BASIC STATISTICS FOR CLINICAL RESEARCH

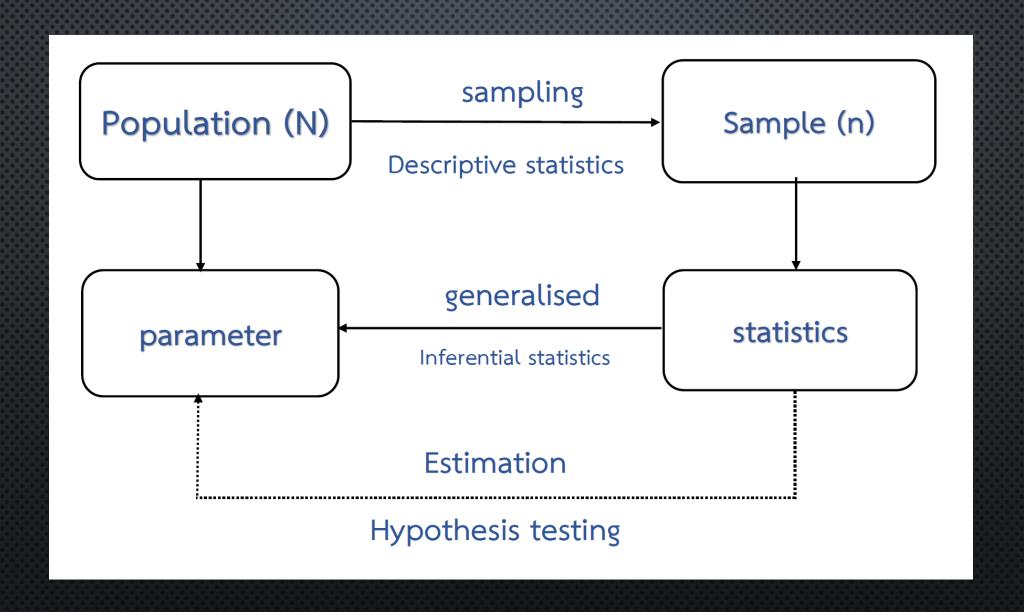
NAPAPHAT POPROM., Ph.D. IN CLINICAL EPIDEMIOLOGY

DEPARTMENT OF SURGERY, FACULTY OF MEDICINE,

RAMATHIBODI HOSPITAL, MAHIDOL UNIVERSITY

OUTLINE

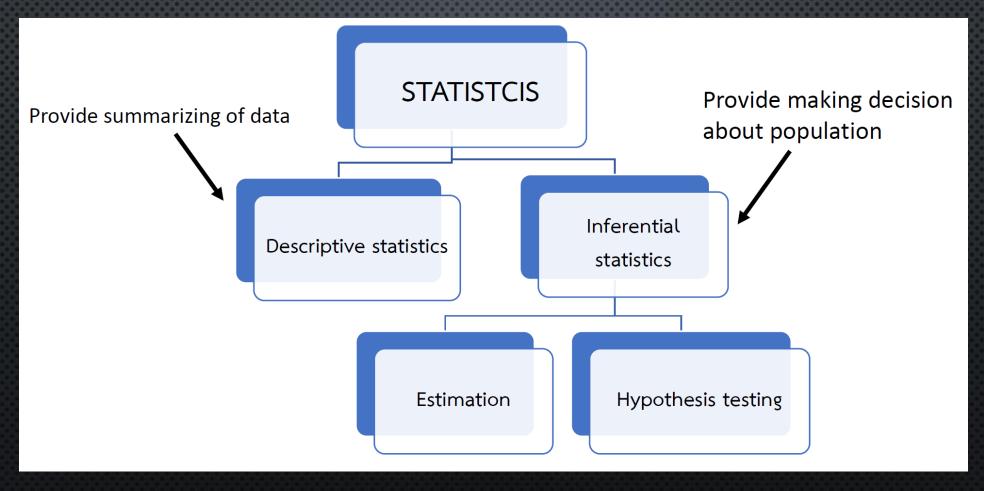
- INTRODUCTION TO STATISTICS
- TYPES OF DATA AND MEASUREMENT.
- TYPES STATISTICS AND HYPOTHESIS
- SELECTION OF STATISTICS

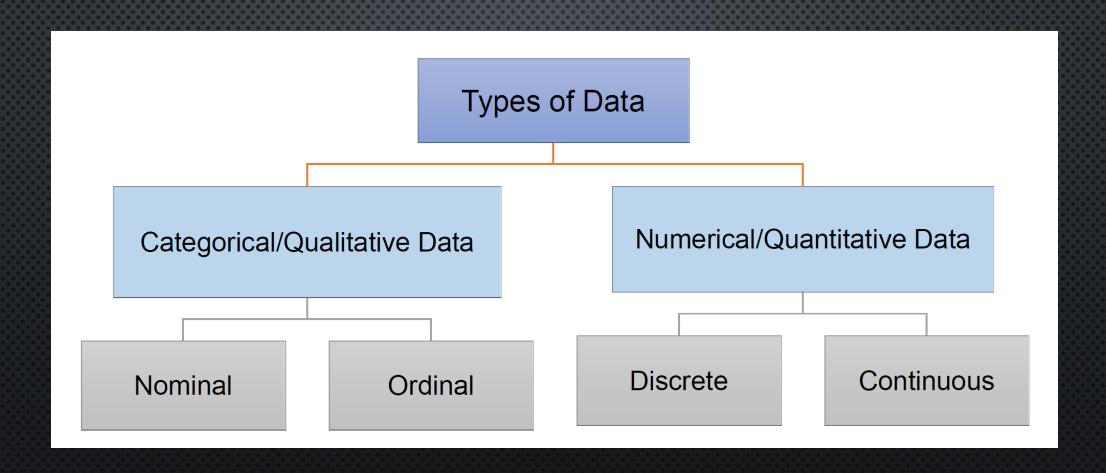

INTRODUCTION TO STATISTICS

Statistics consists of the principles and methods for

- Collecting data
- Analysing data
- Interpreting and explaining results
- Presenting data
- Making decision

DEFINITION: POPULATION AND SAMPLE


- **POPULATION** THE COLLECTION OF ALL INDIVIDUALS OR ITEMS UNDER CONSIDERATION IN A STATISTICAL STUDY
- **SAMPLE** THE PART OF THE POPULATION FROM WHICH INFORMATION IS COLLECTED


EXAMPLE

	Parameter	statistics
Mean	μ	$\overline{\mathbf{X}}$
Standard deviation	σ	S
Variance	σ^2	s^2
Proportion	π	Р

DESCRIPTIVE AND INFERENTIAL STATISTICS

TYPE OF DATA

LEVEL OF MEASUREMENT

CATEGORICAL DATA

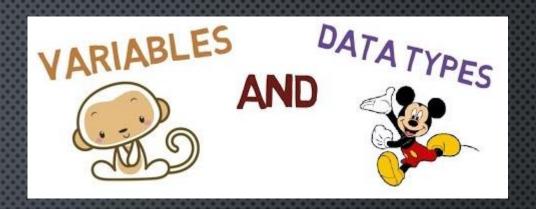
- Nominal scale
 - ❖BLOOD GROUPS: A/B/AB/O
 - Sex: Male/Female -> BINARY OR DICHOTOMOUS
- ORDINAL SCALE
 - ❖STAGING SYSTEMS FOR CANCERS: STAGE I/II/III/IV
 - ❖ DEGREES OF INJURIES: MILD/MODERATE/SEVERE

Clinical Patho Clinical_o~s Operation Gender Age Patho_others Staging_T Staging_N Size R Hos_stay DOO juandice AmpulCA 2.5 Whipple male 3 0 0 13 6/16/2017 ABDdisc CP 5 PPPD male other 0 0 0 7/27/2017 juandice female **PAcancer** 3 0 3.5 0 11 8/28/2017 PPPD 0 male 52 ABDdisc **PAcancer** 3 13 1 11/3/2017 Whipple female juandice **PAcancer** 3 2 4 1 37 11/15/2017 Whipple male incidental **PNET** 3 0 6 0 11/24/2017 Whipple female weightloss **PAcancer** 0 1.2 0 11 1/5/2018 PPPD female juandice **PAcancer** 2 0 2.5 0 37 8/28/2019 Whipple male juandice **PAcancer** 2 2 3 0 12 12/12/2018 Whipple juandice AmpulCA 2 0 1.2 0 9 11/23/2018 Whipple male juandice DuoCA 2 0 4.5 0 16 9/10/2018 Whipple male Whipple juandice **PAcancer** 0 4 0 37 8/29/2018 male female juandice CHOca 3 0 1 0 8/7/2018 **PPPD** 19 male juandice **PAcancer** 0 8.6 0 11 7/6/2018 Whipple female 57 other GI Bleed **PNET** 3 0 4.6 0 10 7/3/2018 PPPD 62 other Fever AmpulCA 3 1 3.2 0 6/18/2018 **PPPD** male 13 juandice **PAcancer** 3 0 3.5 1 5/17/2018 **PPPD** female 12 Whipple female ABDdisc 1 2.8 1 5/3/2018 **PAcancer** 14 Whipple male weightloss **PAcancer** 2 1 4.5 0 4/27/2018 female 67 other Steatorlea **PAcancer** 2 0 4 0 10 3/13/2018 Whipple Whipple juandice 3 0 5.4 0 12 2/20/2018 female **PAcancer** Whipple ABDdisc 1 3.4 1/31/2018 female **PAcancer** 1 Whipple juandice chronic pancreatitis 0 0 0 0 1/24/2018 male other male juandice other villous adenoma 0 0 2.1 0 32 6/22/2017 PPPD ABDdisc 1b 0 5 0 8/3/2017 **PPPD** female 58 AmpulCA 44 juandice AmpulCA 2 0 2.6 0 7/13/2017 **PPPD** male 21 weightloss AmpulCA 2 0 1.9 0 7/11/2017 **PPPD** female 16 juandice Inflamation 0 8.5 9/4/2017 **PPPD** male other 0 0 10 male juandice **PAcancer** 2 1 2.2 1 9/20/2017 Whipple 12 2 2.5 0 **PPPD** juandice AmpulCA 27 3/30/2017 female 63 juandice CHOca 1 2.5 0 3/22/2017 Whinple

LEVEL OF MEASUREMENT

NUMERICAL DATA

- INTERVAL SCALE
 - ❖ When distance between attributes has meaning, for example, temperature (in Fahrenheit) -- distance from 30-40 is same as distance from 70-80 : Example temperature, IQ, Score
- RATIO SCALE
 - ♦ HAS AN ABSOLUTE ZERO THAT IS MEANINGFUL
 - THE VALUES CAN BE OPERATED
 - * EXAMPLE WEIGHT, HEIGHT, THE NUMBER OF CLIENTS


LEVEL OF MEASUREMENT

NUMERICAL DATA

- DISCRETE DATA
 - * NUMBER OF HEART BEATS PER MINUTE
 - DURATION OF HOSPITAL STAY
- CONTINUOUS DATA
 - CREATININE LEVEL (MG/DL)
 - ❖ CHOLESTEROL LEVEL (MG/DL)

