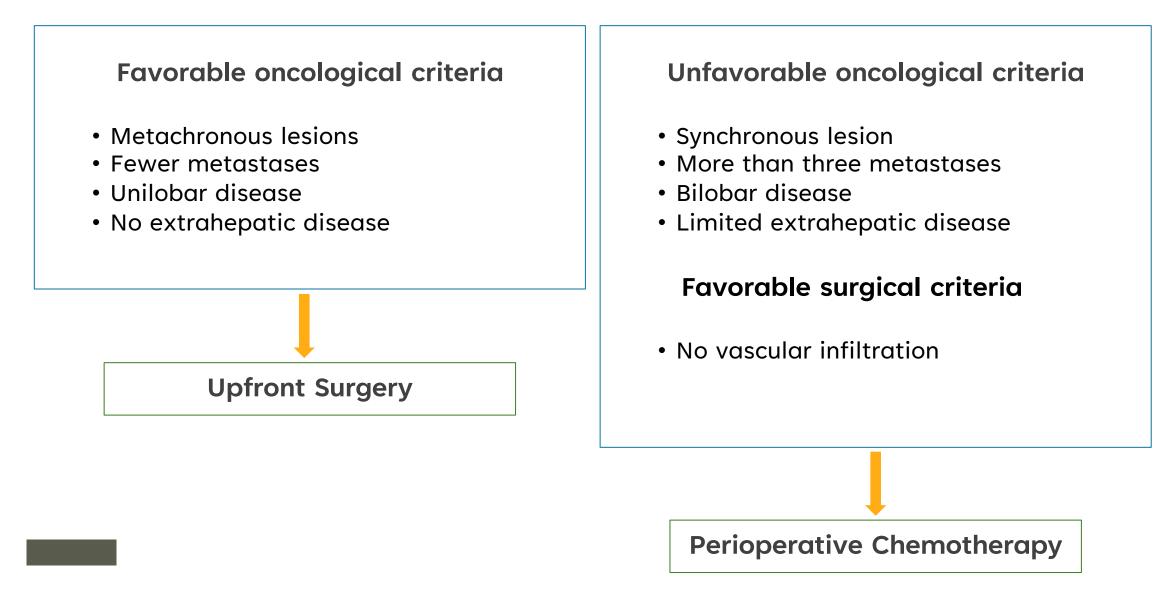

Surgical Strategy for Colorectal Liver Metastasis

Figure 1. Surgical strategies for colorectal liver metastases. (a) Parenchymal-sparing hepatectomy. (b) One-stage hepatectomy with or without PVE. (c) Two-stage hepatectomy with PVE. (d) Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS). (e) Orthotopic liver transplantation (OLT). Dashed lines illustrate the future liver remnant prior to augmentation (i.e., PVE; portal vein ligation during ALPPS).

Primary Resectable CRLM

Primary Technically R0 Resection CRLM

Primary Technically R0 Resection CRLM

versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): C All resected patients a randomised controlled trial Favorable oncological criteria 100 Bernard Nordlinger, Halfdan Sorbye, Bengt Glimelius, Graeme J Poston, Peter M Schlag, Philippe Rougier, Wolf O Bechstein, John N Primrose, Euan T Walpole, Meg Finch-Jones, Daniel Jaeck, Darius Mirza, Rowan W Parks, Laurence Collette, Michel Praet, Ullrich Bethe, Eric Van Cutsem, 90 Werner Scheithauer, Thomas Gruenberger for the EORTC Gastro-Intestinal Tract Cancer Group, * Cancer Research UK, * Arbeitsgruppe Lebermetastasen und-tumoren in der Chirurgischen Arbeitsgemeinschaft Onkologie (ALM-CAO),* Australasian Gastro-Intestinal Trials Group (AGITG),* and Fédération Francophone de Cancérologie Digestive (FFCD)* 80 Benefit in PFS but not OS survival (%) Metachronous lesions 70 60 Fewer metastases Progression-free 50- Unilobar disease 40 No extrahepatic disease 30 20 HR 0.73 (95.66% CI 0.55-0.97); p=0.025 10 0 Years Number of patients at risk 85 59 24 10 Surgery 152 39 76 6 118 45 23 PeriOpCT 151 **Upfront Surgery** Figure 2: Progression-free survival by treatment group (A) All randomly assigned patients. (B) All eligible patients. (C) All resected patients. For all patients randomly assigned and those who were eligible, no surgery or no resection were regarded as events for the primary endpoint

Up to four liver metastases

Random; 6 cycles of FOLFOX4 before surgery or 6 cycles after surgery Vs. to surgery alone

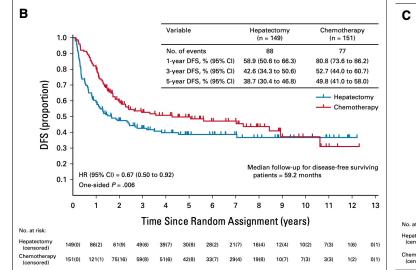
(182 in perioperative chemotherapy group vs 182 in surgery group).

of progression-free survival. PeriOpCT=perioperative chemotherapy with fluorouracil or leucovorin, and oxaliplatin.

Perioperative chemotherapy with FOLFOX4 and surgery

Primary Technically R0 Resection CRLM

Favorable oncological criteria


- Metachronous lesions
- Fewer metastases
- Unilobar disease
- No extrahepatic disease

Upfront Surgery

Hepatectomy Followed by mFOLFOX6

- Versus Hepatectomy Alone for Liver-Only
- Metastatic Colorectal Cancer (JC0G0603): A
- Phase II or III Randomized Controlled Trial

Yukihide Kanemitsu, MD¹; Yasuhiro Shimizu, MD, PhD²; Junki Mizusawa, ME¹; Yoshitaka Inaba, MD, PhD²; Tetsuya Hamaguchi, MD, PhD²; Dai Shida, MD, PhD²; Masayuki Ohue, MD, PhD⁴; Koji Komori, MD, PhD²; Akio Shiomi, MD³; Manabu Shiozawa, MD, PhD²; Jun Watanabe, MD, PhD²; Takeshi Suto, MD²; Yusuke Kinugasa, MD, PhD²; Yasumasa Takii, MD¹⁰; Hiroyuki Bando, MD, PhD¹¹; Takaya Kobatake, MD²; Masafumi Inomata, MD, PhD²¹; Yasuhiro Shimada, MD¹⁴; Hiroshi Katayama, MD¹; and Haruhiko Fukuda, MD¹ on behalf of the JCG Colorectal Cancer Study Group

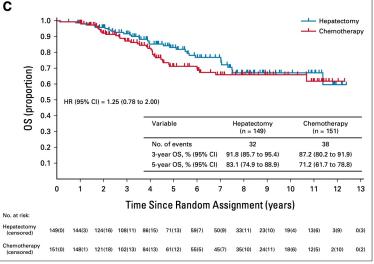
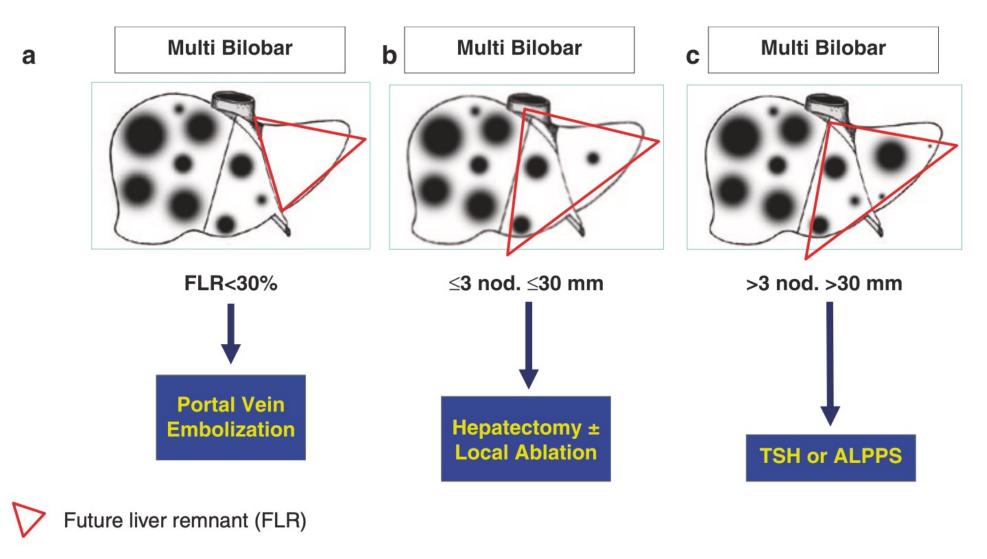
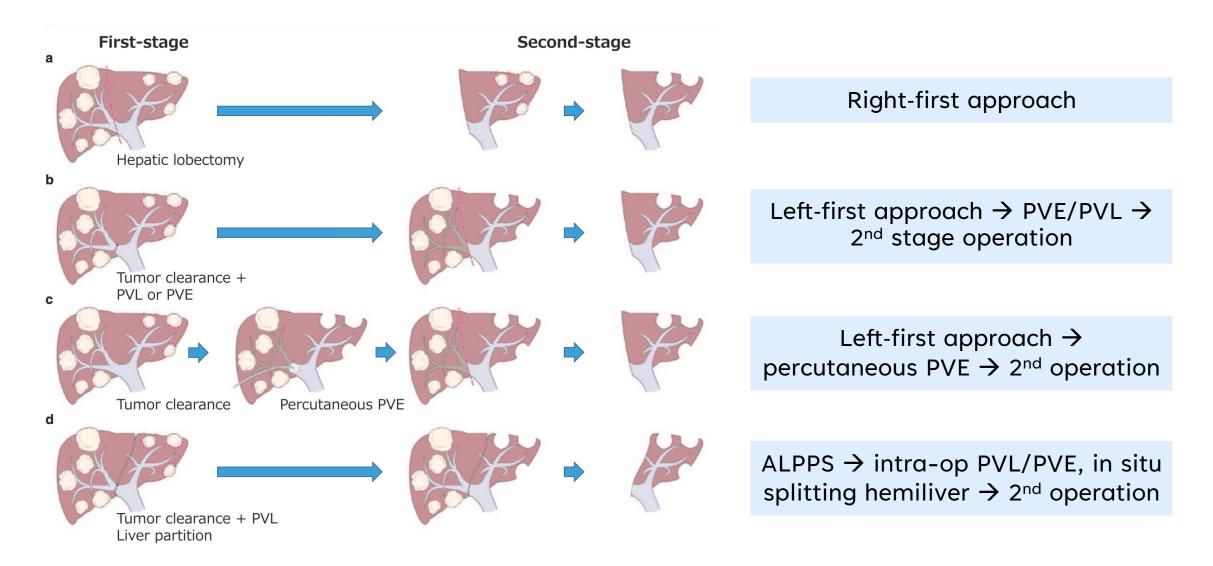


FIG 2. (Continued).

