Summary Statistics & Sample Size Estimation

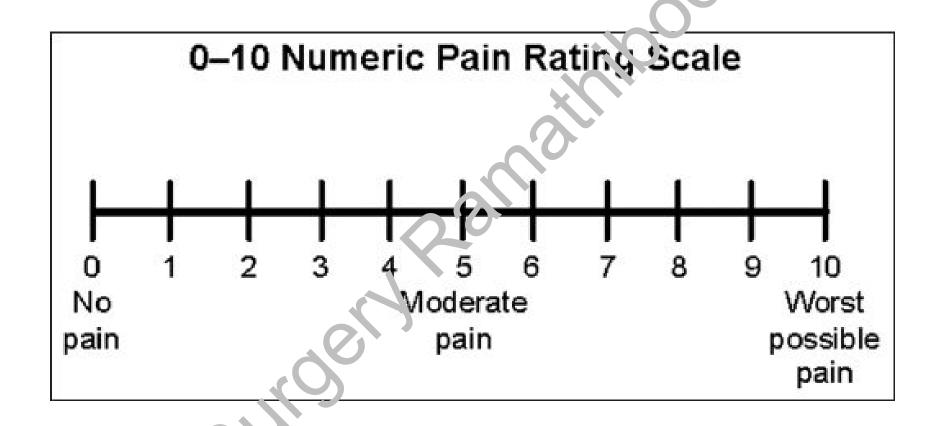
Pana vat Lertsithichai Department of Surgery Ramathibodi Hospital 16 Sept 2020

Topics

- Summary statistics
- Statistical test
- Sample size estimation

A Clinical Trial

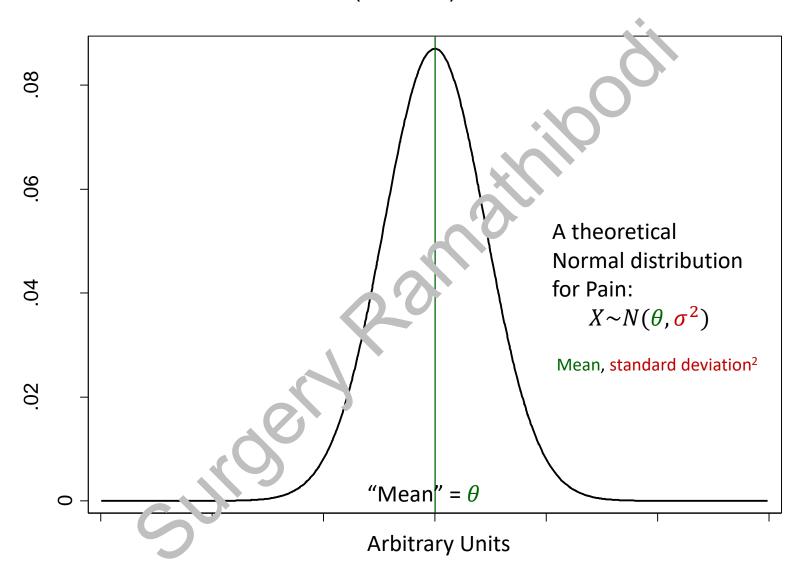
- A study comparing two analgesic drugs in terms of postoperative pain, A and B
- Designed as a parallel-group, randomized, controlled trial
- The pain is evaluated at 12 hours postoperative
- Using the Visual Analog Scale (VAS)



Outcome Variable: Pain

- Pain (VAS) can be considered a quantitative variable
- Measurements on different patients undergoing the same operation will have different values
- These values form a distribution
- In theory, the possible values are infinite, and may often have an approximately Normal distribution*

"Normal" (Gaussian) Distribution



Intervention (Exposure) Variable

- Analgesic drug: A; B
- Random assignment (simple randomization)

Patient Characteristics/Baseline Variables

- Age: years
- Sex/gender: female; male (0,1)
- Extent/type of operation: small; big (0,1)
- Preoperative anxiety: no: yes (0,1)