	вмі	Pancre_duct	Panc_risk	Anastomosis	Stent_place	Omental	Weight	Height	ASA	Blood_loss	Optime	Pan_fistula	Grade
1	22.84	5	low	1	1	2	64	167.4	3	250	420	no	
2	17.36	10	low	2	2	1	45	161	2	100	345	no	
3	17.67	8	low	2	0	2	43	156	3	250	375	no	
4	20.81	10	low	1	0	2	63	174	2	2200	660	no	
5	22.15	6	low	1	1	1	56	159	3	1200	510	yes	
6	26.08	8	low	1	0	2	71	165	3	1700	630	no	
7	18.67	7	low	1	0	1	42	150	2	300	345	no	
8	29.48	5	low	2	0	1	69	153	2	3000	565	no	
9	22.41	5	low	1	1	1	61	165	3	400	345	no	
10	19.60	5	low	1	0	1	54	166	3	800	420	no	
11	18.37	3	low	1	1	1	50	165	3	2500	695	no	
12	22.06	5	low	1	1	2	69.9	178	2	2200	460	no	
13	22.89	4	low	1	1	2	55	155	2	200	385	yes	
14	22.48	15	low	1	0	2	54	155	2	700	490	no	
15	23.44	6	low	1	1	1	63.5	164.6	3	800	630	no	
16	30.36	8	low	1	9	2	85.7	168	3	700	665	no	
17	18.52	5	low	1	2	2	48	161	2	2200	690	no	
18	18.63	5	low	1	2	2	47.1	159	1	500	420	no	
19	21.19	6	low	1	0	2	59.1	167	3	2200	580	no	
20	22.94	10	low	1	0	2	53.7	153	2	100	330	no	
21	23.20	5	low	1	1	2	54.3	153	2	400	570	no	
22	24.46	4	low	3	1	2	58	154	2	500	305	no	
23	22.58	5	low	1	1	2	60	163	2	1600	390	no	
24	22.21	3	moderate	2	2	1	59	163	2	800	480	no	
25	22.43	5	moderate	2	2	1	56	158	3	150	510	yes	
26	20.70	4	moderate	2	2	1	53	160	3	500	490	no	
27	17.98	4	moderate	1	0	1	41	151	3	800	540	no	
28	27.70	3	moderate	2	1	1	81	171	2	1000	490	no	
29	19.20	3	moderate	1	1	2	51	163	3	1000	350	no	
30	35.09	4	moderate	2	2	1	80	151	3	800	480	no	
31	24.61	4	moderate	4	1	2	63	160	2	800	390	yes	
323	1.9.96/	3	moderate	2	2	1	44.9	150	2	500	489	no	

- ตัวแปร (VARIABLE) เป็นคุณลักษณะด้านต่างๆ ของสิ่งที่ต้องการศึกษา ซึ่งแบ่งเป็น 2
- ประเภท คือ
 - ตัวแปรตาม (DEPENDENT VARIABLE OR OUTCOME VARIABLE)
 - ตัวแปรอิสระ (INDEPENDENT VARIABLE OR FACTOR VARIABLE)

Predictors of surgical site infection after pancreaticoduodenectomy

Wikran Suragul^{*}, Narongsak Rungsakulkij, Watoo Vassanasiri, Pongsatorn Tangtawee, Paramin Muangkaew, Somkit Mingphruedhi and Suraida Aeesoa

Suragul et al. BMC Gastroenterology

(2020) 20:201

Page 2 of 10

infection that occurs within 30 or 90 days postoperatively (depending on the type of surgery) that involves the skin or subcutaneous tissue of the incisional region, deep soft tissues (e.g., fascial and muscle layers), or any part of the anatomy (e.g., organs or spaces) other than the incision that was opened or manipulated intraoperatively [6].

The factors identified in previous studies as risk factors for SSI after PD include preoperative biliary drainage [2, 7], pancreatic fistula [8], a high body mass index (BMI) [8], diabetes mellitus [7], blood transfusion [9], malnutrition, and a low serum albumin level [10–12]. As previous studies have revealed varying results, the primary aim of the present study was to identify the factors associated with SSI after PD, and the secondary aim was to identify adverse outcomes related to SSI after PD.

Methods

Patients and data collection

A single-centre retrospective study was conducted. The data from 280 patients who underwent PD at Ramathibodi Hospital from 2010 to 2018 were retrospectively reviewed. The demographic and clinical data collected included age, sex, comorbidity, BMI, American Society of Anesthesiology classification, history of smoking, preoperative biliary drainage, preoperative laboratory test results, duration of surgery, blood loss, perioperative

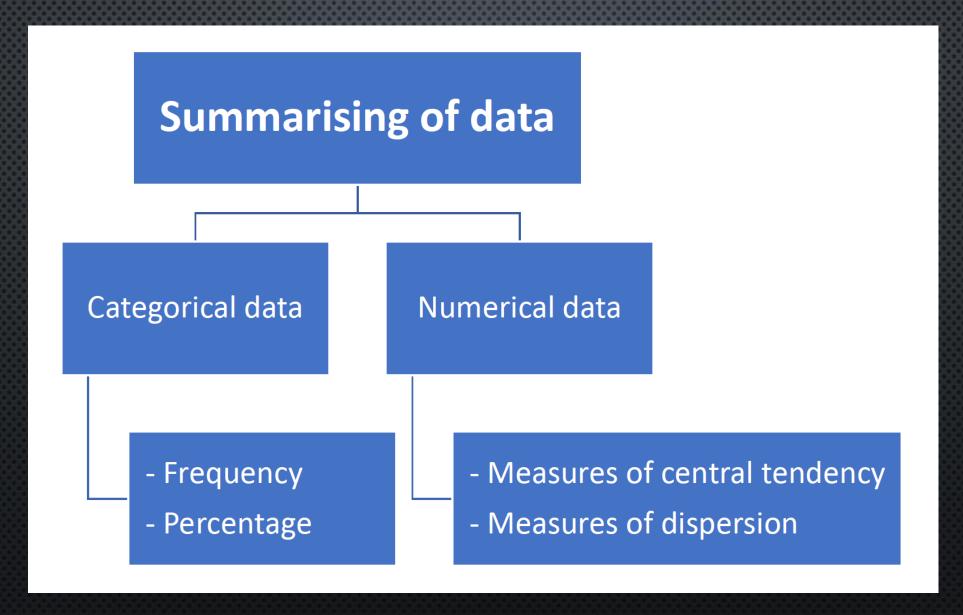
bacterium in all patients who developed clinical cholangitis, and antibiotics were prescribed based on the bacterial culture results. The biliary stents or percutaneous catheters were changed in the patients who developed cholangitis after PBD. Oral nutritional supplements were given to the malnourished patients. All patients washed their body and hair with chlorhexidine soap (4% chlorhexidine gluconate) in the evening on the day before the

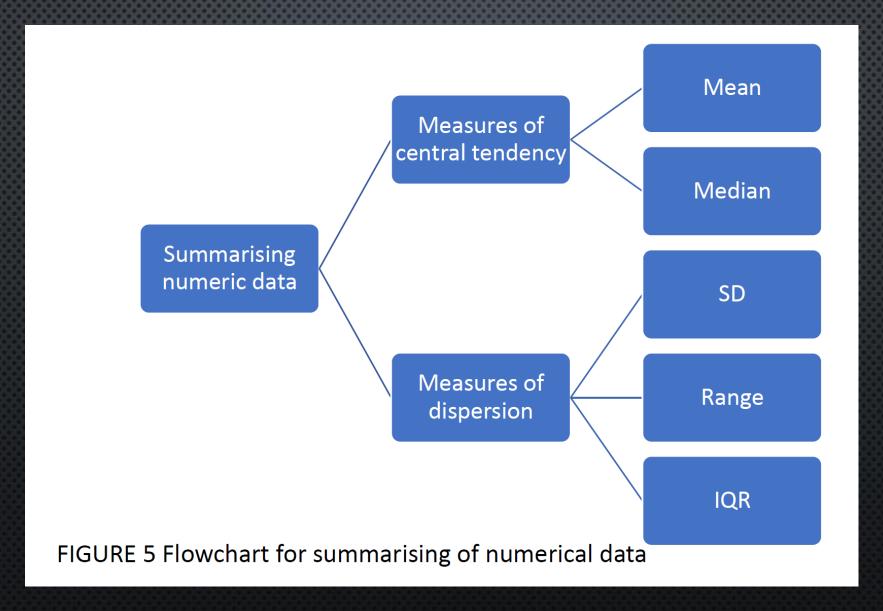
remov to the with chlorh iodine

used a

operati

Independent variables = factors


Dependent variable = SSI


ance with the protocol of Ramathibodi Hospital.

The surgical procedure comprised either pyloruspreserving PD or standard PD. The pancreaticojejunostomy anastomoses were created using both the duct-tomucosa and the invagination techniques. Pancreatic duct stents were used in all cases, and the size of the stent was adjusted based on the diameter of the pancreatic duct. Prophylactic drains were routinely placed anterior to the pancreaticojejunostomy anastomosis and posterior to the hepaticojejunostomy anastomosis. Two types of drains, a tube drain and a closed-suction drain, were

DESCRIPTIVE STATISTICS

- SUMMARISING CATEGORICAL DATA
- SUMMARISING CONTINUOUS DATA

MEASURES OF CENTRAL TENDENCY

Measure of central tendency is a number which indicates the middle of the distribution of data

- Mainly used measures are
 - ❖ Mean
 - * Median
 - **❖** Mode

MEASURES OF CENTRAL TENDENCY

Mean is average of all numbers

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Example

- Mean of 2, 4, 6, 8, 10 is
- (2+4+6+8+10)/5 = 6

MEASURES OF CENTRAL TENDENCY

MEDIAN IS THE MIDDLE VALUE IN THE LIST AFTER SORTING THE LIST

EXAMPLE:

- MEDIAN OF 2, 8, 6, 10, 4 is
- 2, 4, 6, 8, 10 (SORTED LIST)

Mode is number that occur most frequently.

EXAMPLE:

- MODE OF 2, 8, 6, 10, 4, 6 is
- 2, 4, 6, 6, 8, 10 (SORTED LIST)

- STANDARD DEVIATION IS A SQUARE ROOT OF THE VARIANCE.
- The standard deviation is denoted by SD.
- THE LARGER VALUE OF THE STANDARD DEVIATION INDICATES A GREATER AMOUNT OF VARIATION.

$$sd = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Slide 23/99

Standard deviation:

Example:

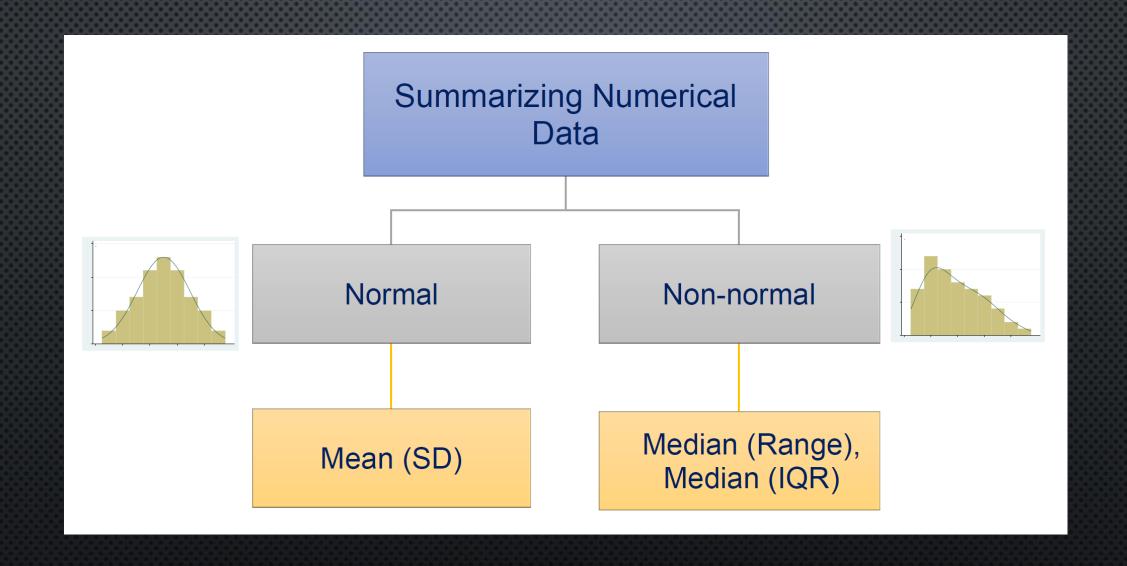
$$\bar{x} = (2+6+4+8)/4 = 5$$

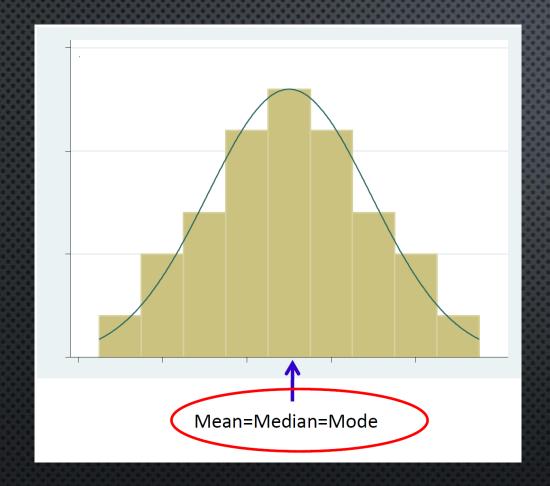
•
$$(x-\bar{x})_2$$

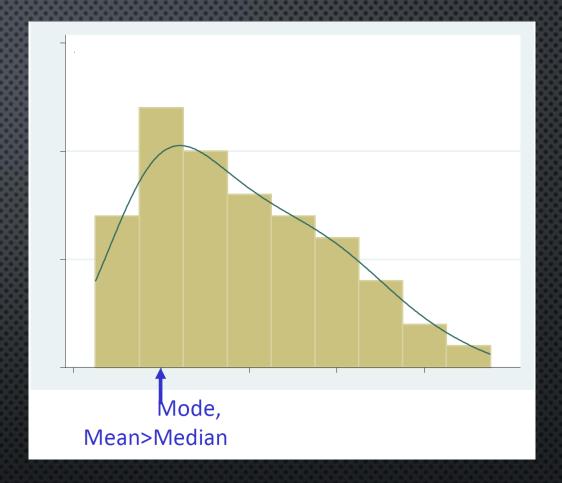
•
$$(x - \bar{x})^2 = 9 + 1 + 1 + 9 = 20$$