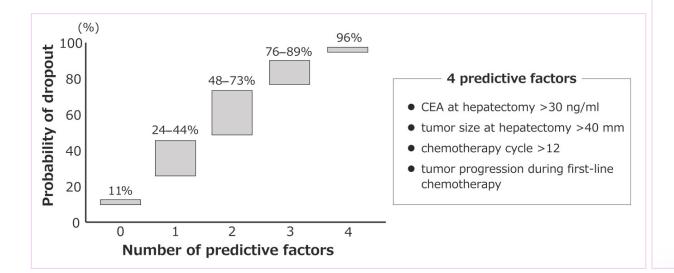

RCT : Hepatectomy vs. Hepatectomy + mFOLFOX6 Any number of CRLM (90% had CRLM 1-3 lesion) 5-yr DFS 38.7% vs. 49.8% p=0.006 5-yr OS no difference p=0.42 It remains unclear whether chemotherapy improves OS

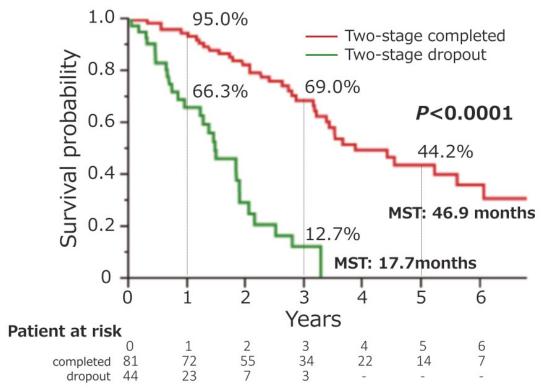
Borderline/Potential Resectable CRLM


Borderline/Potential Resectable CRLM

- Two stage Hepatectomy
- One stage Hepatectomy
- ALPPS
- Modified techniques

Future Liver Remnant




Two Stage Hepatectomy

Dropout from Two Stage Hepatectomy

- 35.2% did not proceed to 2nd stage
- Reasons for dropout
 - 1. Disease progression 88.6%
 - 2. Insufficient FLR 6.8%
 - 3. Poor general condition 2.3%
 - 4. Mortality after 1st stage 2.3%

Fig. 8.4 Overall survival for patients who completed two-stage hepatectomy (n = 91) or dropped out (n = 44), between 2000 and 2012. MST, median survival time. ([6], with permission)

Outcome of Two-Stage Hepatectomy

- Morbidity range 20-59%
- Low motality rates
- Rate of completion both 1st and 2nd stage 63-100%

Not complete due to

- Disease progression
- Insufficient FLR
- Physical status
- PV thrombosis
- Death

• OS 3 yr = 35-85%

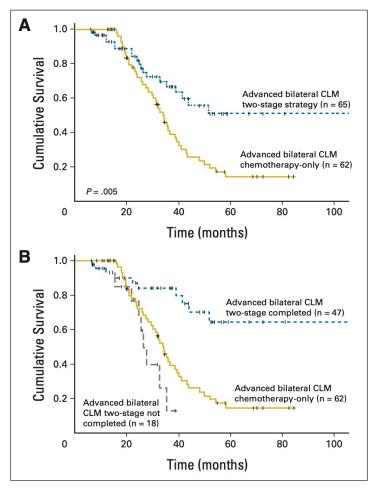
• OS 5 yr = 32-64%

Table 7.2 Outcomes after two-stage hepatectomy for bilateral colorectal liver metastases

	Region	Patient no.	Preoperative chemotherapy (%)	PVE (%)	PVL (%)	Completion rate (%)	Postoperative morbidity (%)	Postoperative mortality (%)	3-Year OS (%)	5-Year OS (%)
Adam et al. [3] ^a	Europe	16	75	44	0	81	38	15	35	NA
Jaeck et al. [30] ^b	Europe	33	91	100	0	76	56	0	54	NA
Tanaka et al. [<mark>20</mark>]	Asia	24	64	73	0	100	23	0	33	NA
Wicherts et al. [6] ^a	Europe	59	97	78	0	69	59	7	60	42
Homayounfar et al. [21]	Europe	24	75	0	100	63	58	5	NA	NA
Tsai et al. [22]	USA/ Europe	45	71	7	71	78	26	6	58	NA
Brouquet et al. [5]°	USA	65	100	70	0	72	49	6	84	64
Tsim et al. [23]	Europe	38	91	95	0	87	33	0	50	NA
Narita et al. [24] ^b	Europe	80	84	86	4	76	54	0	59	32
Muratore et al. [25]	Europe	47	79	58	23	77	44	0	65	NA
Turini et al. [26]	Europe	48	100	100	0	71	20	6	59	35
Passot et al. [4] ^{c,d}	USA	109	100	73	0	82	27	6	68 ^d	49 ^d
Mizuno et al. [31] ^c	USA	126	100	62	0	73	35	4	54	35

NA not available, OS overall survival, PVE portal vein embolization, PVL portal vein ligation

Source: Adapted from Kawaguchi et al. [19]


^aReports from Paul Brousse Hospital

^bReports from Strasbourg University Hospital

°Reports from MD Anderson Cancer Center

dIn 89 patients who underwent second-stage resection

Outcome of Two-Stage Hepatectomy

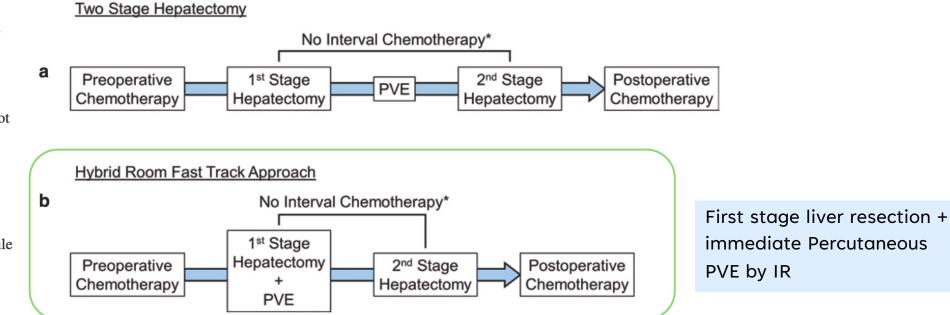
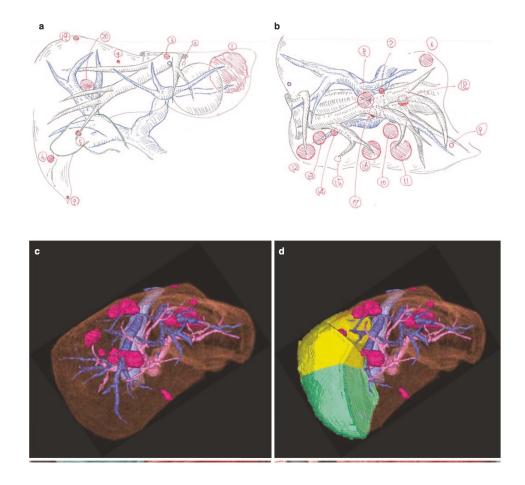


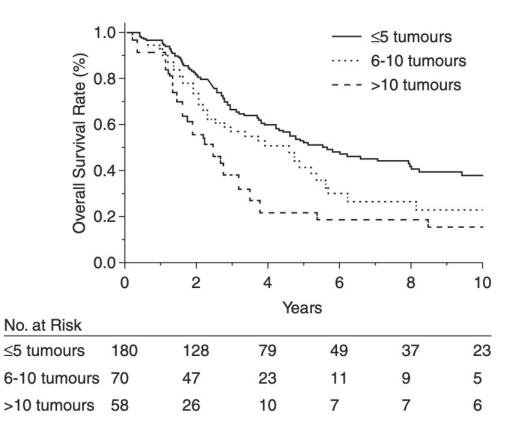
Fig 3. Overall survival in patients with advanced bilateral colorectal liver metastases (CLM) responding to chemotherapy enrolled in two-stage strategy (intent-to-treat analysis including patients undergoing only the first stage of two-stage hepatectomy) or receiving chemotherapy only (A) and stratified on the basis of whether two-stage resection was completed (B).

- TSR 6.7-3.4 CLM / mean size of 4.5 3.1 cm.
 vs. Nonsurgical patients 5.9-2.9 CLM / mean size of 5.4 3.4 cm (not significant).
- 47 TSR patients (72%) completed the second stage.
- After 50 months median follow-up
 - 5-year survival rate = 51% in the TSR group
 - 5-year survival rate = 15% in the medical group (P .005).
 - noncompletion of TSR and major postoperative complications were independently associated with worse survival.
 - 3-year survival rate 13% for first stage only

Hybrid Two-Stage Hepatectomy (MD Anderson)

Fig. 7.1 Typical treatment sequence of (**a**) two-stage hepatectomy and (**b**) hybrid room fast-track two-stage hepatectomy approach. PVE: portal vein embolization. *In most patients, chemotherapy is not used between the first and second stage. It is used selectively after first stage hepatectomy based on radiologic response, pathologic response, and somatic gene mutation profile




- Minimize the time between 1st and 2nd stage
 - Previous report interval 2-4 months
 - This study 2nd stage within 4 weeks
- Safe and effective, alternative to ALPPS
- Failure to 2nd stage : lack of FLR hypertrophy, progression of disease from lack of response to chemotherapy and unfavorable biology

One-Stage Hepatectomy

- Complete resection in one operation
- Concept : multiple partial liver resection with or without PVE
- Rarely perform hemi-hepatectomy for bilateral CLM to preserve as many Glissonean pedicles as possible except incases of tumor invasion
- R0 resection 70-80% in one stage hepatectomy
- Severe postop morbidity 10-15%, post-op mortality 1-2%
- 5 yr OS = 40-50%

Outcome One-Stage Hepatectomy (TOKYO)

Fig. 9.4 Overall survival by number of CLMs for patients who underwent one-stage hepatectomy at The University of Tokyo

	Year	Patient no.	Preoperative chemotherapy, %	PVE, %	Major hepatectomy, %	Additional ablation therapy, %	TSH completion, %	R0 resection, %	Postoperative morbidity (all), %	Postoperative morbidity (C-D \geq 3), %	Postoperative mortality, %	5-Year OS, %
One-stage h	epatect	omy										
Bolton et al. [35]	2000	44	68	0	52	0	-	NA	NA	NA	6	36
Sakamoto et al. [36]	2010	77	0	14	16	0	-	24	13	NA	1	37
Memeo et al. [37]	2016	691	34	NA	52	25	-	70	30	17	0.2	67 (PSH), 59 (non-PSH)
Philips et al. [38]	2016	101	80	0	46	100	-	86	32	14	1	40
Mizuno et al. [39]	2018	101	93	9	NA	71	-	NA	44	26	8	24
Spelt et al. [40]	2018	119	73	10	50	17	-	84	71	13	0	30 (PSH), 40 (non-PSH)
Torzilli et al. [41]	2019	52	77	0	0	0	-	21	46	8	2	(3-year OS) 43
D'Hondt et al. [42] ^a	2021	36	56	0	0	0	-	89	6	3	0	76
Current report	-	308	38	8	25	0	-	76	44	16	0	45
Two-stage h	epatect	omy										
Passot et al. [6]	2016	109	100	73	100	0	80	61	NA	26	6	49 (TSH completed) 0 (TSH not completed)
Baumgart et al. [27]	2019	50	91	68	100	0	72	70	NA	34	4	22
Chavez et al. [28]	2021	196	92	65	78	28	100	78	47	23	5	44

 Table 9.1
 Outcomes after one-stage hepatectomy and two-stage hepatectomy for bilateral colorectal liver metastases

C-D Clavien-Dindo classification, *NA* not available, *OS* overall survival, *PSH* parenchymal-sparing hepatectomy, *PVE* portal vein embolization, *TSH* two-stage hepatectomy ^aAll the patients underwent laparoscopic surgery

Nishioka, Y., Kawaguchi, Y., Hasegawa, K. (2022). One-Stage Hepatectomy for Bilateral Colorectal Liver Metastases: Experience of the University of Tokyo. In: Vauthey, JN., Kawaguchi, Y., Adam, R. (eds) Colorectal Liver Metastasis. Springer.

ALPPS

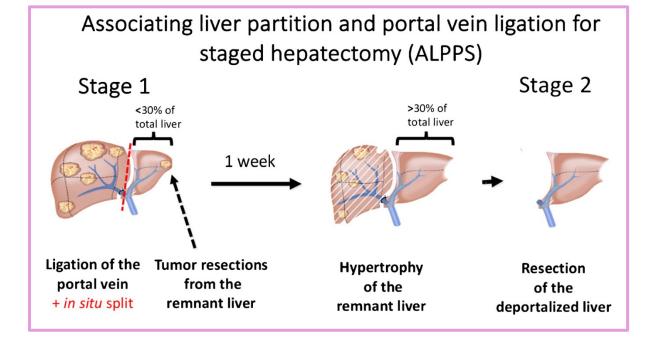
Chakedis J, Schmidt CR. Surgical Treatment of Metastatic Colorectal Cancer. Surg Oncol Clin N Am. 2018 Apr;27(2):377-399.

Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy (ALPPS)

Two staged hepatectomy + rapid hypertrophy of the future liver remnant in a short period of time.

Early tumor recurrence

Controversy weather massive growth stimulates undetected tumor in FLR


Mittler, J., Baumgart, J., Lang, H. (2022). Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy (ALPPS) for Colorectal Liver Metastasis. In: Vauthey, JN., Kawaguchi, Y., Adam, R. (eds) Colorectal Liver Metastasis. Springer, Cham

Funtional Resectability With ALPPS

- ALPPS was shown to be effective after failure of PVE and "rescue" or "salvage" procedure.
- Growth rate

TSH	ALPPS
3-5 ml/day	22-35 ml/day

- More deprivation
 - Portal flow
 - Compensatory collaterals
- Median hypertrophy rates 160% (range 90-250%)

Madoff, D.C., Odisio, B.C., Schadde, E. *et al.* Improving the Safety of Major Resection for Hepatobiliary Malignancy: Portal Vein Embolization and Recent Innovations in Liver Regeneration Strategies. *Curr Oncol Rep* 22, 59 (2020). Mittler, J., Baumgart, J., Lang, H. (2022). Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy (ALPPS) for Colorectal Liver Metastasis. In: Vauthey, JN., Kawaguchi, Y., Adam, R. (eds) Colorectal Liver Metastasis. Springer, Cham

ALPPS for CRLM in a Curative Intention

ALPPS vs. TSH

• TSH plus PVE/PVL

- Beneficial because longer waiting better assessment of tumor growth and better patient selection

- Better chance to remove small tumor deposits and metastases during stage one.