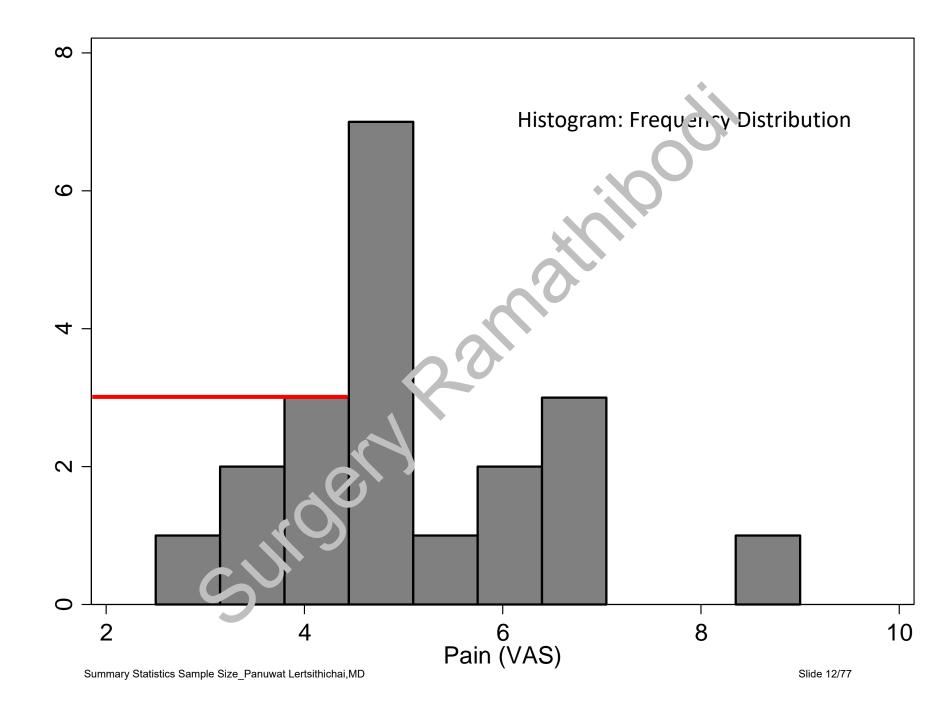
	id	age	sex	anxiety	operation	Drug	Pain
1	1	48	0	1	0	A	4.5
2	2	46	1	0	0	В	5
3	3	43	1	1	0	А	6
4	4	39	1	1	. 3	В	7
5	5	57	0	0	0	В	4
6	6	48	0	1	0	В	5
7	7	41	1	9	0	В	2.5
8	8	47	0	0	0	Α	3.5
9	9	51	1	1	1	Α	9
10	10	57	0	0	1	Α	4.5
11	11	45	•	1	0	Α	5
12	12	57	1	0	1	В	6
13	13	51	1	0	1	В	7
14	14	48		0	1	Α	7
15	15	56	0	0	0	Α	5
16	16	48	1	0	0	В	3.5
17	17	4.2	1	1	0	Α	5.5
18	18	34	0	0	0	В	4
19	19	53	0	0	0	Α	4
20	20	53	0	0	0	В	4.5