•
$$(n-1)=(4-1)=3$$

•
$$Sqrt(20/3)=2.58$$

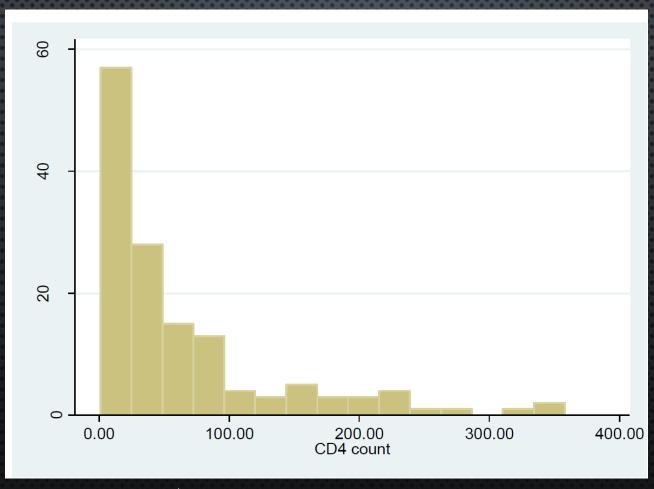

RANGE IS DIFFERENCE BETWEEN THE LOWEST AND HIGHEST OBSERVATIONS.

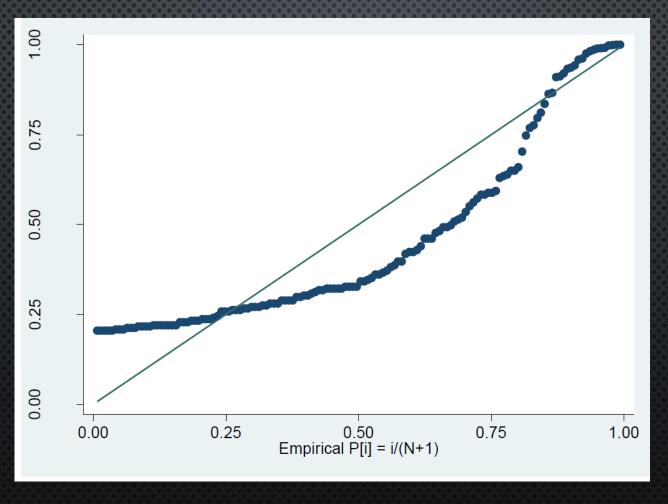

EXAMPLE:


- RANGE OF 2, 8, 5, 6, 6, 4
- HIGHEST (8)-LOWEST(2) = 6

INTERQUARTILE RANGE (IQR)

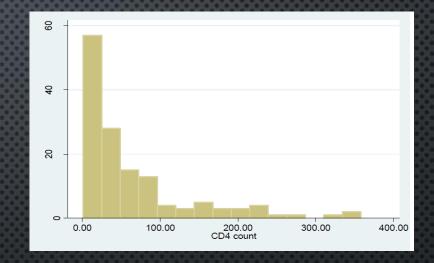
- THE DIFFERENCE BETWEEN Q1 AND Q3
 - Q1 is the 25th percentile
 - Q3 is the 75th percentile




CHECKING FOR NORMAL DISTRIBUTION

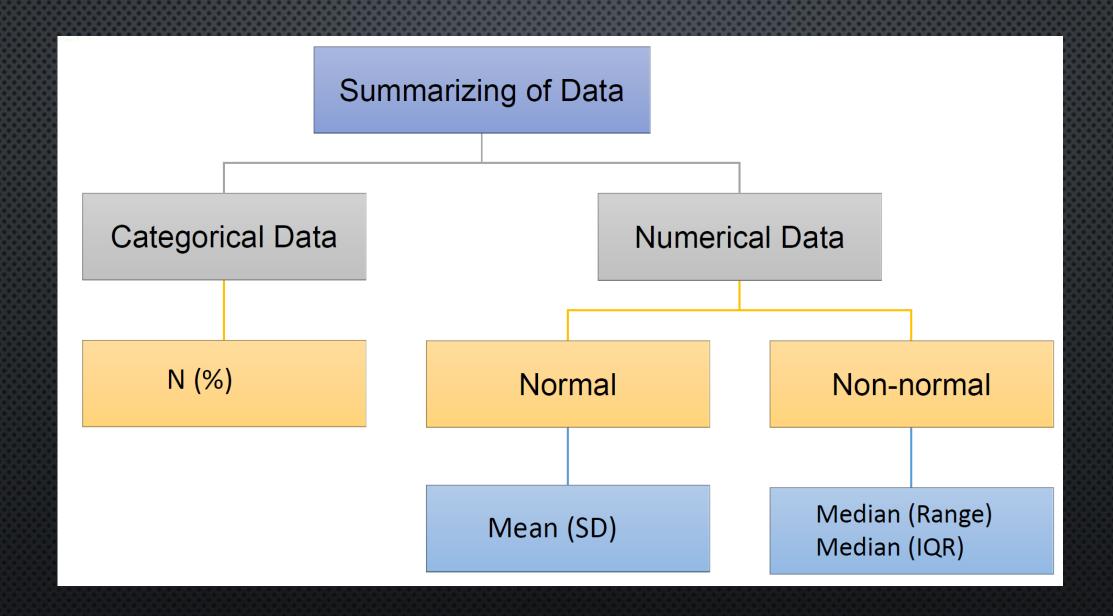
- CONSTRUCT THE HISTOGRAM
- CONSTRUCT THE NORMAL PROBABILITY PLOT
- COMPARE MEAN AND MEDIAN
- COMPARE MEAN AND STANDARD DEVIATION

HISTOGRAM


NORMAL PROBABILITY PLOT

COMPARE MEAN AND MEDIAN

FOR CD4 COUNT DATA:


- THE MEAN IS 62.4
- THE MEDIAN IS 30.5

THEREFORE, THE DISTRIBUTION OF THE CD4 COUNT DATA IS SKEWED TO THE RIGHT BECAUSE THE MEAN IS GREATER THAN THE MEDIAN.

SUMMARIZING OF NUMERICAL DATA

Characteristics	Mean (SD)
Age (year)	49.6 (14.3)
Weight (kg)	95.6 (21.7)
Height (cm)	171.5 (9.2)
BMI	32.5 (7.1)
CD4 count	62.4 (74.4)

INFERENTIAL STATISTICS

- Parameter estimation
- Hypothesis testing

PARAMETER ESTIMATION

POINT ESTIMATE

• SINGLE VALUE WHICH IS CALCULATE FROM A SAMPLE

INTERVAL ESTIMATE

- CONFIDENCE INTERVAL IS CALCULATED AROUND A POINT ESTIMATE, WHICH CONTAINS THE TRUE POPULATION PARAMETER
- THE CONFIDENCE LEVEL IS DEFINED AS 100(1-A)%, WHERE A IS THE LEVEL OF SIGNIFICANCE

HYPOTHESIS TESTING

- Type of hypothesis testing
- Type of error
- TEST STATISTICS
- THE P VALUE
- STEPS OF HYPOTHESIS TESTING

HYPOTHESIS TESTING

การทดสอบสมมติฐาน คือ การทดสอบข้อสมมติ (Assumption) ซึ่งอาจจะเป็นจริงหรือไม่เป็นจริงก็ได้ (type I and II error)

		In the population			
		H_0 is true	H_0 is false		
Statistical decision based on sample	Reject H_0	lpha (Type I error)	1-eta (power of test)		
	Do not Reject H_0	1-lpha (Confidense)	β (Type II error)		

แนวความคิดในการทดสอบสมมติฐาน

- เพื่อนำไปสู่การตัดสินและการสรุปผลโดยตั้งอยู่บนพื้นฐานของหลักฐานที่ได้จากการสุ่มตัวอย่าง
- การตัดสินบนกลุ่มตัวอย่างอาจจะมีความผิดพลาด (ERROR) เกิดขึ้นได้
 - TYPE I ERROR OR lpha ERROR คือ โอกาสที่ผลการศึกษาจะปฏิเสธความจริง
 - Type II error or β error คือ โอกาสที่ผลการศึกษาจะยอมรับสิ่งที่ไม่ใช่

ความจริง		Actual condition in	the population
		without disease	with diseaase
Statistical decision	Positive	lpha (false positive)	1-eta (true positive/ sensitivity)
based on sample Basic Statistics for Clinical Research : อ.ตร.กมปกับ โพธ์พรหม (24	_{1/10/64} Negative	$1-\alpha \label{eq:continuous}$ (true negative/specificity)	eta (false negative)

TYPE OF HYPOTHESES

A NULL HYPOTHESIS

- HO
 - A POPULATION PARAMETER IS ASSUMED TO BE TRUE OR THERE IS NO DIFFERENCE BETWEEN GROUPS

AN ALTERNATIVE HYPOTHESIS

- *HA*
 - IT IS OPPOSED TO A NULL HYPOTHESIS

EXAMPLE

- H_0 : the mean birth weight of live born infants who were delivered by mothers with low socioeconomics status **is equal to 3,000 grams** (μ =3,000 GRAMS)
- HA: the mean birth weight of live born infants who were delivered by mothers with low socioeconomics status **is different from 3,000 grams** ($\mu \neq 3,000$ GRAMS)

TYPE OF HYPOTHESES

- A one-tailed test
- Test for one direction of real difference
- Less than (<) or greater than (>)
- A two-tailed test
- Test for two directions of real difference
- Not equal to (≠)

TEST STATISTICS

- THE TEST IS COMPUTED FROM THE DATA OF THE SAMPLE
- THE TEST IS USED TO MAKE A DECISION ON WHETHER TO REJECT OR NOT REJECT THE NULL HYPOTHESIS
- GENERAL FORMULA

```
test statistic = observed statistics — hypothesized parameter standard error of the observed statistic
```

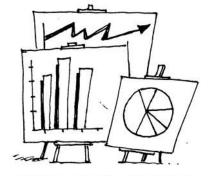
THE P VALUE

- THE P VALUE OBTAINING A SAMPLE OUTCOME IS COMPARED TO THE LEVEL OF SIGNIFICANCE.
 - ❖ IF THE P VALUE IS LESS THAN OR EQUAL TO A THEN THE NULL HYPOTHESIS IS REJECTED
 - ❖ IF THE P VALUE IS GREATER THAN A THEN THE NULL HYPOTHESIS IS FAILED TO REJECT.