• ALPPS

- Interstage = 7-14 days
- less patients dropping out
- High rate of complete resections, higher rate resectability
- May cannot detect tumor progression

ALPPS vs. TSH

	ALPPS	TSH	
Adam et al. (2016)	Median survival 20 mo.	Median survival 37 mo.	
Baumgart et al. (2019)	Recurrence rate 87.5% Median OS 36.2 mo.	Recurrence rate 60% Median OS 26.7 mo.	
Bednarsch et al. (2020)	DFS 19 mo.	DFS 10 mo.	
Morris et al. (2018) Ratti et al. (2015) Kambakamba et al. (2016)	Simila	ar DFS	

Mittler, J., Baumgart, J., Lang, H. (2022). Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy (ALPPS) for Colorectal Liver Metastasis. In: Vauthey, JN., Kawaguchi, Y., Adam, R. (eds) Colorectal Liver Metastasis. Springer, Cham

Morbidity and Mortality ALPPS

ALPPS Improves Resectability Compared With Conventional Two-stage Hepatectomy in Patients With Advanced Colorectal Liver Metastasis

Results From a Scandinavian Multicenter Randomized Controlled Trial (LIGRO Trial)

	ALPPS	TSH	
Intervention 1	(n = 48)	(n = 49)	Р
Primary end point:			Odds ratio, P
Resection rates [‡] (%)	(44/48)92	(28/49)57	8.25 (2.6-26.6) P<0.0001
Secondary end points:			
Complications grade $\geq 3a^{\$}$ (%)	(19/44)43	(12/28)43	1.01 (0.4–2.6) $P = 0.99$
90-d Mortality§(%)	(4/48)8.3	(3/49)6.1	1.39 (0.3–6.6) $P = 0.68$
90-d Mortality [§] (%)	(4/44)9.1	(3/28)10.7	0.83 (0.2-4.0) P = 0.82
Negative margin in the liver $(\%)^{\$,\dagger\dagger}$	(34/44)77	(16/28)57	2.55 (0.9–7.1) $P = 0.11$

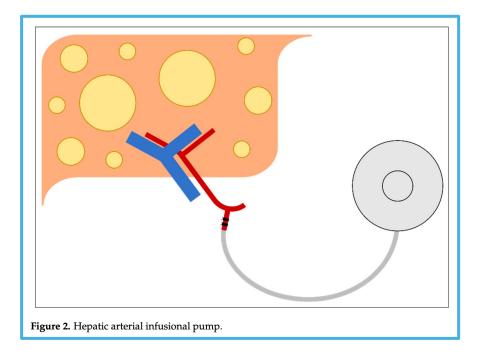
*Plus-minus values are means \pm SD.

No significant difference in the 90-day mortality

No difference in DFS

OS in ALPPS in significantly longer 46 mo. vs TSH 26 mo. (due to higer resection rate in ALPPS)

Many Types of ALPPS


Partial ALPPS

- Limiting the depth and extent of parenchyma transection
- Lower morbidity, nearly zero mortality
- RF-ALPPS, MW-ALPPS
- Tourniquet ALPPS
 - Tourniquet around a parenchymal groove of 1 cm in the future transection line
- Mini-ALPPS
 - Partial ALPPS + Intra-op PVE, avoid dissection of porta hepatis
- Hybrid-partial-ALPPS

Hepatic Artery Infusion Therapy

• Aim

- High lever of active product in hepatic metastasis
- Reduce systemic concentration \rightarrow lower toxicity

- A metallic device connect with catheter
- Insert into GDA
- Allow direct access for the administration of agents with high first-pass hepatic extraction
- Traditionally has often been used as a strategy to convert patient with initially unresectable CRLM to resectable.

Hepatic Artery Infusion Therapy

• Systemic chemotherapy convert to resectable 10-30%.

	N = 373
	232 (62 %)
Caucasian, N (%)	313 (84 %)
Median age, year (range)	56 (21-87)
Clinical risk score ≥ 3 , $N(\%)^{a}$	291 (87 %)
Bilobar, N (%)	359 (96 %)
Largest tumor \geq 5 cm, N (%)	182 (49 %)
\geq 4 liver tumors, N (%)	337 (90 %)
Pre-operative CEA \geq 200 ng/ml, N (%)	113 (32 %)
Lymphovascular invasion of primary tumor, N (%)	195 (68 %)
Node-positive primary, $N(\%)$	265 (77 %)
Synchronous, N (%)	326 (88 %)
On prospective study protocol, $N(\%)$	115 (31 %)
Chemotherapy-naïve, $N(\%)$	77 (21 %)
Extrahepatic disease, N (%)	60 (16 %)
Median follow-up for survivors, years (range)	2.5 (1-11)

^a One point is assigned to each of the following: nodal-positive primary, synchronous disease defined by disease-free interval <12 months, >1 hepatic metastasis, size of the largest metastasis >5 cm, and pre-operative CEA > 200 ng/ml

Conversion to Complete Resection and/or Ablation Using Hepatic Artery Infusional Chemotherapy in Patients with Unresectable Liver Metastases from Colorectal Cancer: A Decade of Experience at a Single Institution

John B. Ammori, MD^{1,4}, Nancy E. Kemeny, MD², Yuman Fong, MD¹, Andrea Cercek, MD², Ronald P. Dematteo, MD¹, Peter J. Allen, MD¹, T. Peter Kingham, MD¹, Mithat Gonen, PhD³, Philip B. Paty, MD¹, William R. Jarnagin, MD¹, and Michael I. D'Angelica, MD¹

- Floxuridine (FUDR) as chemotherapeutic of choice.
- Complete resection/ablation 16% (2000-2003)
- Complete resection/ablation 30% (2004-2009)
- 5 year survival from the time of HAI pump placement 59 mo. and 47% patient who converted to complete R/A.
- 5 year survival from the time of HAI pump placement 16 mo. and 6% patient who did not converted to complete R/A.
 (p=0.001)

Hepatic Artery Infusion Therapy

Table 36.1 Results of phase II studies evaluating the use of the main molecules tested in HAI treatment in Europe

			N of pts. N of prior chemo lines		Five main Grade 3-4		Median PFS & OS, mo [95% CI] Median OS in	
HAI drug(s) (doses and schedule)	Other drugs (route, dose and schedule)	Study design dates	(median, range) % prior PD	Prior drugs % of pts	toxicities, % pts. Catheter dysf, % pts	% R0-R1 [95% CI]	R0-R1 pts. [95% CI]	Refs.
Oxaliplatin (100 mg/ m ²)	Iv LV-5FU2	Observational Monocentric 2000–2004	44 pts. Prior lines, 2 (1–5) 70% prior PD –34% extrahepatic disease	5-FU-LV, 98% oxaliplatin, 77% irinotecan, 84%	Neutropenia, 44% Sensory neuro., 16% Abdominal pain, 14% Thrombocytopenia, 9% Diarrhea, 0% Catheter dysf., 41%	55% [40–69] 18% [<i>NR</i>]	7 [<i>NR</i>] 16 [<i>NR</i>] R0-R1, [<i>NR</i>]	Boige Ann Surg Oncol 2008 [18]
Oxaliplatin (80 mg/m ²) Irinotecan (160 mg/m ²) 5-Fluorouracil (2.4 g/ m ²) Chronomodulated* (5d)	None q-3 weeks	Salvage Monocentric 2000–2006	29 pts. Prior lines, 3 (1–8) 100% prior PD	5-FU-LV, 100% oxaliplatin, 100% irinotecan, 89%	Abdominal pain, 14% Diarrhea, 10% Fatigue, 10% Neutropenia, 3% Sensory neuro., 3% Catheter dysf., 31%	34.5% [NR] 14% [NR]	All pts. 4.5 [2.4–6.5] 18 [5.8–30.2] R0-R1 27+, 35, 77+	Bouchahda Cancer 2009 [19]
Oxaliplatin (85 mg/m ²) Irinotecan (180 mg/m ²) 5-Fluorouracil (2.8 g/ m ²) Chronomodulated* (4d) or Conventional (2d)	Iv Cetuximab (500 mg/m²) q-2 weeks	Phase II Multicenter International 2008–2012	64 pts. (RAS wt) Prior lines, 2 (1–3) 48% prior PD -median, 10 LM -41%, extra-hepatic disease	FU-LV, 95% oxaliplatin, 63% irinotecan, 78%	Neutropenia, 42% Abdominal pain, 26% Fatigue, 18% Diarrhea, 16% Sensory neuro., 3.3% Catheter dysf., 42%	40.6% [28.6– 52.3] 29.7% [18.5– 40.9]	ITT population 9.3 [7.8–12.3] 25.5 [18.8–32.1] R0-R1 35.2 [32.6–37.8]	Levi Ann Onc 2016 [20]
Oxaliplatin (100 mg/m², 2–6 h day 1)	Iv mLV-5FU2/ FOLFIRI and Iv Cetuximab/ Panitumumab/ Bevazucimab q-2 weeks	Retrospective Monocentric 2005–2016	89 pts. Prior lines, 1 (0–5) 43% prior PD –34% extrahepatic disease	FU-LV, 93% oxaliplatin, 78% irinotecan, 73% antiEGFR,33% bevazucimab, 67%	Abdominal pain, 43% Neutropenia, 40% Sensory neuro., 12% Thrombocytopenia, 8% Diarrhea, 1% Catheter dysf., 54%,	42% [NR] 26.9% [NR]	9 [8–11] 20 [15–24] R0-R1 36 [26–59]	Boileve Eur J Cancer 2020 [21]
Raltitrexed (3 mg/m ² , 1 h) Oxaliplatin (130 mg/ m ² , 2 h)	Control arm, Standard treatment	Randomized Phase II Multicenter 2010–2016	HAI, 38 pts. Std tt., 19 pts) Prior lines, 2 (2–4) –31% extrahepatic disease	FU-LV, 100% oxaliplatin, 100% irinotecan, 100% antiEGFR,37% bevazucimab, 94%	Abdominal pain, 37% Neutropenia, 6% Sensory neuro., 12% Thrombocytopenia, 12% Diarrhea, 6% Catheter dysf.,12%,	43.8% R0-R1 NR	PFS HAI, 6.7 [3.9-7.2] Std, 2.2 [1.2-4.3] (P = 0.01) OS HAI, 11.2 [4.8-17.6] Std., 11.9 [2.8-14.3]	Ghiringhelli J Cancer Res Clin Oncol 2019 [22]
5-FU (0.6–1.2 g/m ^{2.} 4 h) q2-weeks, or Mit-C (7 mg/m ²) q4-weeks	Iv mLV-5FU2/ FOLFIRI and Iv Cetuximab/ Panitumumab/ Bevazucimab q-2 weeks	Retrospective Monocentric 2010–2016	24 pts. 5-FU, 17 pts. Mit-C, 7 pts. 63% prior PD -> 8 LM, 75% -42% extrahepatic disease	Prior HAI oxaliplatin, 100% FU-LV, 100% irinotecan, 92% antiEGFR,25% bevazucimab, 67%	Abdominal pain, 0% Neutropenia, 0% Sensory neuro., 0% Thrombocytopenia, 4% Diarrhea, 0% Catheter dysf.,12%,	42% 13%	5.6 25.8	Pernot Clin Res Hepatol Gastroenterol 2018 [23]

Pharmacogenetic determinants of outcomes on triplet hepatic artery infusion and intravenous cetuximab for liver metastases from colorectal cancer (European trial OPTILIV, NCT00852228)