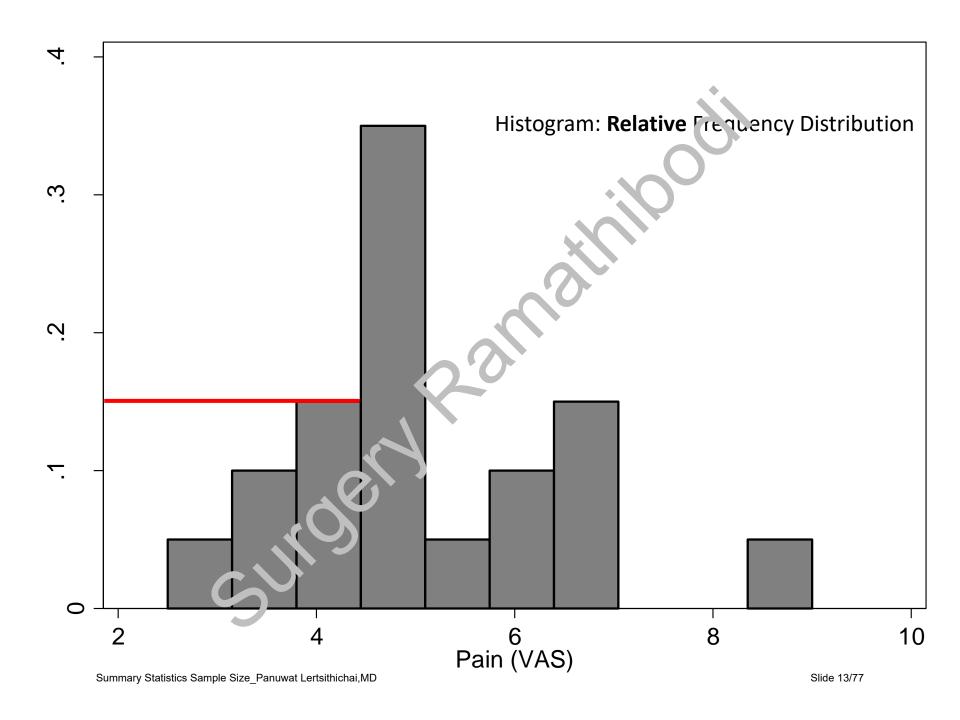
	id	age	sex	anxiety	operation	Drug	Pain
1	1	48	0	1	0	А	4.5
2	2	46	1	0	0	В	5
3	3	43	1	1	श	А	6
4	4	39	1	1	2	В	7
5	5	57	0	0	0	В	4
6	6	48	0	1	0	В	5
7	7	41	1	9	0	В	2.5
8	8	47	0	0	0	А	3.5
9	9	51	1	1	1	А	9
10	10	57	0	0	1	А	4.5
11	11	45	0	1	0	А	5
12	12	57	1	0	1	В	6
13	13	51	1	0	1	В	7
14	14	48		0	1	А	7
15	15	56	0	0	0	А	5
16	16	48	1	0	0	В	3.5
17	17	42	1	1	0	А	5.5
18	18	J4	0	0	0	В	4
19	19	53	0	0	0	А	4
20	20	53	0	0	0	В	4.5