STEPS OF HYPOTHESIS TESTING

- STEP 1 GENERATE THE NULL AND ALTERNATIVE HYPOTHESIS
- STEP 2 DETERMINE THE SIGNIFICANCE LEVEL
- STEP 3 SELECT AN APPROPRIATE TEST STATISTICS
- STEP 4 CALCULATE THE TEST STATISTIC AND CORRESPONDING P VALUE
- STEP 5 DRAW A CONCLUSION

SELECT AN APPROPRIATE TEST STATISTICS

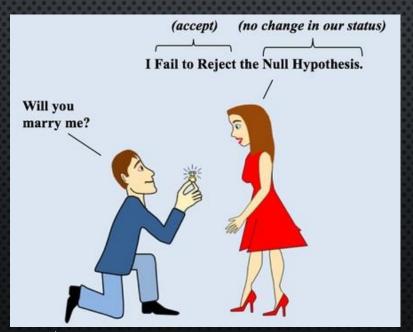

- วัตถุประสงค์การวิจัย
- ชนิดของข้อมูล
- จำนวนกลุ่มข้อมูล
- ความสัมพันธ์ของข้อมูลแต่ละกลุ่ม

การเลือกใช้สถิติสำหรับหาความสัมพันธ์ของงานวิจัยเชิงวิเคราะห์

ประเภทข้อมูลตัวแปรปัจจัย (Independent)	ประเภทข้อมูลตัวแปรผล (OUtcome)					
	Categorical	Continuous	Time to event			
Categorical 2 group	Chi square or Fisher's exact	Independent t test or Pairs t test	Cox proportional hazards regression			
Categorical >2 group	Chi square or Fisher's exact	ANOVA or Kruskal Wallis	Cox proportional hazards regression			
Continuous	Logistic regression	Pearson's correlation coefficient(r) or linear regression	Cox proportional hazards regression			

การเลือกใช้สถิติสำหรับหาปัจจัยเสี่ยงของการวิจัยเชิงวิเคราะห์

Trade data are useful for general trends and directions, not for their specific value.


@ Czinkota & Clark

ประเภทข้อมูลตัวแปรปัจจัย	ประเภทข้อมูลตัวแปรผล (OUtcome)				
	Categorical	Time to event			
Categorical 2 group or more group	OR, RR, logistic regression	HR, Cox proportional hazards regression			
Ordinal	OR, RR, logistic regression	HR, Cox proportional hazards regression			
Continuous	OR, RR, logistic regression	HR, Cox proportional hazards regression			

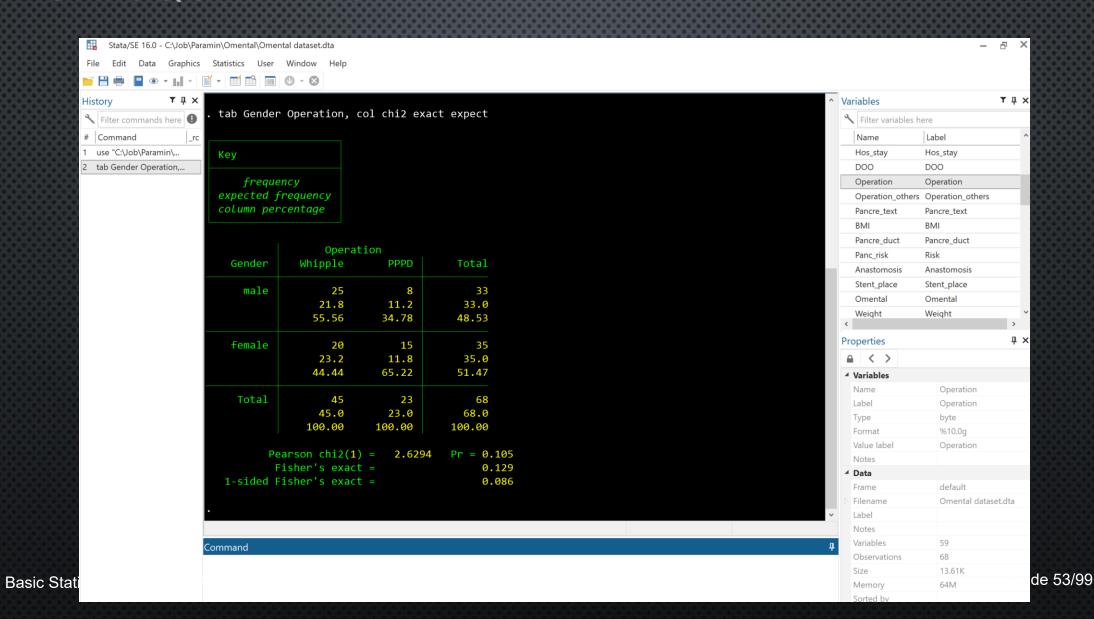
CATEGORICAL DATA

CHI-SQUARE TEST

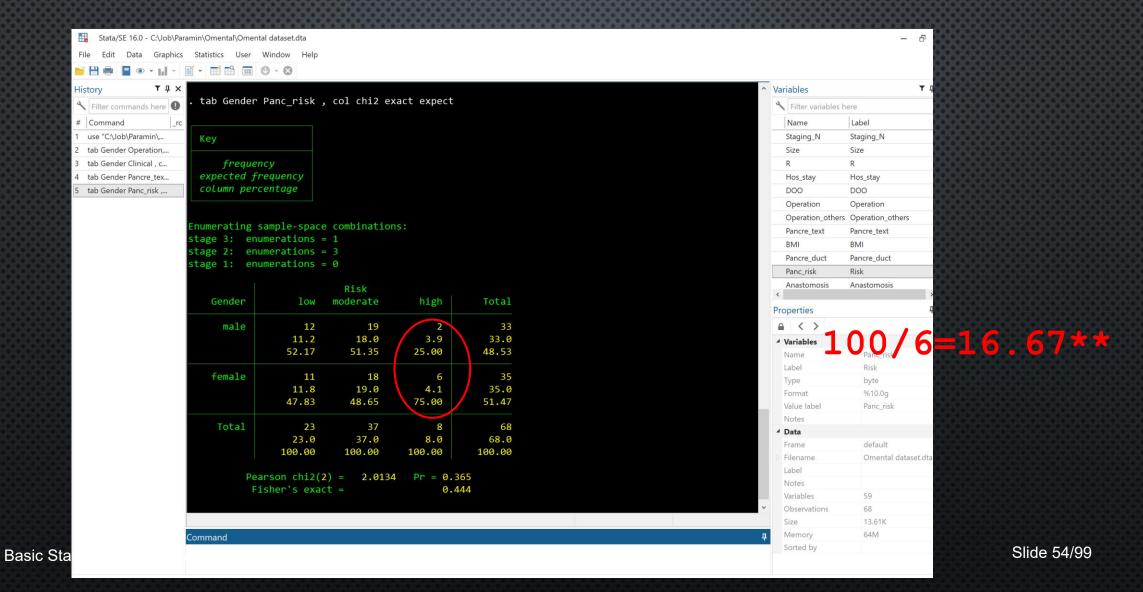
- ผู้ป่วยเพศหญิงและชาย มี**สัดส่วน**ของชนิดของการผ่าตัดแตกต่างกันหรือไม่

ข้อตกลงเบื้องต้นในการใช้ CHI-SQUARE TEST

- ประชากร 2 กลุ่มหรือมากกว่า และเป็นอิสระต่อกัน
- ข้อมูลเป็น CATEGORICAL DATA
- ค่าคาดหวัง (EXPECTED FREQUENCY) น้อยกว่า 5 ไม่เกิน 20% ของจำนวน CELL


ะ ทั้งหมด

*****ถ้าไม่เป็นไปตามข้อตกลงนี้ให้ใช้ FISHER'S EXACT TEST****


EXAMPLE

	Gender	Age	Clinical	Clinical_o~s	Patho	Patho_others	Staging_T	Staging_N	Size	R	Hos_stay	DOO	Operation	Ор
1	male	67	juandice	011111111111111111111111111111111111111	AmpulCA		3	0	2.5	. 0	13	6/16/2017		٦٠٦
	male	58	_		other	СР	9	0	5	0	27	7/27/2017		
1	female	79	juandice		PAcancer	Ci	3	9	3.5	0	11	8/28/2017		
	male	52	_		PAcancer		3	9	13	1	9			
	female	60	juandice		PAcancer		3		4	1		11/15/2017		-
	male	64	_		PNET		3	9	6	9		11/24/2017		RP
1	female	60			PAcancer		4	9	1.2	0	11	1/5/2018		KF
	female	53	juandice		PAcancer		2	0	2.5	0	37	8/28/2019		
	male	82	juandice		PAcancer		2	2	3	0		12/12/2018		
10	male		_											
16		58	juandice 		AmpulCA		2		1.2	0		11/23/2018		
11	male -	58	juandice		DuoCA		2	0	4.5	0	16	9/10/2018		
12	male	52	juandice		PAcancer		4	0	4	0	37	8/29/2018		
13	female	64	juandice		CHOca		3	0	1	0	19	8/7/2018		
14	male	54	juandice		PAcancer		4	0	8.6	0	11	7/6/2018		
15	female	57	other	GI Bleed	PNET		3	0	4.6	0	10	7/3/2018		
16	male	62	other	Fever	AmpulCA		3	1	3.2	0	13	6/18/2018	PPPD	
17	female	60	juandice		PAcancer		3	0	3.5	1	12	5/17/2018	PPPD	
18	female	57	ABDdisc		PAcancer		4	1	2.8	1	14	5/3/2018	Whipple	
19	male	59	weightloss		PAcancer		2	1	4.5	0	9	4/27/2018	Whipple	
26	female	67	other	Steatorlea	PAcancer		2	0	4	0	10	3/13/2018	Whipple	
21	female	62	juandice		PAcancer		3	0	5.4	0	12	2/20/2018	Whipple	
22	female	59	ABDdisc		PAcancer		4	1	3.4	1	9	1/31/2018	Whipple	
23	male	54	juandice		other	chronic pancreatitis	0	0	0	0	8	1/24/2018	Whipple	
24	male	46	juandice		other	villous adenoma	0	0	2.1	0	32	6/22/2017	PPPD	
25	female	58	ABDdisc		AmpulCA		1b	0	5	0	44	8/3/2017	PPPD	
26	male	75	juandice		AmpulCA		2	0	2.6	0	21	7/13/2017	PPPD	厂
В	SOID OIGHOU	os ioi oiiiii	Gal I NGOGAI	СП. ย.พ	n emnmana (7	47/10/0 4 /								