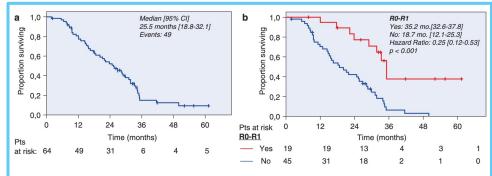
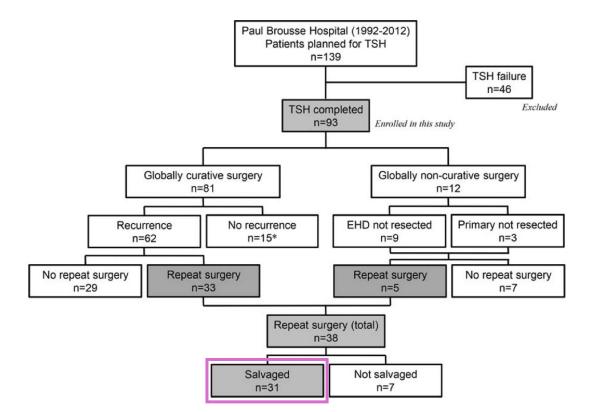
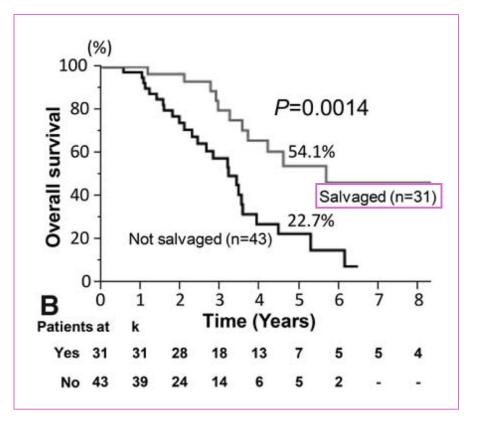


Fig. 36.1 Overall survival in international Phase II trial OPTILIV. (a) protocols. (b) Overall survival according to the reach of conversion-to-Intent to treat overall survival curve in the 64 patients with initially unresectable LM and a median of two prior systemic chemotherapy

- PFS ranged from 4.5 to 6.7 mo
- Median OS of early responders 35.1 mo. vs. non-early responders 20.2 mo.
- R0-1 surgical resection rates following HAIchemotherapy 13-26.8%, OPTILIV study = 29.7%


Repeat Hepatectomy for CRLM

- Challenging management
 - Limited due to
 - previous surgery (anatomical landmarks/hypertrophy of FLR)
 - numerous chemotherapy cycles
- Concomitant extrahepatic disease in liver recurrence = 10%
 - Extrahepatic disease predicts lower survival after repeat hepatectomy
 - But worthy for repeat hepatectomy in patient with controlled EHD by systemic therapy e.g. pulmonary metastasis.
- Repeat hepatectomy should be considered when
 - all complete resection of all macroscopic disease
 - acceptable surgical risk
 - Stable of responsive disease under chemotherapy


Outcome of Repeat Hepatectomy for CRLM

Impact of Surgical Treatment for Recurrence After 2-Stage Hepatectomy for Colorectal Liver Metastases, on Patient Outcome

Katsunori Imai, MD, PhD,*†¶ Carlos Castro Benitez, MD,*†§ Marc-Antoine Allard, MD,*†§ Eric Vibert, MD, PhD,*‡§ Antonio Sa Cunha, MD,*†§ Daniel Cherqui, MD,*‡§ Denis Castaing, MD,*‡§ Henri Bismuth, MD, PhD,* Hideo Baba, MD, PhD,¶ and René Adam, MD, PhD*†§

Repeat surgery for recurrence after TSH may be crucial for the long-term survival in patients with extensive bilobar CRLM.

Imai, Katsunori MD, PhD et al. Impact of Surgical Treatment for Recurrence After 2-Stage Hepatectomy for Colorectal Liver Metastases, on Patient Outcome. Annals of Surgery 269(2):p 322-330, February 2019.

Outcome of Repeat Hepatectomy for CRLM

Surgical Resection for Recurrence After Two-Stage Hepatectomy for Colorectal Liver Metastases Is Feasible, Is Safe, and Improves Survival

Heather A. Lillemoe¹ • Yoshikuni Kawaguchi¹ • Guillaume Passot¹ • Georgios Karagkounis¹ • Eve Simoneau¹ • Yi-Qian Nancy You¹ • Reza J. Mehran² • Yun Shin Chun¹ • Ching-Wei D. Tzeng¹ • Thomas A. Aloia¹ • Jean-Nicolas Vauthey¹

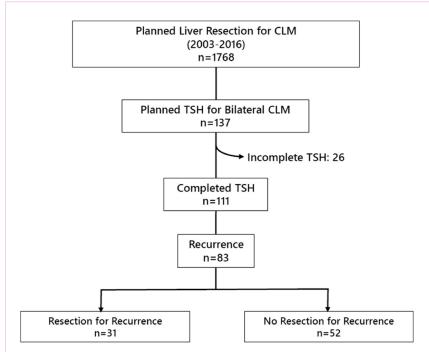
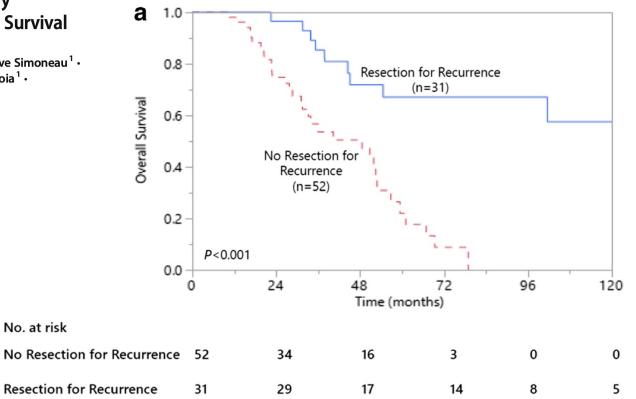
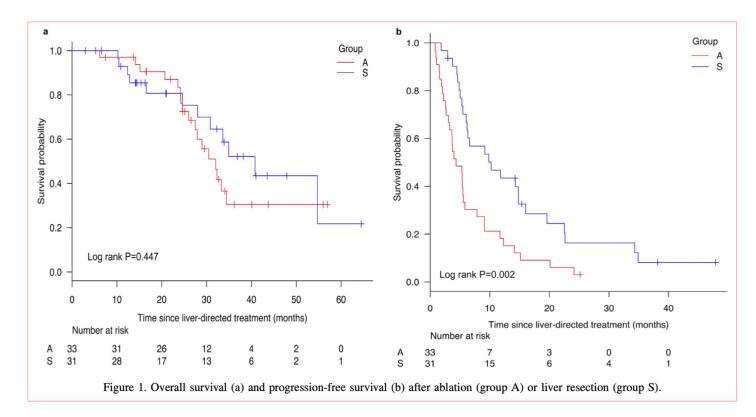



Fig. 1 Patient selection. CLM, colorectal liver metastases; TSH, two-stage hepatectomy

OS was 143 months for patients who underwent resection for recurrence and 49 months for those who did not undergo resection for recurrence (P < 0.001)


Repeat Hepatectomy - Surgery or Local Ablation

Local ablation

- Effective in small lesions and to preserves liver parenchyma
- Diameter does not exceed 2 cm
- Deep lesion
- May have shorter DFS
- Lower morbidity
- Retroespective studies shows that local ablation has similar OS to repeat hepatectomy for intrahepatic CLM recurrence.

Curative-intent treatment of recurrent colorectal liver metastases: A comparison between ablation and resection

Aurélien Dupré ^{a,b,*}, Robert P. Jones ^{a,c}, Rafael Diaz-Nieto ^a, Stephen W. Fenwick ^a, Graeme J. Poston ^a, Hassan Z. Malik ^a

Allard, M.A., Adam, R. (2022). Repeat Hepatectomy for Colorectal Liver Metastases. In: Vauthey, JN., Kawaguchi, Y., Adam, R. (eds) Colorectal Liver Metastasis. Springer, Cham. Dupré A, Jones RP, Diaz-Nieto R, Fenwick SW, Poston GJ, Malik HZ. Curative-intent treatment of recurrent colorectal liver metastases: A comparison between ablation and resection. Eur J Surg Oncol. 2017 Oct;43(10):1901-1907.

Resection Margin

- Parenchymal sparing hepatectomy (PSH) is considered gold standard
- Frequency of local recurrence with PSH is low.
- Aim at least 1 mm of normal liver tissue from the resection margin to the border of tumor = R0 resection
- To achieve R0 resection : gross margin = 1 cm.
- R1 resection = < 1 mm. from resection margin / R1 vascular
 - Accepted in good respond to preop chemotherapy

Resection Margin in Parenchymal Sparing Hepatectomy

- Parenchymal sparing hepatectomy (PSH)
 - Help lowering risk for small FLR volume and subsequent liver failure
 - Benefit in patients with previous pre-operative chemotherapy
 - Older studies said there's a **risk of higher R1 resection**

But recent studies **PSH was non inferior to non PSH**

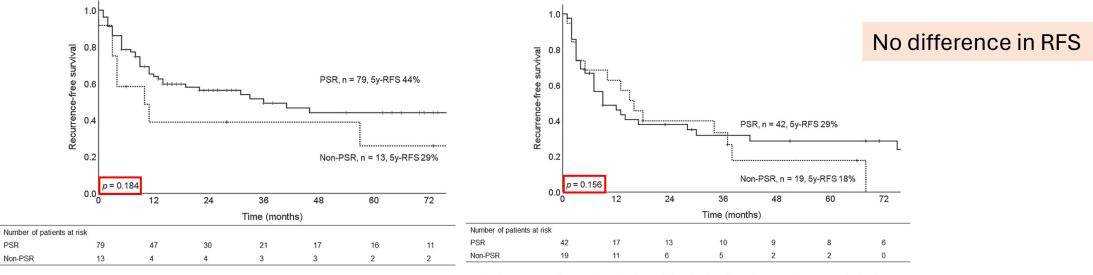


Fig. 2. Recurrence-free survival of patients with TBS <4.5 who underwent PSR vs. non-PSR for CRLM.

Fig. 4. Recurrence-free survival of patients with TBS \geq 4.5 who underwent PSR vs. non-PSR for CRLM.

Parenchymal-sparing hepatectomy for colorectal liver metastases reduces postoperative morbidity while maintaining equivalent oncologic outcomes compared to non-parenchymal-sparing resection

Andreas Andreou¹, Severin Gloor¹, Julia Inglin, Claudine Di Pietro Martinelli, Vanessa Banz, Anja Lachenmayer, Corina Kim-Fuchs, Daniel Candinas, Guido Beldi^{*}

From the Department of Visceral Surgery und Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland

Resection Margin in Parenchymal Sparing Hepatectomy

Table 3

Comparison of outcomes between patients who underwent PSR vs. non-PSR for CRLM.

Variable	TBS <4.5		TBS \geq 4.5		p^1	p^2
	non-PSR	PSR	non-PSR	PSR		
	(n = 13)	(n = 79)	(n = 19)	(n = 42)		
Length of ICU stay, days, median (range)	2	2	2	2	0.672	0.197
	(0–3)	(0–9)	(0–9)	(0-4)		
Length of hospital stay, days, median (range)	9	5	9	6	0.006	0.005
	(2–13)	(2–37)	(4–34)	(2–50)		
90-day complications, n (%)	6 (46)	12 (15)	12 (63)	14 (33)	0.009	0.031
90-day major complications, n (%)	3 (23)	7 (9)	8 (42)	10 (24)	0.129	0.150
90-day mortality, n (%)	0 (0)	0 (0)	1 (5)	1 (2)	1.000	0.562
Postoperative liver failure, n (%)	0	0	1 (5)	0	1.000	0.127
Postoperative bleeding, n (%)	1 (8)	2 (3)	1 (5)	2 (5)	0.548	0.898
Need for transfusion, n (%)	4 (31)	8 (10)	6 (32)	8 (19)	0.042	0.285
Wound infection, n (%)	1 (8)	3 (4)	2 (11)	5 (12)	0.526	0.877
Organ/space infection, n (%)	1 (8)	0	2 (10.5)	1 (2.4)	0.014	0.177
Urinary tract infection, n (%)	0	1 (1)	0	0	0.685	1.000
Pneumonia, n (%)	0	0	1 (5)	0	1.000	0.137
Intrahepatic recurrence, n (%)	7 (54)	32 (41)	9 (47)	20 (48)	0.263	0.568
Repeat hepatectomy for patients with intrahepatic recurrence, n (%)	4 (57)	18 (56)	4 (44)	10 (50)	0.722	1.000
Microwave ablation for patients with intrahepatic recurrence, n (%)	3 (43)	9 (28)	2 (22)	3 (15)	0.548	0.534

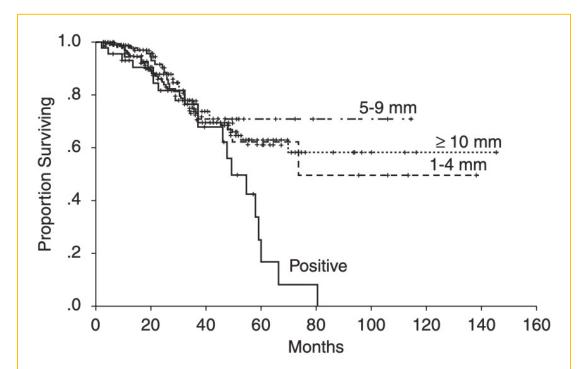
TBS, Tumor Burden Score; CRLM, colorectal liver metastases; ICU, intensive care unit.

p1 TBS <4.5: non-PSR vs. PSR.

 p^2 TBS \geq 4.5: non-PSR vs. PSR.