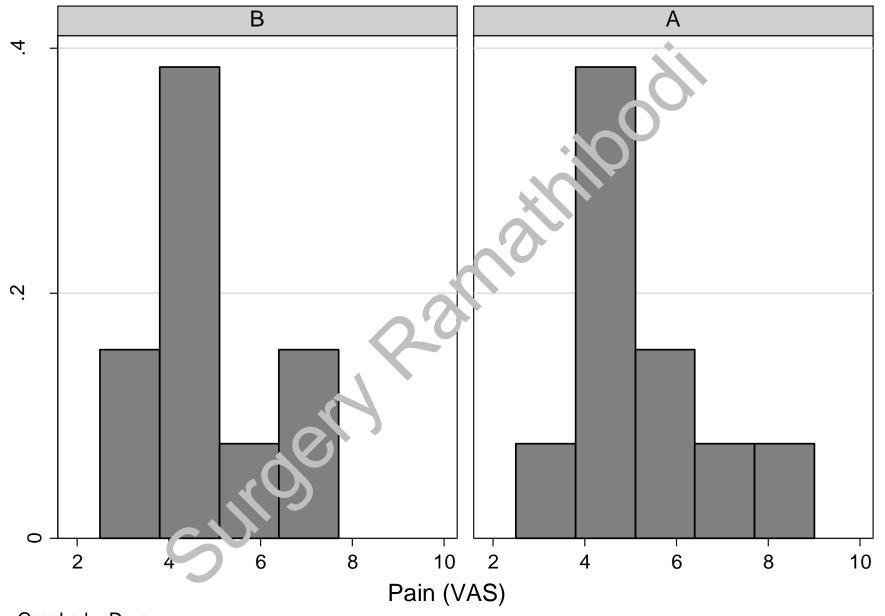
Summarizing & Displaying Variables

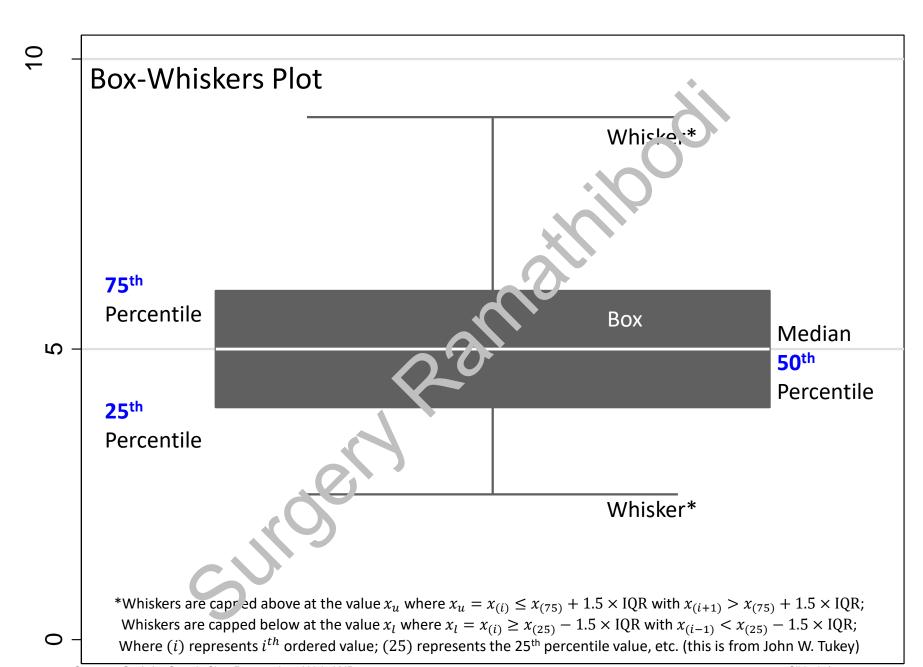
- Statistics (Numbers)
- **Graphics**: Histograms; box-whicker plots; stem-leaf; scatter plots; line graphs; etc.

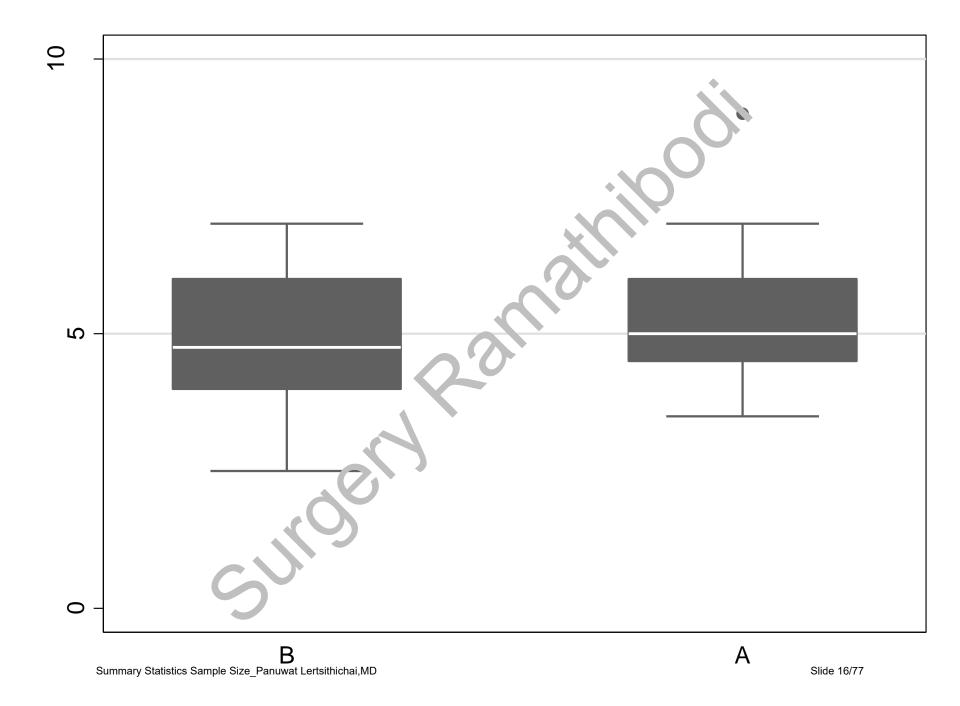
Choice of most appropriate summary or display depends on type of data & study objectives