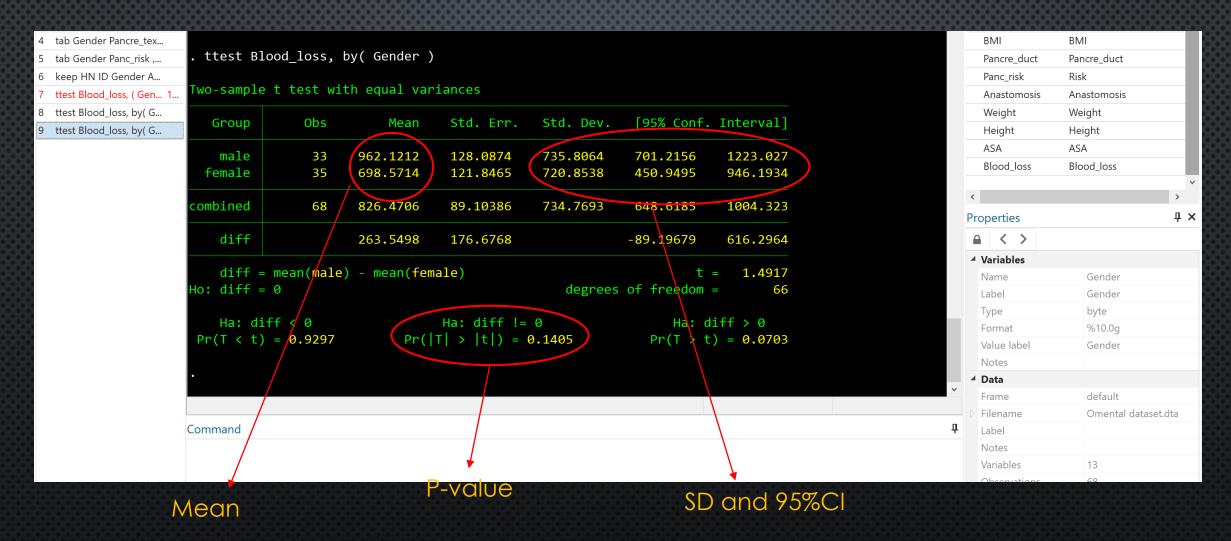
CHI-SQUARE TEST BY STATA

ASSUMPTION FAILURE

CONTINUOUS DATA


INDEPENDENT OR STUDENT T-TEST

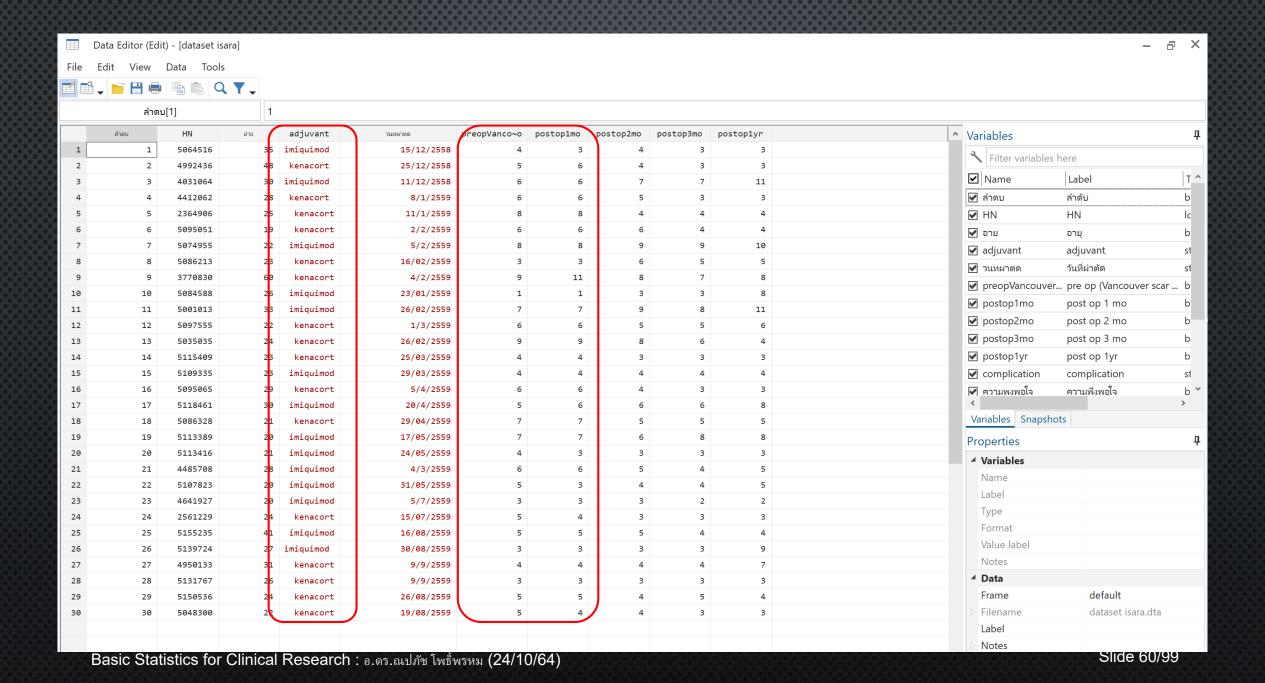
ข้อตกลงเบื้องต้น


- ประชากร 2 กลุ่ม ที่เป็นอิสระต่อกัน
- ข้อมูลเป็นแบบ CONTINUOUS DATA
- การกระจายเป็นแบบ NORMAL DISTRIBUTION

**ทากไม่เป็นไปตามข้อตกลงเบื้องต้นให้ใช้ MANN WHITNEY U TEST, WILCOXON

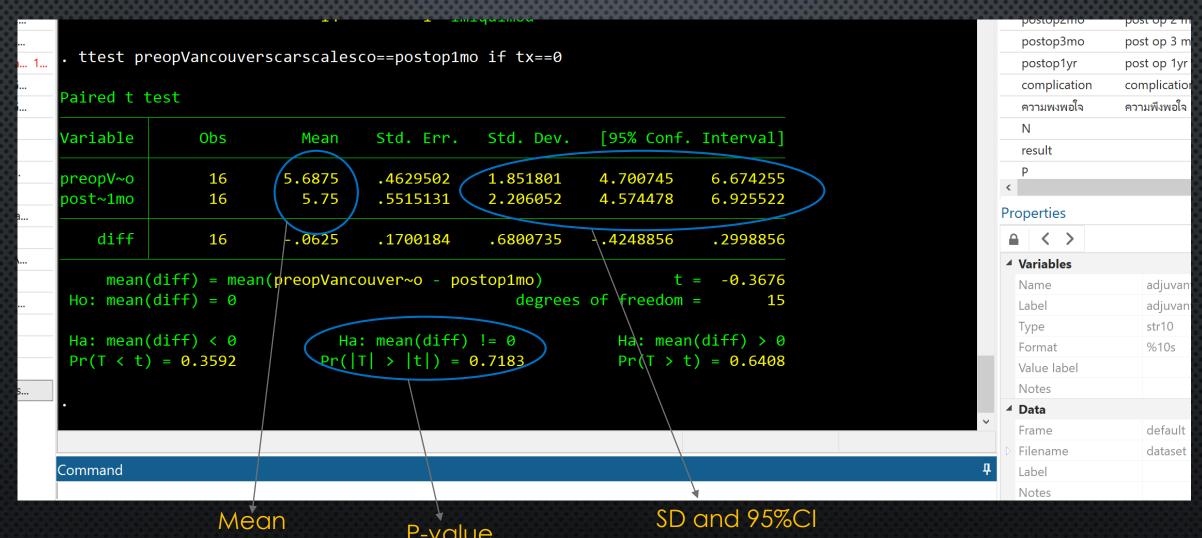
RANK SUM TEST**

ANALYSIS STUDENT T-TEST OUTPUT


PAIRED T-TEST

ข้อตกลงเบื้องต้น

- ประชากร 2 กลุ่ม ที่เป็นไม่อิสระต่อกัน
- ข้อมูลเป็นแบบ CONTINUOUS DATA
- การกระจายเป็นแบบ NORMAL DISTRIBUTION

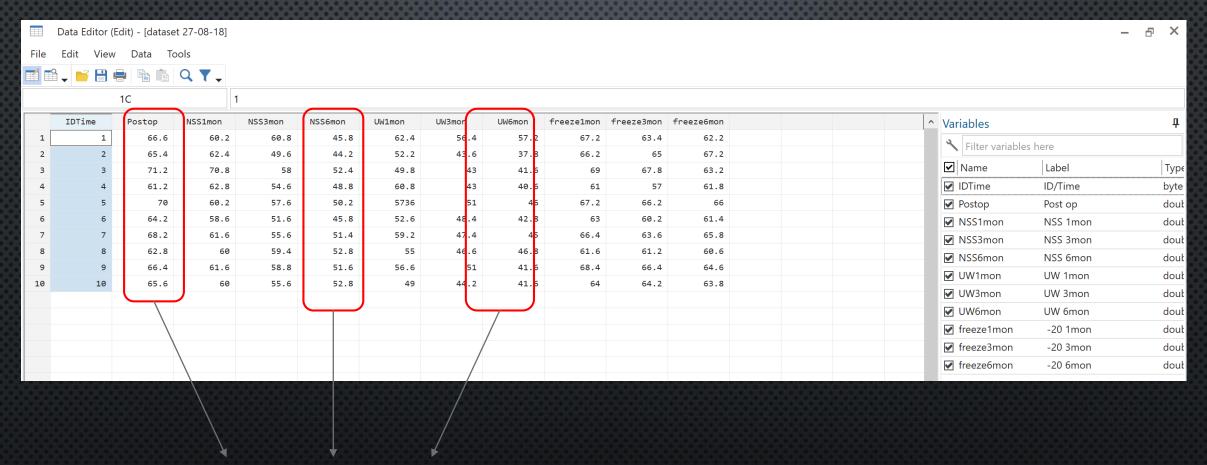

*****ทากไม่เป็นไปตามข้อตกลงเบื้องต้นให้ใช้ WILCOXON MATCHED SIGNED

RANKS TEST***

ANALYSIS OF PAIRED T-TEST OUTPUT

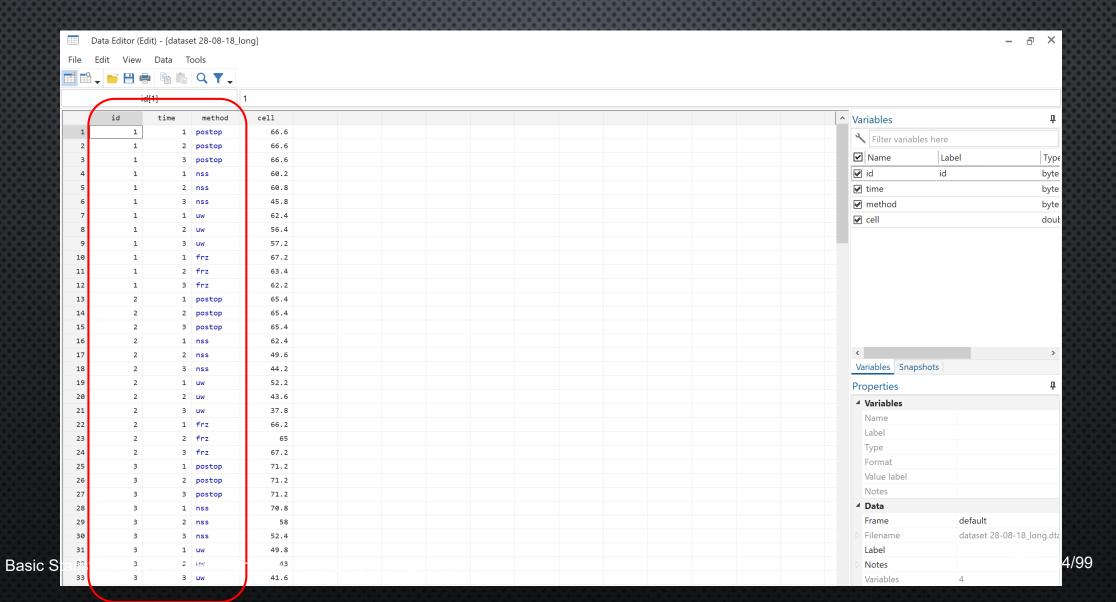
Basic Statistics for Clinical Research : อ.ดร.ณปภัช โพธิ์พรหม (24/10/64)

Slide 61/99

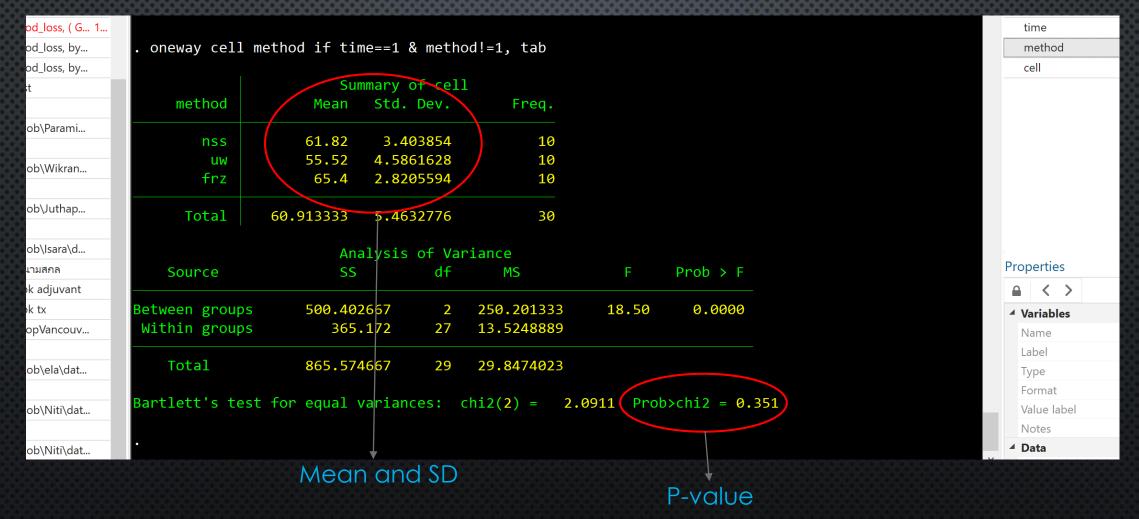

ANALYSIS OF VARIANCE (ANOVA)

ข้อตกลงเบื้องต้น

- ประชากรมากกว่า 2 กลุ่ม ที่เป็นอิสระต่อกัน
- ข้อมูลเป็นแบบ CONTINUOUS DATA
- การกระจายเป็นแบบ NORMAL DISTRIBUTION


หากไม่เป็นไปตามข้อตกลงเบื้องต้นให้ใช้ KRUSKAL WALLIS TEST

EXAMPLE



More than 2 comparisons

RESHAPE TO LONG FORMAT

ANALYSIS ANOVA OUTPUT

Basic Statistics for Clinical Research : อ.ดร.ณปภัช โพธิ์พรหม (24/10/64)

ปัจจัยเสี่ยงของการวิจัยเชิงวิเคราะห์ (RISK FACTORS ANALYSIS)

LOGISTIC REGRESSION

Asian Journal of Surgery 43 (2020) 913-918

Contents lists available at ScienceDirect

Asian Journal of Surgery

journal homepage: www.e-asianjournalsurgery.com

ORIGINAL ARTICLE

Outcomes of delayed endoscopic retrograde cholangiopancreatography in patients with acute biliary pancreatitis with cholangitis

Paramin Muangkaew ^a, Patarapong Kamalaporn ^b, Somkit Mingphruedhi ^a, Narongsak Rungsakulkij ^a, Wikran Suragul ^a, Watoo Vassanasiri ^a, Pongsatorn Tangtawee ^{a, *}

Outcome: Explored pre-operative factors associated with delayed ERCP.