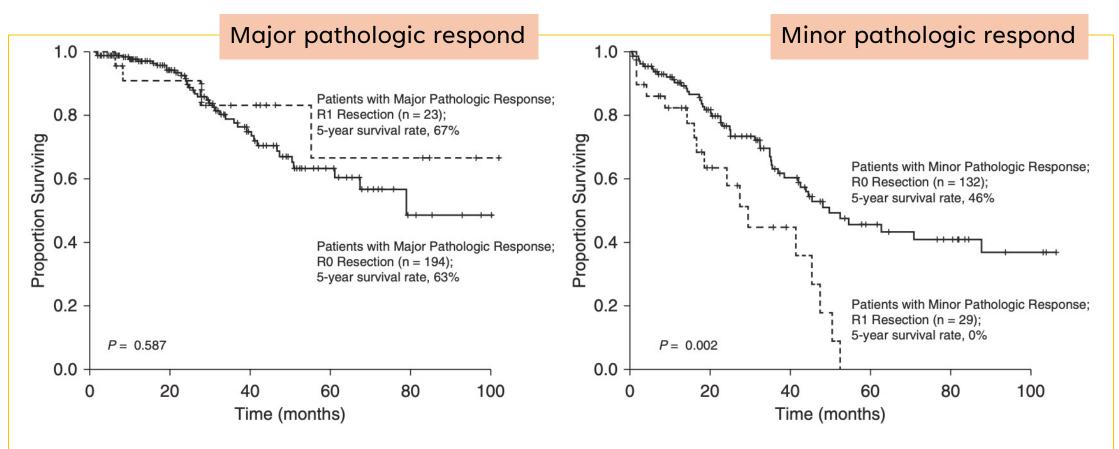
Andreou A et al. Parenchymal-sparing hepatectomy for colorectal liver metastases reduces postoperative morbidity while maintaining equivalent oncologic outcomes compared to non-parenchymal-sparing resection. Surg Oncol. 2021 Sep;38:101631.

Resection Margin


Effect of Surgical Margin Status on Survival and Site of Recurrence After Hepatic Resection for Colorectal Metastases

Timothy M. Pawlik, MD, MPH,* Charles R. Scoggins, MD,* Daria Zorzi, MD,* Eddie K. Abdalla, MD,* Axel Andres, MD, Cathy Eng, MD,† Steven A. Curley, MD,* Evelyne M. Loyer, MD,‡ Andrea Muratore, MD,§ Gilles Mentha, MD, Lorenzo Capussotti, MD,§ and Jean-Nicolas Vauthey, MD*

TABLE 2.	Patterns of Recurrence Stratified by Surgical Margin Status
(<i>n</i> = 225)	


	No. (%) of Patients With Recurrence							
Type of recurrence	Positive $(n = 45)$	1-4 mm (<i>n</i> = 129)	5-9 mm (<i>n</i> = 85)	$\geq 1 \text{ cm}$ ($n = 298$)				
Surgical margin	5 (11)	7 (5)	2 (2)	7 (2)				
Other intrahepatic	5 (11)	13 (10)	9 (11)	29 (10)				
Extrahepatic	8 (18)	15 (12)	14 (16)	45 (15)				
Intra- + extrahepatic	5 (11)	15 (12)	10 (12)	36 (12)				
Any recurrence	23 (51)	50 (39)	35 (41)	117 (39)				
			Y					

similar overall recurrence rates (P > 0.05)

Fig. 17.1 Overall survival stratified by surgical margin width. Survival in patients with positive margins was significantly lower than that in patients with negative margins (p = 0.005), while no significant difference in survival was seen in patients with a negative surgical margin, regardless of the width of the margin. (Adapted from Pawlik, et al. Ann Surg 2005 [3] with permission)

Resection Margin in Good Respond Patients

Fig. 17.2 Overall survival by surgical margin status in patients who underwent hepatectomy for colorectal liver metastases with (**a**) a major pathologic response to preoperative chemotherapy and (**b**) a minor

pathologic response to preoperative chemotherapy. (Adapted from Andreou, et al. Ann Surg 2013 [6] with permission)

Resection Margin and Minimal Invasive Hepatectomy

- Minimal invasive ; benefit in vulnerable patients elderly
- Comparable R1 resection rates in open and mis.

	TABLE 2. Operative Results (iviounneu intention-to-ti	eat, ff = 273)		
	Result	Open (n = 144)	Laparoscopic $(n = 129)$	Р
Language is Manual One of Description for Colone stal	Postoperative complications, Accordion grade 2 or higher	44 (31%)	24 (19%)	0.021
Laparoscopic Versus Open Resection for Colorectal	Comprehensive Complication Index, ²⁵ mean (95% CI)	9.3 (6.6-12.0)	5.2 (3.1-7.3)	0.021
Liver Metastases	Operation time (minutes), median (95% CI)	120 (106-134)	123 (108-138)	0.76
	Blood loss (mL), median (95% CI)	200 (126-273)	300 (224-375)	0.062
The OSLO-COMET Randomized Controlled Trial	Unfavorable peroperative incidents	9 (6%)	14 (11%)	0.16
	Conversion to laparotomy/hand assisted	-	2 (2%)/7 (5%)	
Åsmund Avdem Fretland, MD,*†‡ Vegar Johansen Dagenborg, MD,§‡¶ Gudrun Maria Waaler Bjørnelv, MPhil,*†††	Postoperative analgesia, PCA/EDA/none (n)	67/76/1	129/0/0	
Airazat M. Kazaryan, MD, PhD,** Ronny Kristiansen,*†† Morten Wang Fagerland, MSc, PhD,‡‡	Postoperative hospital stay (h), median (95% CI)	96 (89-103)	53 (45-61)	< 0.001
John Hausken, MD,§§ Tor Inge Tønnessen, MD, PhD,‡§§ Andreas Abildgaard, MD, PhD,¶¶	Transfusion during hospital stay	12 (8%)	10 (8%)	0.91
Leonid Barkhatov, MD,* ‡ Sheraz Yaqub, MD, PhD,† Bård I. Røsok, MD, PhD,†	Postoperative morphine equivalents, median (95% CI)	170 (149–191)	52 (29-74)	< 0.001
Bjørn Atle Bjørnbeth, MD, PhD, \dagger Marit Helen Andersen, RN, PhD,*** $\dagger\dagger\dagger$ Kjersti Flatmark, MD, PhD, \P	Stay in recovery ward (h), median (95% CI)	4.27 (3.91-4.63)	3.67 (3.29-4.05)	0.024
Eline Aas, MPhil, PhD, ††† and Bjørn Edwin, MD, PhD*†‡ on behalf of the Oslo-CoMet study group	Discharge to referring hospital	30 (21%)	15 (11%)	0.042
	Intensive care treatment	1 (1%)	3 (2%)	0.24
	Readmissions within 30 days	12 (8%)	13 (10%)	0.60
	Reoperations within 30 days	6 (4%)	5 (4%)	0.88
	Resection margin >1 mm	102 (71%)	92 (71%)	0.83
	Resection margin <1 mm but not involved	32 (22%)	29 (22%)	0.94
	Involved resection margin	10 (7%)	8 (6%)	0.88
	Missed lesion	2 (1%)	4 (3%)	0.32
	Changes from initial strategy			
	No (parenchyma-sparing resection performed as planned)	137	124	
	Converted to ablation only	1	0	
	Converted to hemihepatectomy	1	2	
	Exploration only	3	2	
	Converted to resection + ablation	1	1	
	Need for vascular reconstruction	1	0	

TABLE 2. Operative Results (Modified Intention-to-treat, n = 273)

Unless otherwise stated, numbers are n (%).

CI indicates confidence interval; EDA, epidural analgesia; PCA, patient-controlled analgesia

Fretland ÅA et al. Laparoscopic Versus Open Resection for Colorectal Liver Metastases: The OSLO-COMET Randomized Controlled Trial. Ann Surg. 2018 Feb;267(2):199-207.

R1 Resection as a Predictor of Recurrence at the Hepatic Resection Margin

- Buismann et al. (2008) indicated positive surgical margin were not associate with increased marginal recurrence despite more frequent intrahepatic metastasis.
- R1 resection surrogate marker for tumor biology
- Recurrence at the resection margin did not have worse OS than intrahepatic or extrahepatic recurrences.

Nishioka et al.

- N= 552 , attempt R0 resection CLM + genetic analysis by using NGS
- RAS/TP53 co-mutation Increase incidence of intrahepatic recurrence
- Local recurrence did not differ in RAS/TP53, BRAF, SMAD4, FBXW7 mutations

Findings suggest that prognosis likely is driven by tumor biology

Table 17.2 Patterns of recurrence by surgical margin width					
	Margin				
		1.0-	5.0-		
	<1.0 mm ^a		9.9 mm	≥10 mm	Ρ
	(n = 137)	(n = 153)	(n = 121)	(n = 141)	value
Any recurrence, no. (%)	112 (82)	119 (78)	95 (79)	109 (77)	
Local recurrence, no. (%)	11 (8)	12 (8)	7 (6)	8 (6)	0.840
Other intrahepatic recurrence, no. (%)	73 (53)	73 (48)	57 (47)	62 (44)	
Extrahepatic recurrence alone, no. (%)	28 (20)	34 (22)	31 (26)	39 (28)	
No recurrence, no. (%)	25 (18)	34 (22)	26 (21)	32 (23)	
^a R0 resection Adapted from Ni permission	shioka, et	al. J Gastr	ointest Sur	g 2021 [7	2] with

Nishioka Y, Arango NP, Oppliger BF, et al. Neither surgical margin status nor somatic mutation predicts local recurrence after R0-intent resection for colorectal liver metastases. J GastrointestSurg. 2022;26(4):791–801.

R1 Vascular

Is Tumor Detachment from Vascular Structures Equivalent to R0 **Resection in Surgery for Colorectal Liver Metastases? An Observational Cohort**

Luca Viganò, MD, PhD, Fabio Procopio, MD, Matteo Maria Cimino, MD, Matteo Donadon, MD, PhD, Andrea Gatti, MD, Guido Costa, MD, Daniele Del Fabbro, MD, and Guido Torzilli, MD, PhD, FACS

Department of Hepatobiliary & General Surgery, Humanitas Clinical and Research Center - IRCCS, Humanitas University, Rozzano, Milan, Italy

- 627 resection areas (226 patients)

	R0	R1Par	p (R0 vs. R1Par)	R1Vasc	p (R0 vs. R1Vasc)
Local recurrence (per-patient)	5/95 (5.3 %)	21/107 (19.6 %)	0.002	2/46 (4.3 %)	n.s.
Local recurrence (per-resection area)	6/399 (1.5 %)	24/177 (13.6 %)	<0.0001	2/51 (3.9 %)	n.s.
Isolate local recurrence	2	6	n.s.	1	n.s.
Local recurrence + additional liver metastases	2	11	n.s.	1	n.s.
Local recurrence + additional liver and extrahepatic disease	1	4	n.s.	0	n.s.
Delay surgery-local recurrence	10 (4-12)	5.5 (2-18)	n.s.	36.5 (34-39)	0.003
Local recurrence if					
Synchronous metastases	3/46 (6.5 %)	13/51 (25.5 %)	0.025	0 %	n.s.
>1 metastasis	3/63 (4.8 %)	15/85 (17.6 %)	0.034	2/42 (4.8 %)	n.s.
>3 metastases	2/29 (6.9 %)	12/59 (20.3 %)	n.s.	0 %	n.s.
>50 mm metastasis	3/20 (15.0 %)	10/26 (38.5 %)	n.s.	0 %	n.s.
Bilobar metastases	1/27 (3.7 %)	12/59 (20.3 %)	n.s.	0 %	n.s.
Preoperative chemotherapy	2/44 (4.5 %)	10/57 (17.5 %)	0.045	1/29 (3.4 %)	n.s.
Response to chemotherapy (partial/complete)	2/30 (6.7 %)	4/29 (13.8 %)	n.s.	1/14 (7.1 %)	n.s.
Disease progression while on chemotherapy	0 %	6/18 (33.3 %)	n.s.	0 %	n.s.
Adjuvant chemotherapy	2/43 (4.7 %)	3/43 (7.0 %)	n.s.	1/18 (5.6 %)	n.s.