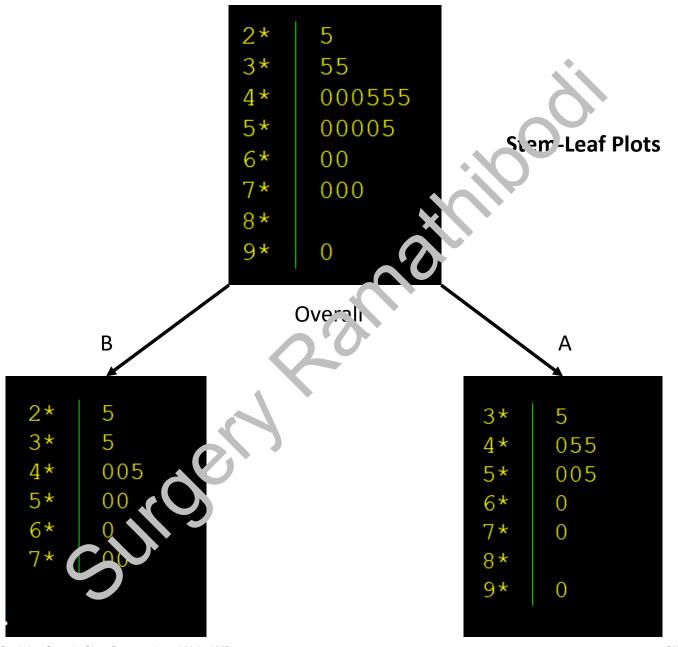












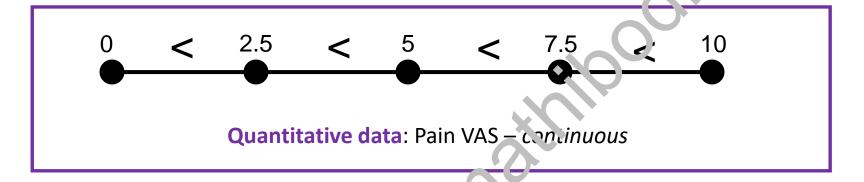
Why Summary Statistics

- Better for interpreting, and comparing between, groups
- Can be used as a basis for statistical tests and sample size calculations

Classification of Variables

- "Randomness": Random; non-random variables
- Research-related: Outcome; exposure; baseline
- "Arithmetical": Quantitative, categorical; ordinal

Arithmetical Type of Variables



Outcome Variable(s)

- Pain score: Visual Analogue Scale (from 1 to 10)
- Pain level: 2 levels; not very painful (0); very painful (1)

: 5 levels; 1, 2, 3, 4, 5

Exposure Variable

Analgesic drug: A(1); B(2)

Baseline Variables

- Age: years (quantitative, continuous variable)
- Sex/gender: 0, 1
- Extent/type of operation: 0, 1
- Preoperative anxiety: 0 1

Exercise

Which arithmetical type of variable?

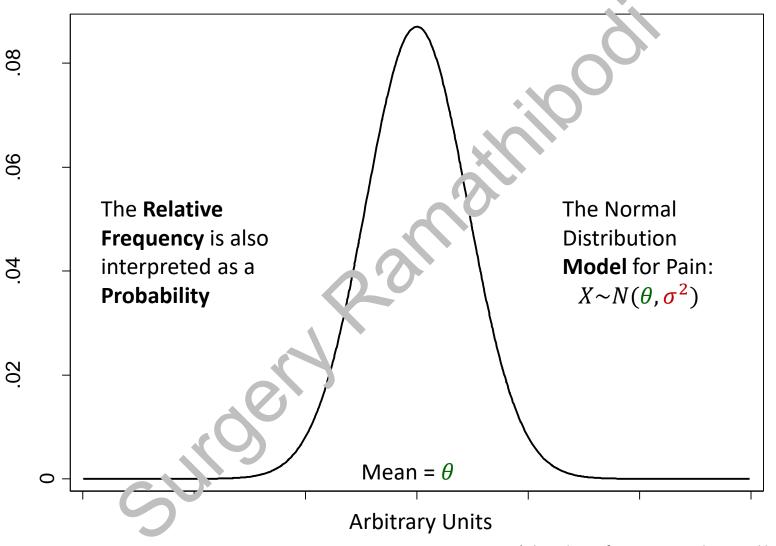
- Height
- Age categorized as 5 (2), 11-20, 21-30, etc.
- Number of people in any district
- Types of University Education in a sample
- Complications after a surgical procedure
- Socioeconomic status of a group of people

Summarizing Quantitative Variables

At least two summary measures:

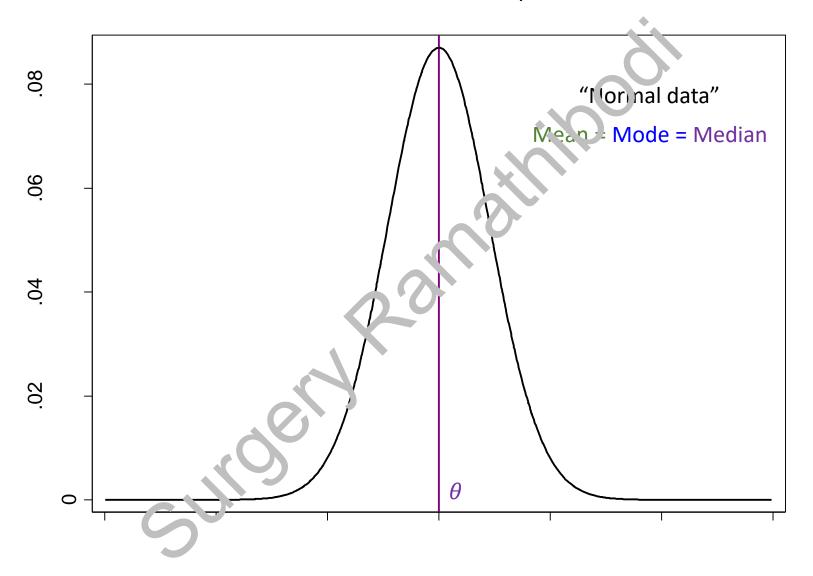
- A measure of "central tendency"
 - Mean; median
- A measure of "spread", and variation
 - o Standard deviation (sപ്); range

"Normal" (Gaussian) Relative Frequency Distribution (Probability Density*)

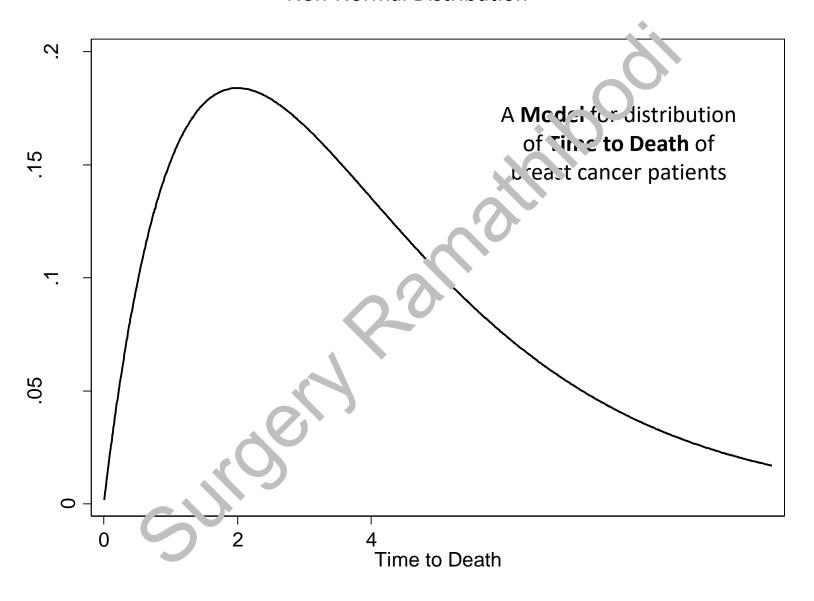


*The relative frequency is substituted by the density in the continuous-value limit

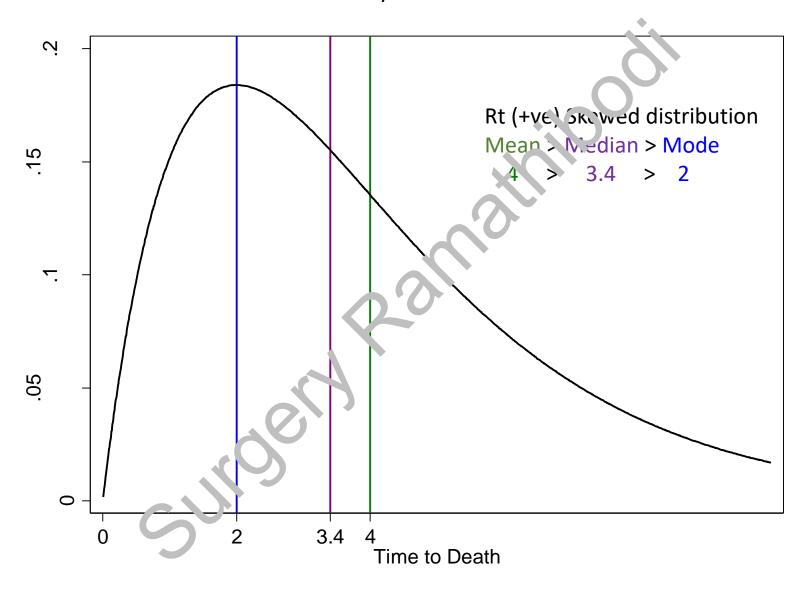
"Central Tendency"