ARTICLE INFO

Article history: Received 15 October 2019 Accepted 21 November 2019 Available online 6 January 2020

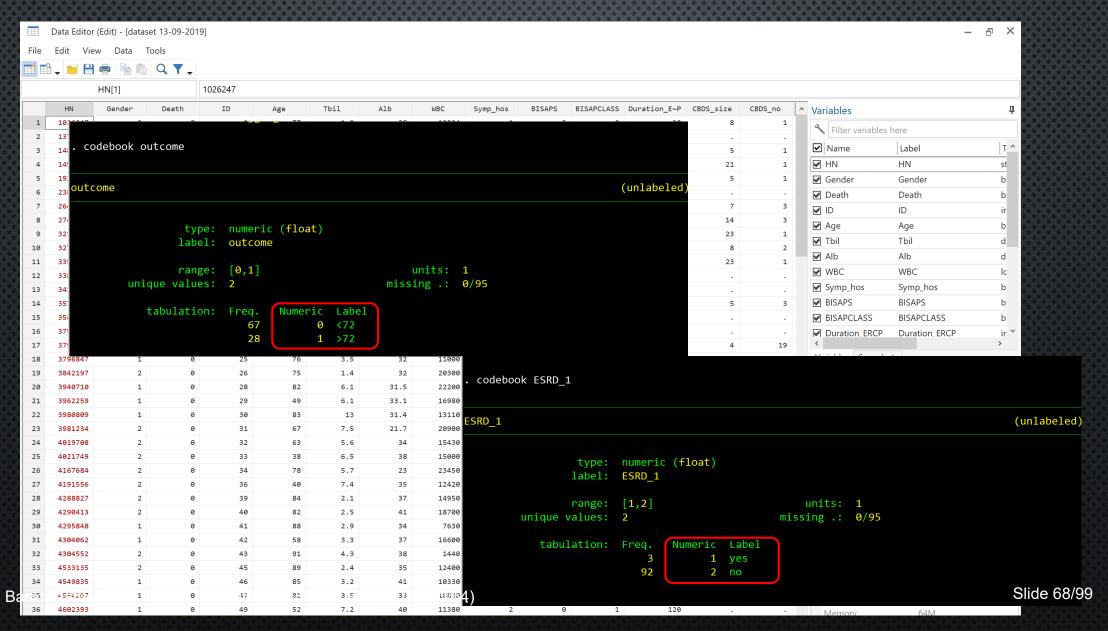
Keywords: Biliary pancreatitis Cholangitis Endoscopic retrograde cholangiopancreatography Gallstone pancreatitis

ABSTRACT

Objective: The recommended treatment for acute biliary pancreatitis(ABP) with cholangitis is urgent endoscopic retrograde cholangiopancreatography(ERCP). However, tight schedules in the endoscopy room mean that urgent ERCP may not always be performed. This study aimed to compare the outcomes of early (<72 h) and delayed(>72 h) ERCP in patients with ABP with cholangitis.

Methods: Ninety-five patients diagnosed with ABP with cholangitis who underwent ERCP between May 2012 and April 2018 were retrospectively reviewed.

Results: Sixty-seven patients (70.5%) were classified in the early ERCP and 28(29.5%) in the delayed ERCP groups. There was no significant difference in pancreatitis severity between the groups. Total bilirubin was higher in the early compared with the late ERCP group (5.7 \pm 5.2 versus 3.5 \pm 2.3 mg/dL, p = 0.03). Fewer patients in the early group had end-stage renal disease (0 versus 3, p = 0.006) and relatively fewer patients in the early group took aspirin (15(22.4%) versus 12(42.9%), p = 0.04). There were no significant differences between the early and delayed ERCP groups in terms of mortality (2(3.0%) versus 0), disease-related complications(11 (16.4%) versus 5(17.9%), p = 0.86), or ERCP-related complications(5(7.5%) versus 3(10.7%), p = 0.60). The total length of stay(LoS) was shorter in the early group(6.3 \pm 4.4 versus 9.8 \pm 6.1 days, p = 0.002). The rate of complete stone removal was lower in the early compared with the delayed ERCP group(32/42/76.2%) versus 18/18/100%), p = 0.02).


Conclusion: Delayed ERCP can be performed in selected patients with ABP with cholangitis, with similar complication rates but longer LoS compared with early ERCP.

© 2019 Asian Surgical Association and Taiwan Robotic Surgery Association. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

^a Department of Surgery, Hepato-Pancreato-Biliary Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand

b Department of Medicine, Hepatology and Gastroenterology Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand

EXAMPLE

ANALYSIS LOGISTIC REGRESSION OUTPUT

. logit o

Iteratior
Iteratior
Iteratior
Iteratior
Iteratior
Iteratior

Logistic

Log likel

outo

Tota]

>2

Note: _co

P. Muangkaew et al. / Asian Journal of Surgery 43 (2020) 913-918

915

Table 1Patient characteristics.

	Early ERCP \leq 72 h (N = 67)	Delayed ERCP > 72 h $(N = 28)$	p-value
Sex, N(%)			0.44
Male	32(47.8%)	11(39.3%)	
Female	35(52.2%)	17(60.7%)	
Age (years), mean ± SD	67.7 ± 16.3	66.3 ± 16.2	0.70
Body mass index (kg/m²), mean ± SD	25.9 ± 5.1	23.9 ± 3.4	0.05
Total bilirubin (mg/dL), mean \pm SD	5.7 ± 5.2	3.5 ± 2.3	0.03
Albumin (g/L), mean \pm SD	33.1 ± 5.8	33./ ± 4.6	0.67
Lipase (U/L), mean \pm SD	11709.7 ± 8275.8	11618.6 ± 9125.4	0.98
Amylase (U/L), mean \pm SD	1291.6 ± 1282.6	1560.6 ± 1883.3	0.59
WBC, mean ± SD	15630.6 ± 11997	14465.5 ± 5612	0.62
ASA, N(%)			0.23
Class I	1(1.5%)	0	
Class II	18(26.9%)	10(35.7%)	
Class III	33(49.3%)	8(28.6%)	
Class IV	15(22.4%)	10(35.7%)	
	15(22.4%)	10(33.7%)	
Underlying disease, N(%)			
Myocardial infarction/atrial fibrillation	10(14.9%)	6(21.4%)	0.44
End-stage renal disease	0	3(10.7%)	0.006
Diabetes mellitus	21(31.3%)	8(28.6%)	0.78
Other	15(22.4%)	5(17.9%)	0.62
Anti-platelet or anti-coagulant, N(%)			
Aspirin	15(22.4%)	12(42.9%)	0.04
Warfarin	2(3.0%)	2(7.1%)	0.35
Other	3(4.5%)	1(3.6%)	0.84
Pancreatitis severity, N(%)			0.80
	F1/7C 10/)	22(02.1%)	0.80
Mild	51(76.1%)	23(82.1%)	
Moderately severe	9(13.4%)	3(10.7%)	
Severe	7(10.4%)	2(7.1%)	
BISAP score, N(%)			0.24
<3	55(82.1%)	20(71.4%)	
≥3	12(17.9%)	8(28.6%)	
Duration from presenting symptom to hospital (day), mean ± SD	2.0 ± 2.0	2.5 ± 3.8	0.42
Duration from admission to ERCP (h), mean ± SD	42.1 ± 18.4	152.9 ± 92.4	< 0.001
Cholangitis criteria, N(%)			0.23
Definite cholangitis	53(79.1%)	25(89.3%)	0.23
Suspected cholangitis	14(20.9%)	3(10.7%)	
Pre-ERCP imaging, N(%)			0.36
Ultrasound	35(53.8%)	9(34.6%)	
Computed tomography	25(38.5%)	13(50.0%)	
MRCP	4(6.2%)	3(11.5%)	
Endoscopic ultrasound	1(1.5%)	1(3.8%)	
Presence of choledocholithiasis by imaging, N(%)	30(44.8%)	18(64.3%)	0.08
resence of choledocholidhasis by imaging, N(%)	JU(44.0%)	10(04.3%)	0.00

ERCP, endoscopic retrograde cholangiopancreatography; ASA, American Society of Anesthesiologists; BISAP, bedside index of severity in acute pancreatitis; MRCP, magnetic resonance tho angiopancreatography; SD, standard deviation. WBC, white cell count.

STATISTICAL SOFTWARE

Name	Website	Price	Features	Ease of use	Note
SPSS	http://www.ibm.com /software/analytics/s pss/	\$\$\$\$\$	++++	++++	Need to purchase separate modules for complicated analyses (such as Survival Analysis) Available from MU (http://softwaredownload. mahidol/)
Stata	http://www.stata.co m/	\$\$\$\$	++++	+++	Ramathibodi access (CEB server)
R	http://www.r- project.org/	(Free)	+++	+	R-commander is nice add on
SAS	http://www.sas.com/	\$\$\$\$\$	++++	0	Need programming skill

SAMPLE SIZE ESTIMATION

OUTLINE

CATEGORICAL DATA

- TWO INDEPENDENT PROPORTIONS
- MORE THAN TWO GROUPS OF PROPORTIONS

CONTINUOUS DATA

- TWO INDEPENDENT MEANS
- TWO DEPENDENT MEANS
- MORE THAN TWO GROUPS OF MEANS.

WHY WE NEED A SAMPLE FROM THE POPULATION

CANNOT STUDY IN THE WHOLE POPULATION

• TIME, FINANCIAL, RESOURCES

STUDY PLAN

MANPOWER, BUDGET, TIME

ETHICAL CONSIDERATION

• STUDIES THAT ARE TOO SMALL OR TO LARGE MAY BE JUDGED AS UNETHICAL STUDIES

RECOMMENDATION

- A RESEARCHER WOULD LIKE TO A STATISTICAL SIGNIFICANT DIFFERENCE.
- THE DIFFERENCE SHOULD ALSO BE MEANINGFUL.

***THEREFORE, THE RESEARCHER MUST DEFINE WHAT A MEANINGFUL
DIFFERENCE IS. ***

TWO INDEPENDENT PROPORTIONS

EXAMPLE

- COMPARE INCIDENCE OF SSI EVENT IN COLECTOMY BETWEEN PATIENTS WHO RECEIVED BETA-LACTAM AND NON-BETA-LACTAM.
- COMPARE INCIDENCE OF MICRO OR MACRO-ALBUMINURIA
 BETWEEN PATIENTS WHO RECEIVED ACEI AND OTHER HYPERTENSIVE
 DRUGS.
- Compare rates of Breast Cancer Between HRT vs Non-HRT.