LR risk was **similar** between the **R0** and R1Vasc groups (per-patient analysis 5.3 vs. 4.3 %; per-

resection area analysis 1.5 vs. 3.9 %, p = n.s.)

- LR increased in the R1Par group (19.6 and 13.6 %, p = 0.05 for both)
- The R1Par group had a higher rate of hepatic-only recurrences (49.5 vs. 36.1%, p = 0.042).

solu values are statistically significan

R1Par resection is not adequate. R1Vasc surgery achieves outcomes equivalent to R0 resection

Unresectable CRLM

Chakedis J, Schmidt CR. Surgical Treatment of Metastatic Colorectal Cancer. Surg Oncol Clin N Am. 2018 Apr;27(2):377-399.

Treatment Options

Unresectable CRLM

Treatment Option	Therapeutic Use					
Systemic chemotherapy	 FOLFOX, FOLFIRI, CAPEOX, FOLFOXIRI ± bevacizumab or panitumumab/cetuximab (KRAS WT) Phase III CELIM and BOXER trials^{83,84}: 71%–78% response rate and 28%–40% converted to resectable Locoregional therapy: percutaneous using ultrasound/CT guidance or laparoscopic Phase II trial⁷²: improved 5-y survival 43.1% compared with 30.3% with systemic treatment alone 					
RFA						
Stereotactic body radiotherapy	Locoregional therapy using 34–75 Gy delivered in 3–6 fractions • Phase II trial ⁸⁵ : 2-y local control 91%, 2-y OS and PFS 65% and 35%					
Y-90 selective internal radiotherapy	 Locoregional therapy using glass or resin beads with Y-90 delivered through the hepatic artery, doses of 100–3000 Gy that penetrates 2.5–11 mm Phase III trials currently ongoing: EPOCH, FOXFIRE, SIRFLOX 					
Isolated hepatic perfusion	 Open operation infuses melphlan or oxaliplatin through the hepatic artery Phase I trial⁸⁶: oxaliplatin used, 66% response rate 					
Drug-eluting beads preloaded with irinotecan (TACE - DEBIRI)	 Locoregional therapy of drug-eluting beads delivered through the hepatic artery to the entire right or left lobe of the liver Phase III RCT⁸⁷: improved OS (22 vs 15 mo) and PFS (7 vs 4 mo) with TACE-DEBIRI over systemic FOLFIRI 					
Hepatic artery infusion pump	 FUDR infused through the hepatic artery used in combination with systemic chemotherapy for palliative therapy or conversion to resectability Phase II trial⁸⁸: overall response rate of 76% with 47% converted to resectable in a median of 6 mo 					

Abbreviations: PFS, progression-free survival; RCT, randomized controlled trial; Y-90, yttrium-90.

Unresectable

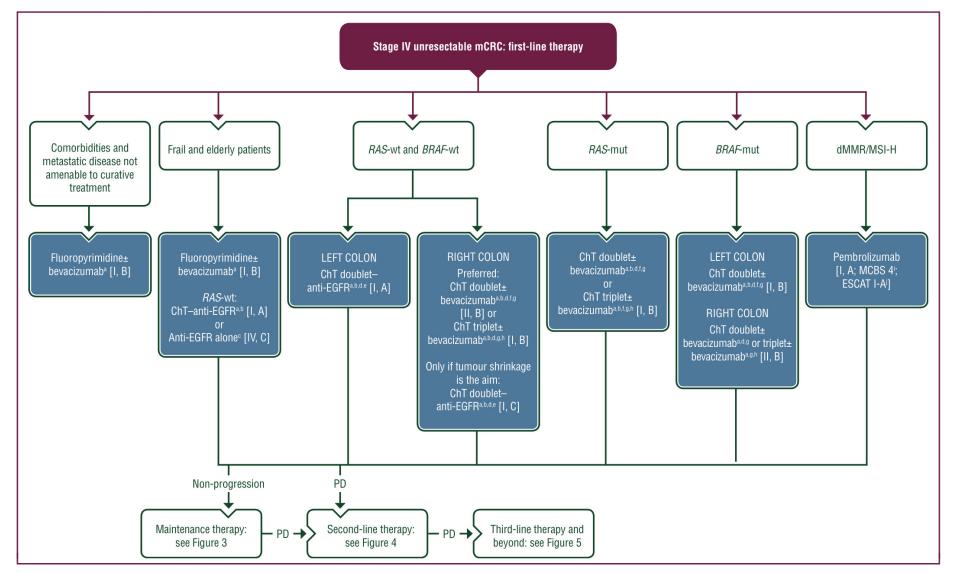


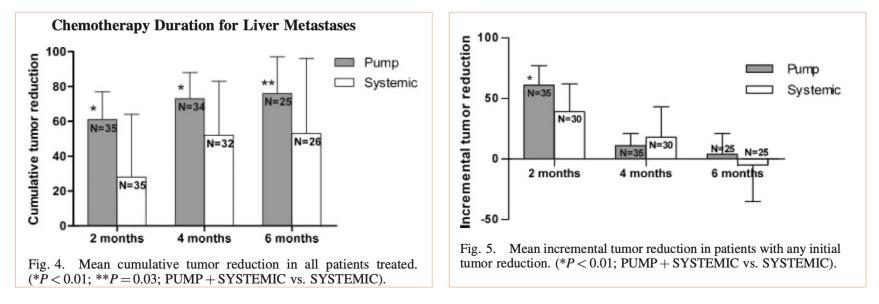
Figure 2. Management of stage IV unresectable mCRC in first-line therapy. Purple: general categories or stratification; blue: systemic anticancer therapy; white: other aspects of management.

Optimal Timing for Periop Chemotherapy

Perioperative Chemotherapy

- Small lesion (<2 cm) \rightarrow Disappearing
 - Neoadjuvant chemotherapy should not exceed 2 months

- Patients with pre-op chemotherapy for CRLM
 - Resection should be considered after 2-4 months of chemotherapy
- Post operative chemotherapy
 - 6 months 5-FU + Oxaliplatin base
- Target agents not recommend during perioperative therapy in patients with upfront resectable metastases

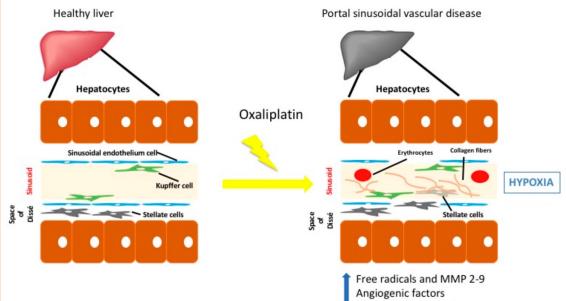

Optimal Timing for Pre-op Chemotherapy

Journal of Surgical Oncology 2008;97:601-604

Assessing the Optimal Duration of Chemotherapy in Patients With Colorectal Liver Metastases

REBEKAH R. WHITE, MD,¹ LAWRENCE H. SCHWARTZ, MD,² JOSE A. MUNOZ, BA,³ GREER RAGGIO, MD,³ WILLIAM R. JARNAGIN, MD,¹ YUMAN FONG, MD,¹ MICHAEL I. D'ANGELICA, MD,¹ AND NANCY E. KEMENY, MD³*

¹Department of Surgical Oncology, Memorial Sloan-Kettering Cancer Center, New York ²Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York ³Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York



In responders to preoperative therapy, surgical resection should be considered after 2–4 months, when most patients have achieved maximal response.

Resection should be considered after 2-4 months of chemotherapy, as long as there's no disease progression.

White RR, Schwartz LH, Munoz JA, Raggio G, Jarnagin WR, Fong Y, D'Angelica MI, Kemeny NE. Assessing the optimal duration of chemotherapy in patients with colorectal liver metastases. J Surg Oncol. 2008 Jun 1;97(7):601-4.

Liver Injury Associate Chemotherapy

Perisinusoidal fibrosis

Figure 1. Proposed oxaliplatin liver injury mechanisms of sinusoidal damage: first, oxaliplatin increases porosity of the sinusoidal endothelium cellular fenestrations, stimulating the release of free radicals and depletion of glutathione transferase, followed by an increase of metalloproteinases (MMP-2 and MMP-9). This damage favors the migration of erythrocytes into the space of Dissé and formation of perisinusoidal fibrosis. In this hypoxic situation, an increase of angiogenic factors (and activation of metalloproteinases in turn increasing vascular damage is induced. Second, nodular regenerative hyperplasia is favored by the chronic hypoxia of the centrilobular areas. Third, oxaliplatin can generate an obliteration of the blood capillaries and areas of parenchymal extinction that interrupt portal circulation and eventually elevate portal pressures.

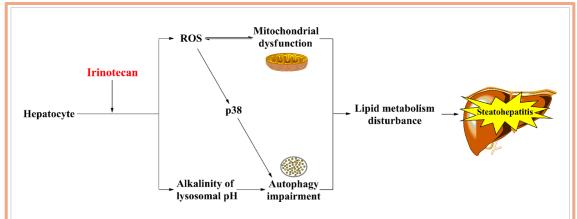


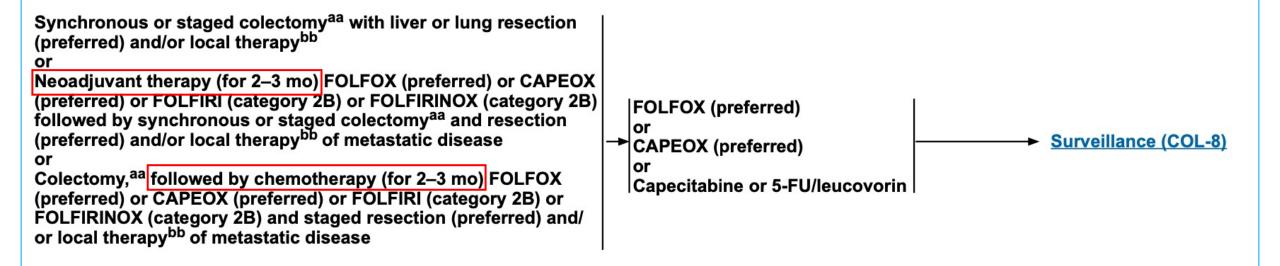
FIGURE 2 | The potential mechanisms of IIS. Irinotecan-caused mitochondrial dysfunction and autophagy impairment result in lipid metabolism disturbance ultimately, which may involve in the pathogenesis of IIS.

Associated Notable postoperative					
Pathology	chemotherapy	Notable postoperative morbidities			
Steatosis	5-fluorouracil	Liver failure			
	Irinotecan	Infectious complications			
	Oxaliplatin	Biliary leakage			
Steatohepatitis	Irinotecan	Liver failure			
Sinusoidal	Oxaliplatin	Biliary complications			
dilation		Liver failure			
		More perioperative blood transfusions			

Han J, Zhang J, Zhang C. Irinotecan-Induced Steatohepatitis: Current Insights. Front Oncol. 2021 Oct 11;11:754891.