Non-Normal Distribution



"Central Tendency"



Summarizing Pain (VAS)

```
3.5, 4, 4.5, 4.5, 5, 5, 5, 6, 7, 9
Drug A:
                 3.5, 4, 4, 4,5, 5,
Drug B:
n = 10/group
                                 4.9; 1.5
Mean; sd
                       1.6
                              B: 4.75; [2.5, 7]
Med; range
               A: [4.5, 6]
                              B:[4, 6]
```

^{*}Interquartile Range

Time to Event (Death)

Operation A (months)

- 1, 2, 2, 3, 4, 7, 17, 20, (45); n = 3: mean = 11.2;
- Median = $\frac{4}{}$

Operation B (months)

- 1, 2, 3, 5, 7, 12, 18, 21, 27; n = 9; mean = 10.7;
- Median = **7**

Which summary is more appropriate?

Use of Median / Range

Possible rationale

- Consistency: if Rank tests (Non-parametric tests) are used, then summary statistics should be based on Ranks (Order statistics)
- Robustness to "outliers"

```
2, 5, 9, 17, 29, 91, 180, 392, 901; mean = 180.7
2, 5, 9, 17, 29, 91, 180, 392 9801; mean = 1169.6
```

Normal or Non-Normal?

The use of mean & sd are appropriate when

- 1. Mean is at least 2×sd
- 2. Mean ~ median
- Histogram is Normal-shaped
- 4. Variable can assume positive and negative values

Example

Median ~ Mean and Mean > 2 x s d ?

Age (years):

Mean; sd

A: 49.1, 5.0

B: 49.4; 6.2

Median

A: 48

B: 49.5

Serum albumin (gm/dL):

Mean; sd

5.2; 6.7

Median

3.5

Exercise

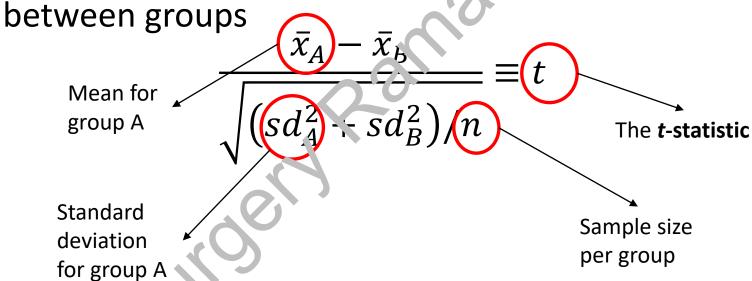
Summarize these quantitative variables

32, 34, 39, 42, 45, 47, 53, 58, 60, 60, 61, 63

68, 79, 80, 88, 98, 110, 124, 155, 160, 230, 347

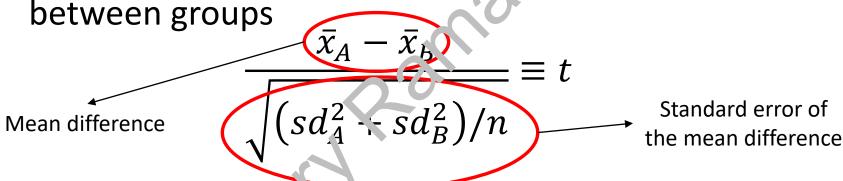
Testing Quantitative Variables

• Use **standardized mean difference** of quantitative, "Normal", variables to test for significant difference



Testing Quantitative Variables

• Use **standardized mean difference** of quantitative, "Normal", variables to test for significant difference