FORMULA OF TWO INDEPENDENT PROPORTIONS

$$n = \frac{\left[Z_{\alpha/2}\sqrt{2\overline{P}(1-\overline{P})} + Z_{1-\beta}\sqrt{P_1(1-P_1) + P_2(1-P_2)}\right]^2}{(P_1 - P_2)^2}$$

$$\overline{P} = \frac{P_1 + P_2}{2}$$

β -Lactam vs Non- β -Lactam Antibiotics and **Surgical Site Infection in Colectomy Patients**

Jonathan P Kuriakose, MS, Joceline Vu, MD, Monita Karmakar, MS, Jerod Nagel, PharmD, Shitanshu Uppal, MBBS, Samantha Hendren, MD, MPH, FACS, Michael J Englesbe, MD, FACS, Raj Ravikumar, MD, Darrell A Campbell, MD, FACS, Greta L Krapohl, PhD, RN

BACKGROUND: Surgical site infections (SSIs) represent a significant preventable source of morbidity, mortality, and cost. Prophylactic antibiotics have been shown to decrease SSI rates, and β-lactam antibiotics are recommended by national guidelines. It is currently unclear whether recommended β-lactam and recommended non-β-lactam antibiotic regimens are equivalent with respect to SSI risk reduction in colectomy patients.

STUDY DESIGN: We conducted a retrospective cohort study of SSI rates between prophylactic intravenously administered recommended \(\beta\)-lactam and non-\(\beta\)-lactam in colectomy patients (25 CPT codes) collected by the Michigan Surgical Quality Collaborative from January 2013 to February 2018. Surgical site infection rates were compared as a dichotomous variable (no SSI vs SSI). Mixed-effects regression was used to compare the association between

RESULTS:

receiving a β-lactam or non-β-lactam antibiotic and likelihood of having an SSI. Of 9,949 patients, 9,411 (94.6%) received β-lactam antibiotics and 538 (5.4%) received nonβ-lactam antibiotics. Overall, there were 622 (6.3%) patients with SSIs. Of the patients receiving β -lactam antibiotics, SSIs developed in 571 (6.1%) compared with 51 (9.5%) patients in the non-\u00c3-lactam group. After applying mixed-effects logistic regression, prophylactic treatment with a non-\beta-lactam regimen was associated with significantly higher odds of surgical site infection (odds ratio 1.65; 95% CI 1.20 to 2.26; p < 0.01).

CONCLUSIONS: Colectomy patients receiving β-lactam antibiotics had a lower likelihood of SSI compared with those receiving non-β-lactam antibiotics, even when antibiotics were compliant with national recommendations. Our findings suggest that surgeons should prescribe β-lactam antibiotics for prophylaxis whenever possible, reserving alternatives for those rare patients with true allergies or clinical indications for non-β-lactam antibiotic prophylaxis. (J Am Coll Surg 2019;229: 487-496. © 2019 by the American College of Surgeons. Published by Elsevier Inc. All rights reserved.)

Surgical site infection (SSI) represents a significant preventable source of morbidity, mortality, and cost. 1-3 With estimates of 1 million additional hospital days and \$1.5 billion in added costs,3 reducing SSIs is an imperative patient safety and quality improvement opportunity. For patients undergoing operations, the rate of SSI is approximately

CME questions for this article available at http://jacscme.facs.org

Disclosure Information: Authors have nothing to disclose. Timothy I Eberlein, Editor-in-Chief, has nothing to disclose.

Disclosures outside the scope of this work: Drs Campbell, Englesbe, and Krapohl's institution receives a partial salary paid for by the Blue Cross Blue Shield of Michigan value partnerships for the Michigan Surgical Quality Collaborative.

Support: Dr Vu's institution is supported by the Ruth L Kirstein National Service Research Service Award/National Institute of Diabetes, Digestive, and Kidney Diseases grant #1F32DK115340-01A1. Mr Kuriakose institution was supported by the University of Michigan Institute for Healthcare Policy & Innovation Summer Fellowship Program.

Received June 2, 2019; Revised July 17, 2019; Accepted July 23, 2019. From the Michigan Surgical Quality Collaborative (Kuriakose, Vu, Englesbe, Campbell, Krapohl), Departments of Chemistry (Kuriakose), Surgery

(Vu, Karmakar, Hendren, Englesbe, Campbell, Krapohl), Pharmacy (Nagel), Obstetrics and Gynecology (Uppal), and Allergy and Immunology (Ravikumar), University of Michigan, Ann Arbor, MI.

Correspondence address: Greta L Krapohl, PhD, RN, Michigan Surgical Quality Collaborative, 2800 Plymouth Rd, Bldg 16 124W, Ann Arbor, MI 48109. email: krapohlg@med.umich.edu

P1 = 6.1%P2 = 9.5%

ESTIMATION FOR 2 INDEPENDENT PROPORTION

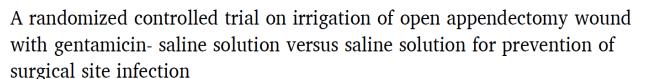
```
. power twoproportions 0.61 0.95, test(chi2)
Performing iteration ...
Estimated sample sizes for a two-sample proportions test
Pearson's chi-squared test
Ho: p2 = p1 versus Ha: p2 != p1
Study parameters:
        alpha =
                   0.0500
                   0.8000
        power =
                   0.3400 (difference)
       delta =
                   0.6100
           p1 =
                   0.9500
           p2 =
Estimated sample sizes:
                       46
  N per group =
                       23
```

Basic Statistics for Clinical Research : อ.ดร.ณปภัช โพธิ์พรหม (24/10/64)

MORE THAN TWO GROUPS OF PROPORTIONS

EXAMPLE

- Compare SSI rates among the methods of irrigation after Open appendectomy for acute appendicitis.
- COMPARE INCIDENCE OF GI ULCER BETWEEN CELECOXIB, VALECOXIB, AND NAPROXEN IN ARTHRITIS PATIENTS.
- COMPARE RECOVERY RATES AMONG ACYCLOVIR PLUS
 PREDNISOLONE, ACYCLOVIR ALONE, AND PREDNISOLONE ALONE IN BELL'S PALSY PATIENTS.


Contents lists available at ScienceDirect

International Journal of Surgery

journal homepage: www.elsevier.com/locate/ijsu

Randomised Controlled Trial

Sameh Hany Emile *, Ahmed Hossam Elfallal , Mohamed Anwar Abdel-Razik , Mohamed El-Said , Ayman Elshobaky

General Surgery Department, Mansoura University Hospitals, Mansoura University, Mansoura City, Egypt

ARTICLE INFO

Keywords:
Mesh terms): therapeutic irrigation
Surgical wound infection
Appendectomy
Gentamicins
Saline solution
Randomized controlled trial

ABSTRACT

Background: Surgical site infection (SSI) is one of the most common complications after abdominal surgery. The present trial examined the efficacy of saline irrigation of open appendectomy wound with or without topical antibiotics in prevention of SSI.

methods: This was a double-blind randomized trial on patients with acute appendicitis who underwent open appendectomy. Patients were randomly allocated to one of three equal groups; group I had layer-by-layer wound irrigation with gentamicin-saline solution, group II had wound irrigation with saline solution, and group III received no irrigation (Control group). The main outcome measures were the incidence of incisional SSI, surgical

site occurrence (SSO), other complications, operation time, postoperative pain, and patients' satisfaction. *Results*: 205 patients (113 female) of a mean age of 27.9 years were included. The average hospital stay and pain scores were similar in the three groups. Groups I and II had significantly lower rates of incisional SSI (4.3% Vs 2.9%; Vs 17.4%, p = 0.005) and SSO (24.6% Vs 13.4% Vs 43.5%; p = 0.0003) as compared to group III. Groups I and II had comparable rates of SSI and SSO. The three groups had similar rates of wound seroma, hematoma, and dehiscence. Groups I and II had significantly higher satisfaction with the procedure than group III.

Conclusions: Layer-by-layer irrigation of open appendectomy wound decreased the rates of incisional SSI and SSO significantly compared to the no-irrigation group. Adding gentamicin to saline solution was useless to improve the outcome and did not decrease rates of SSI or other complications.

International Journal of Surgery 81 (2020) 140-146

- Group I had layer by layer irrigation of the surgical wound with gentamicin-saline solution.
- Group II had layer by layer wound irrigation with normal saline 0.9% solution.
- Group III (Control group) did not receive wound irrigation.

Gr1 =4.3% Gr2 =2.9% Gr3 =17.4%

Slide 82/99

ESTIMATION FOR MORE THAN 2 INDEPENDENT PROPORTION

```
. artbin, pr(.043 .029 .174) ngroups(3) aratios(1 1 1 ) distant(0) alpha(0.05) power(0.8)
ART - ANALYSIS OF RESOURCES FOR TRIALS (version 1.0.0, 3 March 2004)
A sample size program by Abdel Babiker, Patrick Royston & Friederike Barthel,
MRC Clinical Trials Unit, London NW1 2DA, UK.
Type of trial
                                       Superiority - binary outcome
                                       Unconditional comparison of 3
Statistical test assumed
                                        binomial proportions
Number of groups
Allocation ratio
                                    This study needs to enroll 171 subjects and then randomly
Anticipated event probabilities
                                                allocate 57 subjects for each group
Alpha
                                       0.050 (two-sided)
Power (designed)
                                       0.800
Total sample size (calculated)
                                        171
Expected total number of events
                                        14
                                                                                        Slide 83/99
```

Basic Statistics for Clinical Research : อ.ดร.ณปภัช โพธิ์พรหม (24/10/64)

TWO INDEPENDENT MEANS

EXAMPLE

- COMPARE DURATION TIME OF SURGERY BETWEEN OPEN AND LAPAROSCOPIC APPENDECTOMY.
- COMPARE BMD BETWEEN PATIENTS WHO RECEIVED CALCIUM SUPPLEMENT VS PLACEBO.
- COMPARE PAIN SCORE OF PATIENT WHO RECEIVED ROBOTIC HEPATECTOMY AND OPEN HEPATECTOMY.
- COMPARE BLOOD PRESSURE BETWEEN ANGIOTENSIN-RECEPTOR
 BLOCKER AND ANGIOTENSIN-CONVERTING ENZYME INHIBITOR (ACEI) IN DM PATENTS.

FORMULA

•Ho:
$$\mu_1 - \mu_2 = 0$$

•Ha: $\mu_1 - \mu_2 \neq 0$

•Ha:
$$\mu_1 - \mu_2 \neq 0$$

$$n = \left[\frac{(r+1)x(Z_{\alpha/2} + Z_{\beta})\sigma}{r(\mu_1 - \mu_2)} \right]^2$$

REVIEW ARTICLE

Laparoscopic appendicectomy is superior to open surfor complicated appendicitis

Gaik S. Quah¹ · Guy D. Eslick¹ · Michael R. Cox^{1,2}

Received: 19 July 2018 / Accepted: 6 March 2019 / Published online: 13 March 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Background Over the last three decades, laparoscopic appendicectomy (LA) has bee plicated acute appendicitis. The role of laparoscopic surgery for complicated appendicement remains controversial due to concerns of an increased incidence of post-operative in compared to open appendicectomy (OA). The aim of this study was to compare the o cated appendicitis.

Methods A systematic literature search following PRISMA guidelines was conducted and Cochrane Database for randomised controlled trials (RCT) and case–control stud for complicated appendicitis.

Results Data from three RCT and 30 CCS on 6428 patients (OA 3,254, LA 3,174) w difference in the rate of IAA (LA=6.1% vs. OA=4.6%; OR=1.02, 95% CI=0.71 appendicitis has decreased overall post-operative morbidity (LA=15.5% vs. OA=2 p < 0.0001), wound infection, (LA=4.7% vs. OA=12.8%; OR=0.26, 95% CI: 0.19–4 tions (LA=1.8% vs. OA=6.4%; OR=0.25, 95% CI: 0.13–0.49, p < 0.001), post-or (LA=3.1% vs. OA=3.6%; OR=0.65, 95% CI: 0.42–1.0, p = 0.048) and mortality rate 95% CI: 0.04–0.61, p = 0.008). LA has a significantly shorter hospital stay (6.4 days vs. tion of solid food (2.7 days vs. 3.7 days, p = 0.03).

Conclusion These results clearly demonstrate that LA for complicated appendicitis significantly reduced morbidity, mortality and length of hospital stay compared with C dicitis at laparoscopy is not an indication for conversion to open surgery. LA should with complicated appendicitis.