Puente, A.; Fortea, J.I.; Del Pozo, C.; Huelin, P.; Cagigal, M.L.; Serrano, M.; Cabezas, J.; Arias Loste, M.T.; Iruzubieta, P.; Cuadrado, A.; et al. Porto-Sinusoidal Vascular Disease Associated to Oxaliplatin: An Entity to Think about It. Cells 2019, 8, 1506.

pMMR – Resectable – Synchronous Liver Metastasis


NCCN National Comprehensive Cancer Network®

NCCN Guidelines Version 1.2024 pMMR/MSS Colon Cancer

NCCN Guidelines Index Table of Contents Discussion

TREATMENT <u>Resectable^h synchronous liver</u> and/or lung metastases only pMMR/MSS

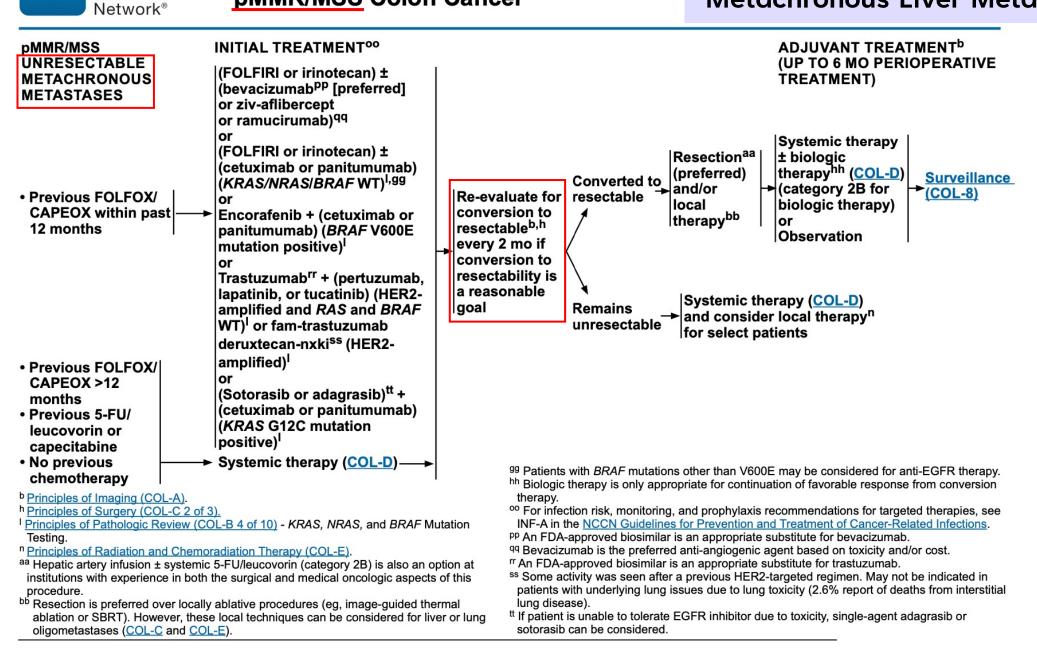
ADJUVANT TREATMENT^b (UP TO 6 MO PERIOPERATIVE TREATMENT) (resected metastatic disease)

National NCCN Guidelines Version 1.2024 pMMR – Unresectable – Comprehensive NCCN Cancer **Synchrochronous Liver Metastasis** pMMR/MSS Colon Cancer Network[®] ADJUVANT TREATMENT^b (UP TO 6 TREATMENT Unresectable^h synchronous liver **MO PERIOPERATIVE TREATMENT)** and/or lung metastases only pMMR/MSS Systemic therapy Systemic therapy ± FOLFIRI or FOLFOX or Svnchronized biologic therapy^{hh} **CAPEOX or FOLFIRINOX ±** or staged (COL-D) (category 2B for bevacizumab^{cc,dd} Converted to resection^h Surveillance biologic therapy) or resectable (preferred) (COL-8) or FOLFIRI or FOLFOX ± and/or local Re-evaluate for Consider observation panitumumab or cetuximab^{ee} therapy^{bb} of conversion to or shortened course of (KRAS/NRAS/BRAF WT and colon and resectable^{b,h} every chemotherapy left-sided tumors only)^{I,ff,gg} metastatic 2 mo if conversion Consider colon resection^h only cancer to resectability is if imminent risk of obstruction. a reasonable goal significant bleeding, perforation, Systemic Therapy (COL-D) unresectable^{aa}→ and consider local therapyⁿ Remains or other significant tumorrelated symptoms for select patients

^bPrinciples of Imaging (COL-A).

^hPrinciples of Surgery (COL-C 2 of 3).

- Principles of Pathologic Review (COL-B 4 of 10) KRAS, NRAS, and BRAF Mutation Testing.
- ⁿ Principles of Radiation and Chemoradiation Therapy (COL-E).
- ^{aa} Hepatic artery infusion ± systemic 5-FU/leucovorin (category 2B) is also an option at institutions with experience in both the surgical and medical oncologic aspects of this procedure.
- ^{bb} Resection is preferred over locally ablative procedures (eg, image-guided thermal ablation or SBRT). However, these local techniques can be considered for liver or lung oligometastases (<u>COL-C</u> and <u>COL-E</u>).
- ^{cc} There should be at least a 6-week interval between the last dose of bevacizumab and elective surgery and re-initiation of bevacizumab at least 6 to 8 weeks postoperatively. There is an increased risk of stroke and other arterial events, especially in those aged ≥65 years. The use of bevacizumab may interfere with wound healing.

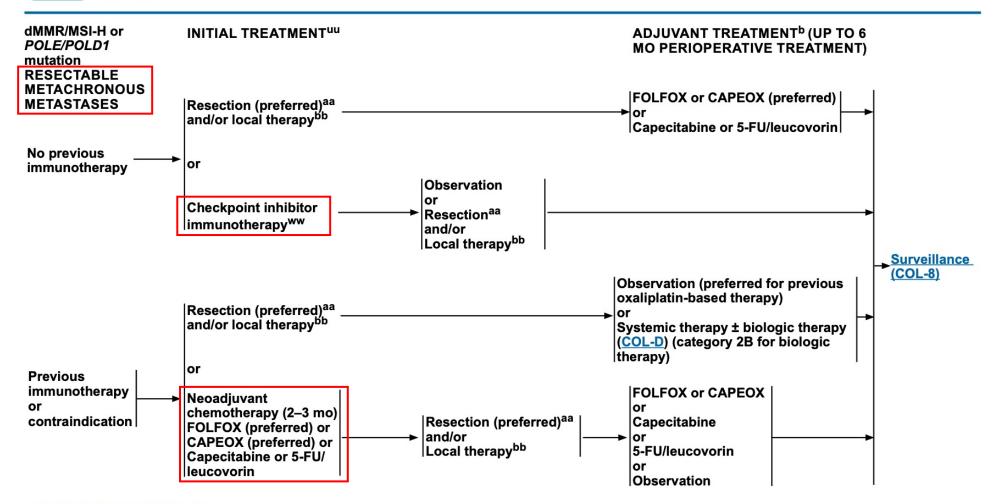

^{dd} An FDA-approved biosimilar is an appropriate substitute for bevacizumab.

- ^{ee} There are conflicting data regarding the use of FOLFOX + cetuximab in patients who have potentially resectable liver metastases.
- ^{ff} Cetuximab or panitumumab should only be used for left-sided tumors. The panel defines the left side of the colon as splenic flexure to rectum. Evidence suggests that patients with tumors originating on the right side of the colon (hepatic flexure through cecum) are unlikely to respond to cetuximab and panitumumab. Data on the response to cetuximab and panitumumab in patients with primary tumors originating in the transverse colon (hepatic flexure to splenic flexure) are lacking. ^{gg} Patients with *BRAF* mutations other than V600E may be considered for anti-EGFR therapy.
- ^{hh} Biologic therapy is only appropriate for continuation of favorable response from conversion therapy.

National Comprehensive NCCN Cancer

NCCN Guidelines Version 1.2024 pMMR/MSS Colon Cancer

pMMR – Unresectable – Metachronous Liver Metastasis


National Comprehensive

Network[®]

NCCN Cancer

sive NCCN Guidelines Version 1.2024 dMMR/MSI-H Colon Cancer

dMMR – Resectable – Metachronous Liver Metastasis

^bPrinciples of Imaging (COL-A).

- ^{aa} Hepatic artery infusion ± systemic 5-FU/leucovorin (category 2B) is also an option at institutions with experience in both the surgical and medical oncologic aspects of this procedure.
- ^{bb} Resection is preferred over locally ablative procedures (eg, image-guided thermal ablation or SBRT). However, these local techniques can be considered for liver or lung oligometastases (<u>COL-C</u> and <u>COL-E</u>).

^{uu} Patients with dMMR/MSI-H or POLE/POLD1 mutation disease who are not candidates for immunotherapy should be treated as recommended for pMMR/ MSS disease. See <u>NCCN Guidelines for Management of Immunotherapy-Related</u> <u>Toxicities</u>.

^{ww} Checkpoint Inhibitor therapy options include: nivolumab ± ipilimumab, pembrolizumab, or dostarlimab-gxly.

Disappearing CRLM

Chakedis J, Schmidt CR. Surgical Treatment of Metastatic Colorectal Cancer. Surg Oncol Clin N Am. 2018 Apr;27(2):377-399.

Disappearing CRLM Lesion

- Disappearing liver metastasis up to 37% (range 7-48%) in patients undergoing systemic treatment.
- The median time to CRLM disappearance = 5 mo. from chemotherapy initiation
- 90% of DLM occur by 9 mo.
- Dilemma : to resect or not

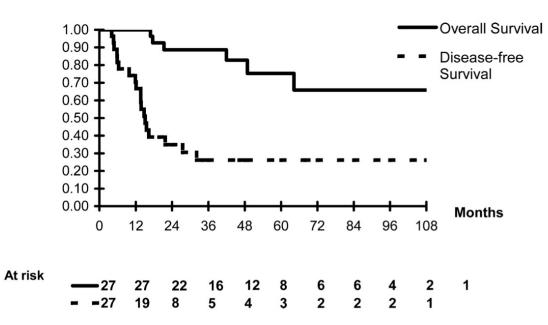
Disappearing CRLM Lesion

• MRI evaluation in all CRLM, especially with steatosis Fat suppressing techniques improve accuracy to detect DLM.

	Number of	dCRLM With Complete Response			Median Follow-up
	Patients	ст	MRI	+IOUS	(months)
<i>Radiology</i> . 2017;284(2): 423- 431	87	35%	78%	94%	12
<i>J Surg Oncol.</i> 2018;117(2): 191-197	20	59%	85%	86%	27
<i>HPB</i> . 2018;20(8): 708-714	59	51%	65%	92%	27

Predictive Factors for Disappearing CRLM Lesion

Table 1. Predictive factors of DLM and complete response. LM: liver metastasis, DLM: disappearing liver metastasis, RR: risk ratio; CEA: carcinoembryonic antigen; HAI: Hepatic arterial infusion; OR: Odd ratio.


Author (Year)	 Predictors Mean maximum size of LM at diagnosis (cm) (DLM: 2.2 ± 1.5 vs. no DLM: > 4.5) 					
Benoist (2006) [44]						
Adam (2008) [39]	 Age ≤ 60 years (RR = 4.1; p = 0.03) Size of LM at diagnosis ≤ 3 cm (RR = 3.1; p = 0.05) CEA level at diagnosis ≤ 30 ng/mL (RR = 5.6; p = 0.03) 					
Tanaka (2009) [41]	 Smaller size at diagnosis (mm) (DLM: 15.9 ± 14.3 vs. no DLM: 24.4 ± 22.3; <i>p</i> < 0.001) Fewer microscopic cancer deposits surrounding macroscopic tumors (%) (DLM: 21.7 vs. no DLM: 52.5%; <i>p</i> < 0.05) 					
Auer (2010) [38]	 HAI chemotherapy (OR 6.2; p = 0.02) Inability to observe LM on MRI (OR 4.7; p = 0.005) Normalization of CEA levels (OR 4.6; p = 0.006) 					
van Vledder (2010) [42]	 Smaller size of LM (cm) (DLM: 1.0 (0.3–3.5) vs. no DLM: 2.1 (0.4–16); <i>p</i> < 0.001) No. of cycles of preoperative chemotherapy (OR 1.18; <i>p</i> = 0.03) No. of LM at diagnosis >3 (OR 13.1; <i>p</i> < 0.001) 					
Ferrero (2012) [45]	• No. of cycles of preoperative chemotherapy (OR 0.231; <i>p</i> = 0.022)					
Owen (2015) [46]	 Synchronous LM (OR 11.25; p = 0.015) No. of LM at diagnosis (DLM: 14.5 (4–39) vs. no DLM: 3.5 (1–30); p < 0.001) 					
Kim (2016) [40]	• Mean size of LM at diagnosis (mm) (DLM: 6.8 ± 3.4 vs. no DLM: 9.33 ± 4.1 ; <i>p</i> < 0.001)					
Park (2017) [47]	• No. of LM at diagnosis (DLM: 6.0 ± 2.5 vs. no DLM: 4.1 ± 2.6; OR 1.390; <i>p</i> = 0.001)					
Tani (2018) [48]	 No. of LM [DLM: 14.5 (4–39) vs. no DLM: 3.5 (1–30); <i>p</i> < 0.0001] Smaller size of LM (cm) (DLM: 0.6 (0.4–2.0) vs. no DLM: 1.4 (0.3–13.0); <i>p</i> < 0.0001) Oxaliplatin-based chemotherapy (%) (DLM: 100% vs. no DLM: 75.8%; <i>p</i> = 0.017) 					
Oba (2018) [49]	• Median size of LM at diagnosis: 8 mm (range: 3–34 mm)					
Xu (2020) [43]	 Size of LM < 3 vs. >3 cm (OR: 20.542; <i>p</i> = 0.003) Preoperative CEA levels ≤ 20 vs. >20 ng/mL (OR: 7.656; <i>p</i> = 0.049) Primary T stage T1-2 vs. T3-4 (OR: 3.131; <i>p</i> = 0.018) Primary tumor location (right vs. left-sided) (OR: 2.808; <i>p</i> = 0.017) 					

F
Age ≤ 60 years
Size ≤ 3 cm
CEA at Dx ≤ 30 ng/ml / normal
Number of LM
Synchronous CRLM
Cycles of systemic therapy

Outcome of Watch and Wait vs. Resection

Patients Operated On for Initially Unresectable Colorectal Liver Metastases With Missing Metastases Experience a Favorable Long-Term Outcome

Diane Goèré, MD, Sébastien Gaujoux , MD, Frédéric Deschamp, MD, Frédéric Dumont, MD, Amine Souadka, MD, Clarisse Dromain, MD, Michel Ducreux, MD, PhD, and Dominique Elias, MD, PhD

FIGURE 1. Overall and disease-free survival of the 27 patients with missing CRLM left in the remnant liver after liver surgery.

5 years OS = 80% and DFS = 23% in DLM Median recurrence time 13.8 - 21 mo.

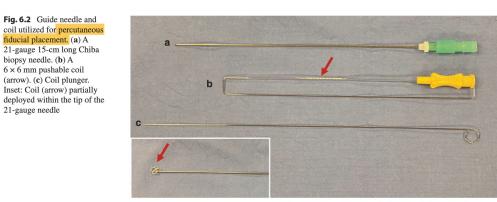
Table 23.3 Patient survival: resection of disappearing liver metastasesvs. no resection

Study	Lesions resected	Lesions left in-situ	Resection vs. no resection	
Elias 2007	-	3-year OS: 94%	-	
		3-year DFS: 64%	-	
Van Vledder 2010	1-, 3-, and 5-year OS: 93%, 59%, and 38%	1-, 3-, and 5-year OS: 94%, 64%, and 64%	Not significant	
	1- and 3-year DFS: 69% and 35%	1- and 3-year DFS: 40% and 16%	<i>p</i> = 0.04	
Tanaka 2009	Median OS: 53 months	Median OS: 63 months	Not significant	
	Median DFS: 22 months	Median DFS: 16 months	Not significant	
Goéré 2011		3- and 5-year OS: 87% and 80%		
	-	3- and 5-year DFS: 23% and 23%	-	
Owen 2016	Median DFS: 483 days	Median DFS: 360 days	Not significant	

DLM resection may benefit in terms of RFS

Time to Recurrence

Table 23.1 Outcomes of patients with disappearing liver metastases


	Patients				CPR/		Time to	Median		
	with DLM	Initial		DLM/	resected	CCR/DLM	recurrence	follow-up	DLM with	DLM with
Study	(%)	CRLM	DLM	patient	DLM	left in situ	(months)	(months)	CR	CR + IOUS
Benoist 2006	38 (7)	183	66	1.7	3/15	8/31	-	12	17%	24%
Elias 2007	16 (7)	134	69	4.3	n/a	10/16	-	50	-	
Auer 2010	39 (9)	166	118	3	44/68	31/50	Mean 21	41	64%	65%
Tanaka 2009	23 (37)	472	86	3.7	6/17	16/27	Median 14	44	69%	80%
Goéré 2011	27 (n/a)	523	96	3.6	n/a	18/27	Median 14	55	-	-
Van Vledder 2010	40 (24)	-	127	3.2	26/67	24/45	-	20	45%	54%
Ferrero 2012	33 (19)	624	67	2	22/57	4/10	Median < 12	-	39%	64%
Park 2017	87 (n/a)	393	CT 203	0.6	CT 47/168	CT 24/35	Median < 12	12	CT 35%	CT 69%
			MRI 55	(MRI)	MRI 28/39	MRI 15/16			MRI 78%	MRI 94%
Kim 2017	43 (31)	289	168	3.9	8/8	128/150	-	22	85%	-
Arita 2014	11 (15)	234	32	0.4	10/37	4/7	-	-	41%	IOUS 46%
										CE-IOUS 75%
Owen 2016	11 (48)	200	77	7	10/36	20/41	-	46	40%	-
Tani 2018	20 (24)	619	111	5.6	CT 54/78	CT 11/33	Median 8	27	CT 59%	86%
					MRI 24/29	MRI 16/18			MRI 85%	
Sturesson 2015	29 (16)	141	66	2.3	24/56	3/4	-	-	45%	96%
Oba 2018	59 (32)	764	275	4.7	103/233	36/42	-	27	CT 51%	92%
									MRI 65%	

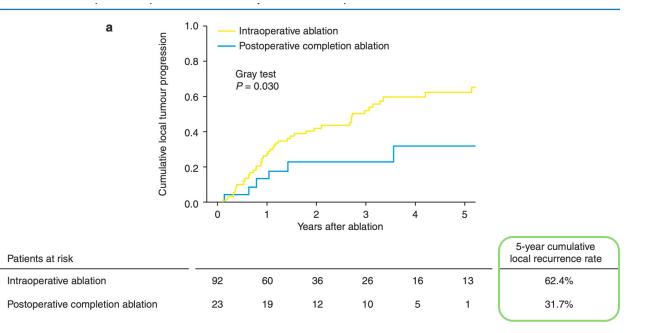
DLM disappearing liver metastases, CRLM colorectal liver metastases, CPR complete pathologic response, CCR complete clinical response, CR complete response, IOUS intraoperative ultrasound, CE-CT contrast-enhanced computed tomography, MRI magnetic resonance imaging, CE-IOUS contrast-enhanced intraoperative ultrasound

currence

Technique : Fiduary Markers and Complete Ablation

- Surgical planning to remove all lesion
- For deeply located small lesions → sequiential strategy : Planned incomplete resection and post-op ablation

- 0.018 in. fibered platinum coils of 4-6 mm.
- Limited streaking artifact on CT
- Easily identified by U/S
- MSKCC 2005-2015


 41 CLM mark with coil
 Treat with ablation 10
 Resection 31
 No LR during median F/U 14 mo

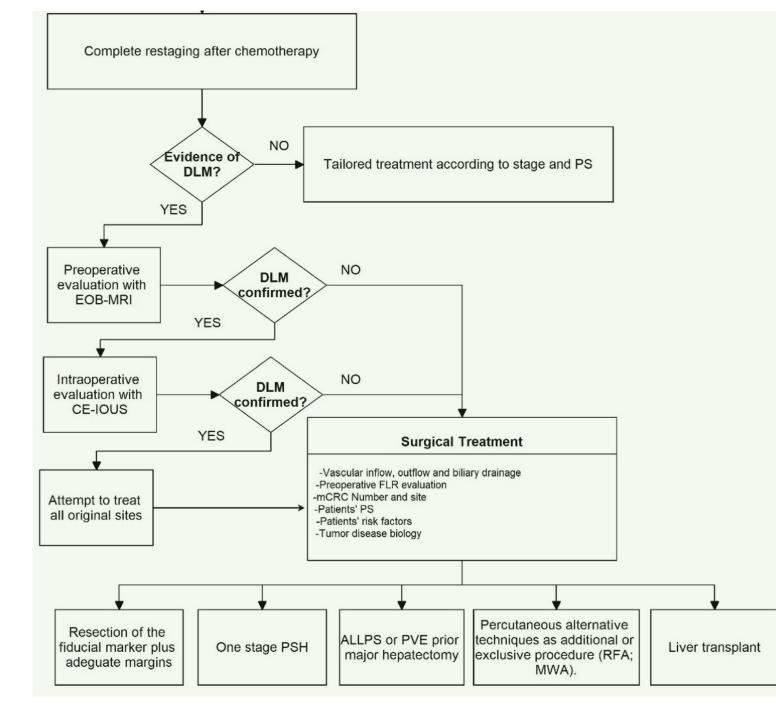
Passot, G., Odisio, B.C., Zorzi, D. et al. Eradication of Missing Liver Metastases After Fiducial Placement. J Gastrointest Surg 20, 1173–1178 (2016).

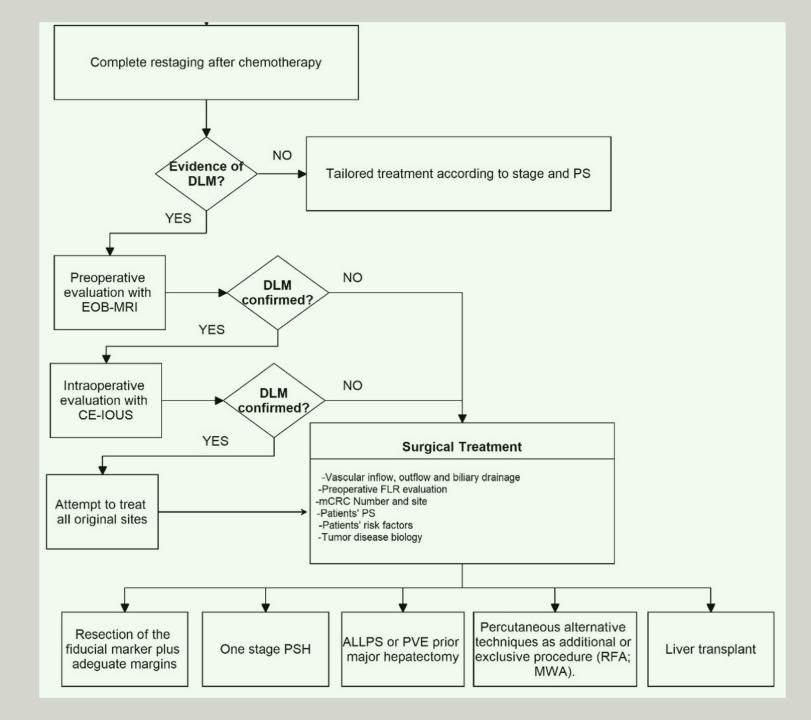
Okuno, M., Kawaguchi, Y., Odisio, B.C. (2022). Advanced Techniques in Multiple Metastases: Fiduciary Markers and Completion Ablation. In: Vauthey, JN., Kawaguchi, Y., Adam, R. (eds) Colorectal Liver Metastasis. Springer, Cham

Technique : Fiduary Markers and Complete Ablation

- Eligible for ablation ≤ 5 CRLM , largest < 3 cm.
- Result
 - Resection + post-op ablation complication 21% vs. intra-op ablation 48% (*p=0.033*)
 - Local tumor progression at the ablation site 31.7%
 - OS \rightarrow no difference

Diagnosis and Management Guide for DLM


Table 23.2Factors predisposingto the development of disappearingliver metastases


Smaller size (<2 cm) of liver metastases Greater number of liver metastases (≥3) Synchronous disease Greater number of chemotherapy cycles tolerated Platin-based chemotherapy **Table 23.4** Basic principles of disappearing liver metastases diagnosis and management

- DLM definition: Complete response (disappearance) of CRLM after chemotherapy on cross-sectional imaging studies
- Predisposing factors: Small size (<2 cm), increased number of chemotherapy cycles, oxaliplatin-based therapy, increased number of CRLM (≥3), synchronous CRLM
- Imaging: Baseline and preoperative MRI with IV contract (preferred)
- Pretreatment fiducial placement may guide identification of DLM during surgery
- HAI chemotherapy administration, young patients (<60 years) with an initially low CEA, and patients without detectable lesions on preoperative imaging have the highest chance of a pathologic complete response
- Intraoperative exploration with palpation and IOUS after full liver mobilization, especially in the absence of preoperative MRI
- Resection of all DLM sites is preferred as resection has been associated with lower intrahepatic recurrence
- Leaving DLM in-situ has been associated with a higher incidence of intrahepatic recurrence but not necessarily worse overall survival
- Treatment of patients with DLM should be guided by a multidisciplinary approach as treatment is highly individualized and may include surgical resection, additional systemic or local therapy, or close surveillance

DLM disappearing liver metastases, *CRLM* colorectal liver metastases, *CEA* carcinoembryonic antigen, *MRI* magnetic resonance imaging

Proposed Algorithm for Disappearing Lesion in CRLM

Conclusion

- Surgical management and techniques in CRLM
 - Planning of Liver resection or alternative local treatment
 - Avoiding hepatic insufficiency
 - Minimizing postoperative complication
- Overall survival of liver resection in CRLM patients change throughout the years along with the changes of systemic therapy, radiointervention and radiation therapy.
- Patients actually need a team of doctors to cure them MDT

THANK YOU