Secondary outcomes

Twenty-five studies reported the operative duration (OT) [26–30, 32, 34, 36–39, 42–46, 48–50, 52–57] which was similar (LA group 74.6 min \pm 19.6 and OA group 82.2 min \pm 24.7, p=0.19) (Table 4). Thirty studies reported the average LOS [26–30, 32–34, 36–39, 42–57] which was significantly shorter for the LA group (6.4 \pm 2.8 days) compared to the OA group (8.9 \pm 4.8 days) (p=0.02) (Table 4). Twelve studies reported the average time to resume normal diet [26–30, 32–34, 36–39, 42–57] which was significantly shorter for the LA group (2.7 \pm 0.9 days) compared with the OA group (3.7 \pm 1.1 days) (p=0.03) (Table 4). Eight studies reported the duration of IV antibiotics and there was no significant difference between LA and OA (p=0.49) (Table 4).

acute cholecystitis [60].

As the majority of the studies used in the present study were CCS, there may be some risks of bias of some form that may favours better outcomes in the LA group. One potential selection bias is the patient co-morbidities resulting in bias that may favour either LA or OA. As the patient characteristics in both groups including sex, gender, BMI and ASA scores were similar, a selection bias based on comorbidities is most unlikely. Another potential bias is the nature or extent of disease may be different due to a selection bias that may favour one approach. Although there was a range of definitions for complicated appendicitis across the various studies, there was no significant difference in the distribution of disease between the LA and OA groups. Similarly, there was no significant difference in the duration of symptoms between LA and OA. The

Table 4 Secondary outcomes for combined RCT and CSS data

	# of studies	LA	OA	p value
Mean length of hospital stay (days)	30	6.4 ± 2.8	8.9 ± 4.8	0.02
Mean OT (min)	25	82.2 ± 24.7	74.6 ± 19.6	0.19
Solid food resumption (days)	12	2.7 ± 0.9	3.7 ± 1.1	0.03
IV Abx (day)	8	5.5 ± 1.8	6.3 ± 3.2	0.49

 $\textbf{Keywords} \ \ Laparoscopic \ appendicectomy \cdot Open \ appendicectomy \cdot Complicated \ appendicitis \cdot Gangrenous \ appendicitis \cdot Perforated \ appendicitis \cdot Appendiceal \ abscess$

ESTIMATION FOR 2 INDEPENDENT MEANS

```
. power twomeans 74.6 82.2, sd1(19.6) sd2(24.7)
Performing iteration ...
Estimated sample sizes for a two-sample means test
Satterthwaite's t test assuming unequal variances
Ho: m2 = m1 versus Ha: m2 != m1
Study parameters:
       alpha =
                 0.0500
       power =
                 0.8000
                                 This study needs to enroll 274 subjects and then randomly
       delta = 7.6000
          m1 = 74.6000
                                            allocate 137 subjects for each group
                82.2000
          m2 =
         sd1 = 19.6000
         sd2 =
                24.7000
Estimated sample sizes:
```

```
N = 274
N \text{ per group} = 137
```

TWO DEPENDENT MEANS

EXAMPLE

BEFORE AND AFTER STUDY

- COMPARE MEAN OF VAS SCORE BEFORE AND AFTER MINIMAL INVASIVE ENDOSCOPIC TECHNIQUE IN PATIENTS WITH BENIGN BONE LESION.
- Compare Mean BP before and after receiving analgesic Treatment.

FORMULA

```
• Ho: \mu_{before} = \mu_{after}
• Ha: \mu_{\text{before}} \neq \mu_{\text{after}} n = \left[\frac{(Z_{\alpha/2} + Z_{\beta})\sigma}{\Delta}\right]^{2}
```


Contents lists available at ScienceDirect

Journal of Bone Oncology

journal homepage: www.elsevier.com/locate/jbo

The minimally invasive endoscopic technique for the treatment of symptomatic benign bone lesions: Preliminary results from a retrospective study

Min-hao Wu¹, Ling-fei Xiao¹, Chong Zhang, Jun Lei, Zhou-ming Deng*

Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071, Hubei, People's Republic of China

ARTICLE INFO

Keywords: Minimally invasive Endoscopy Benign bone lesion Clinical efficacy Surgical intervention

ABSTRACT

Objective: The present study aimed to evaluate the short-term clinical feasibility and effic invasive endoscopic technique (MIET) for the treatment of symptomatic benign bone lesic Materials and methods: This single-institution retrospective study investigated 34 patient benign bone lesions from December 2015 to June 2017. Patients involved in this study prindications for surgical intervention. All procedures were performed under endoscopic g_1 sualization followed by complete curettage of tumor tissue. There were 19 males and 15 f age of 33.3 \pm 12.7 years (range, 17–68 years). The lesions were located in the upper extra content of the study of the study

lower extremities (9, 26.5%) and pelvis (5, 14.7%). Primary outcomes were measured before and after intervention using the visual analog scale (VAS), the Musculoskeletal Tumor Society (MSTS) stage and the 36-item Short-Form Health Survey (SF-36) scoring system.

Results: Of the 34 patients included in this study, all completed follow-up examinations, with a mean follow-up duration of 22.4 \pm 7.6 months (range, 13–35 months). Significantly improved VAS, MSTS and SF-36 scores were observed at 3 months after the initial treatment (P < 0.001), suggesting enhanced pain relief and improved functional recovery and quality of life following surgery. All procedures were technically successful, with the exception of 3 cases (8.8%) manifesting access site numbness; these patients recovered within the follow-up period through symptomatic treatment alone. Only 2 patients (5.9%; one osteoblastoma and one enchondroma) experienced local recurrence and underwent standard open curettage within the follow-up period. All patients showed functional stability without any major complications.

Conclusion: The MIET is an effective and safe alternative treatment for symptomatic benign bone lesions. The short-term efficacy of MIET was favorable and associated with improved pain palliation, quality of life and functional recovery.

M.-h. Wu, et al.

Table 2

Preoperative and postoperative data regarding surgical efficacy according to the VAS, MSTS and SF-36 scores.

	Pre	Pos	t value	P value
VAS score	4.9 ± 1.4	0.3 ± 0.5	18.6053	< 0.001
MSTS score	17.8 ± 2.8	25.5 ± 1.9	-20.0909	< 0.001
SF-36 score	61.1 ± 6.2	79.7 ± 5.5	-26.6391	< 0.001

Pre: Preoperatively, Pos: Postoperatively, VAS: Visual analog scale, MSTS: Musculoskeletal Tumor Society, SF-36: 36-item Short-Form Health Survey.

ESTIMATION FOR 2 DEPENDENT MEANS

```
power pairedmeans 4.9 0.3, sddiff(1.4)
Performing iteration ...
Estimated sample size for a two-sample paired-means test
Paired t test
Ho: d = d0 versus Ha: d != d0
Study parameters:
                                           4.9000
       alpha =
                  0.0500
                                  ma1 =
               0.8000
       power =
                                  ma2 =
                                           0.3000
       delta = -3.2857
          d\theta =
               0.0000
          da = -4.6000
        sdd =
                  1.4000
```

Estimated sample size:

Three subjects needed to enroll in order to detect a difference of VAS score of 4.6 between before and after receiving treatment

N =

Basic Statistics for Clinical Research : อ.ดร.ณปภัช โพธิ์พรหม (24/10/64)

MORE THAN TWO GROUPS OF MEANS

EXAMPLE

- COMPARE VAS SCORE AMONG THE METHODS OF IRRIGATION AFTER OPEN APPENDECTOMY FOR ACUTE APPENDICITIS.
- COMPARE MEAN VAS SCORE BETWEEN TREATMENT OF CELECOXIB, VALDECOXIB, AND NAPROXEN AFTER RECEIVING TREATMENTS FOR 7 DAYS.

Contents lists available at ScienceDirect

International Journal of Surgery

journal homepage: www.elsevier.com/locate/ijsu

Randomised Controlled Trial

A randomized controlled trial on irrigation of open appe with gentamicin- saline solution versus saline solution fo surgical site infection

Sameh Hany Emile*, Ahmed Hossam Elfallal, Mohamed Anwar Abdel-Raz Ayman Elshobaky

General Surgery Department, Mansoura University Hospitals, Mansoura University, Mansoura City, Egypt

ARTICLE INFO

Keywords:
Mesh terms): therapeutic irrigation
Surgical wound infection
Appendectomy
Gentamicins
Saline solution
Randomized controlled trial

ABSTRACT

Background: Surgical site infection (SSI) is one of the me present trial examined the efficacy of saline irrigation antibiotics in prevention of SSI.

Methods: This was a double-blind randomized trial on patients with acute appendicitis who underwent open appendectomy. Patients were randomly allocated to one of three equal groups; group I had layer-by-layer wound irrigation with gentamicin-saline solution, group II had wound irrigation with saline solution, and group III received no irrigation (Control group). The main outcome measures were the incidence of incisional SSI, surgical site occurrence (SSO), other complications, operation time, postoperative pain, and patients' satisfaction. *Results:* 205 patients (113 female) of a mean age of 27.9 years were included. The average hospital stay and pain scores were similar in the three groups. Groups I and II had significantly lower rates of incisional SSI (4.3% Vs 2.9%; Vs 17.4%, p = 0.005) and SSO (24.6% Vs 13.4% Vs 43.5%; p = 0.0003) as compared to group III. Groups I and II had comparable rates of SSI and SSO. The three groups had similar rates of wound seroma, hematoma, and dehiscence. Groups I and II had significantly higher satisfaction with the procedure than group III. *Conclusions:* Layer-by-layer irrigation of open appendectomy wound decreased the rates of incisional SSI and SSO significantly compared to the no-irrigation group. Adding gentamicin to saline solution was useless to improve the outcome and did not decrease lates of SSI or other complications.

S.H. Emile et al.

Table 2Outcome of the three groups.

Variable	Gentamicin- saline (N = 69)	Saline (N = 67)	No irrigation (N = 69)	P value
Mean operation time in minutes	55.1 (SD 8.7)	55.6 (SD 8.2)	50.2 (SD 8.4)	<0.001
Surgical site infection (%)	3 (4.3)	2 (2.9)	12 (17.4)	0.005
Seroma (%)	12 (17.4)	6 (8.9)	15 (21.7)	0.11
Hematoma (%)	2 (2.8)	1 (1.5)	1 (1.4)	0.84
Wound dehiscence (%)	0	0	2 (2.8)	0.22
Total surgical site occurrence (%)	17 (24.6)	9 (13.4)	30 (43.5)	<0.001
Other complications (%)	2 (2.8)	3 (4.4)	1 (1.4)	0.45
Mean hospital stay in days	1.1 (SD 0.26)	1.05 (SD 0.24)	1.14 (SD 0.3)	0.18

International Journal of Surgery 81 (2020) 140–146

Table 3Patient-reported outcomes of the three groups.

Variable		Gentamicin- saline (N = 69)	Saline (N = 67)	No irrigation $(N = 69)$	P value
Pain visual an	alogue score	4.04 (SD 1.4)	3.68 (SD 1.2)	4.13 (SD 1.6)	0.83
Satisfaction	Satisfied (%)	52 (75.3)	59 (88)	41 (59.4)	<0.001
	Partly satisfied (%)	12 (17.4)	6 (9)	13 (18.8)	
	Unsatisfied (%)	5 (7.2)	2 (3)	15 (21.7)	

4. Discussion

ESTIMATION FOR MORE THAN 2 INDEPENDENT MEANS

```
. power oneway 4.13 4.04 3.68, varerror(2.56)
Performing iteration ...
Estimated sample size for one-way ANOVA
F test for group effect
Ho: delta = 0 versus Ha: delta != 0
Study parameters:
       alpha =
                 0.0500
                 0.8000
                                    This study needs to enroll 657 subjects and then
       power =
       delta =
                 0.1215
        Ng =
                                     randomly allocate 219 subjects for each group
                 4.1300
          m2 =
                 4.0400
                 3.6800
          m3 =
```

Estimated sample sizes:

Var m =

Var e =

N = 657 group = 219

0.0378 2.5600

Basic Statistics for Clinical Research : อ.ดร.ณปภัช โพธิ์พรหม (24/10/64)

TO BE CONTINUE ON WORK SHOP

QUESTION?

THANK YOU