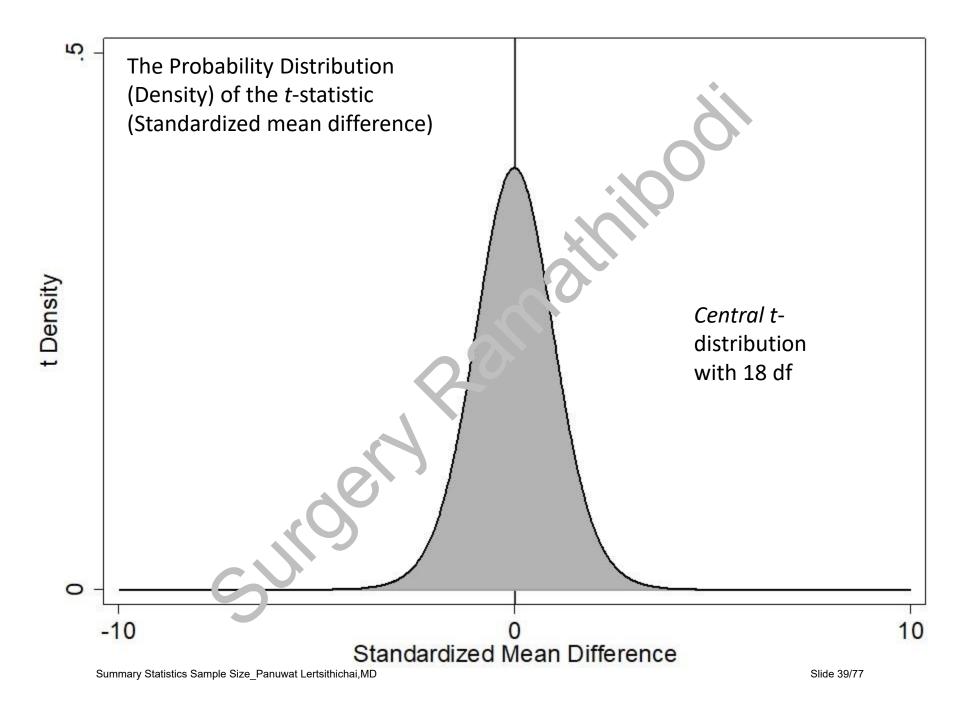


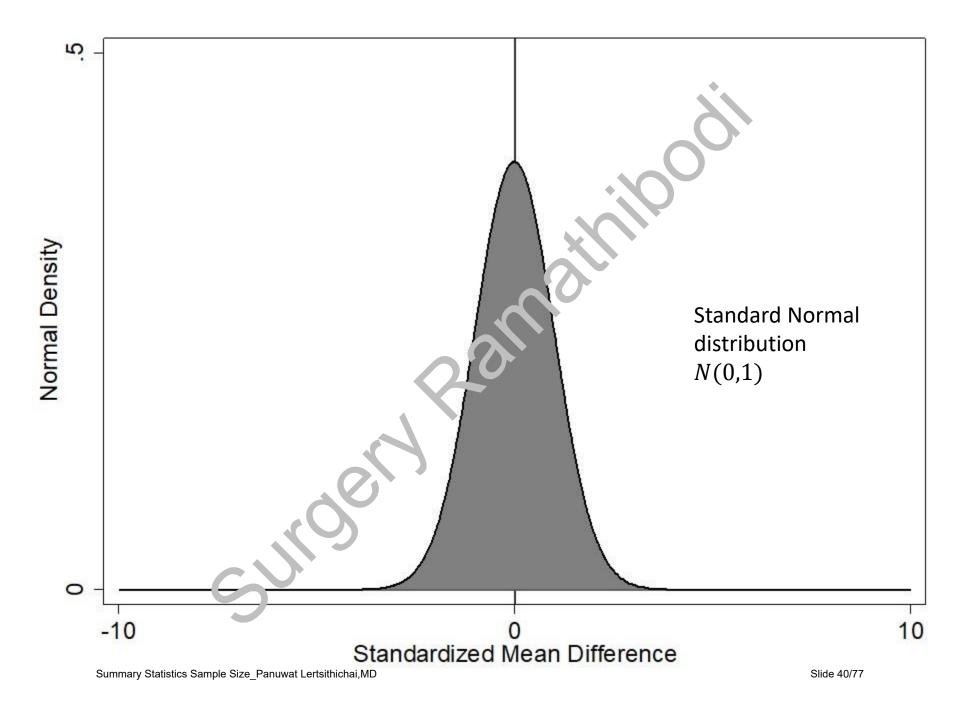
Testing Quantitative Variables

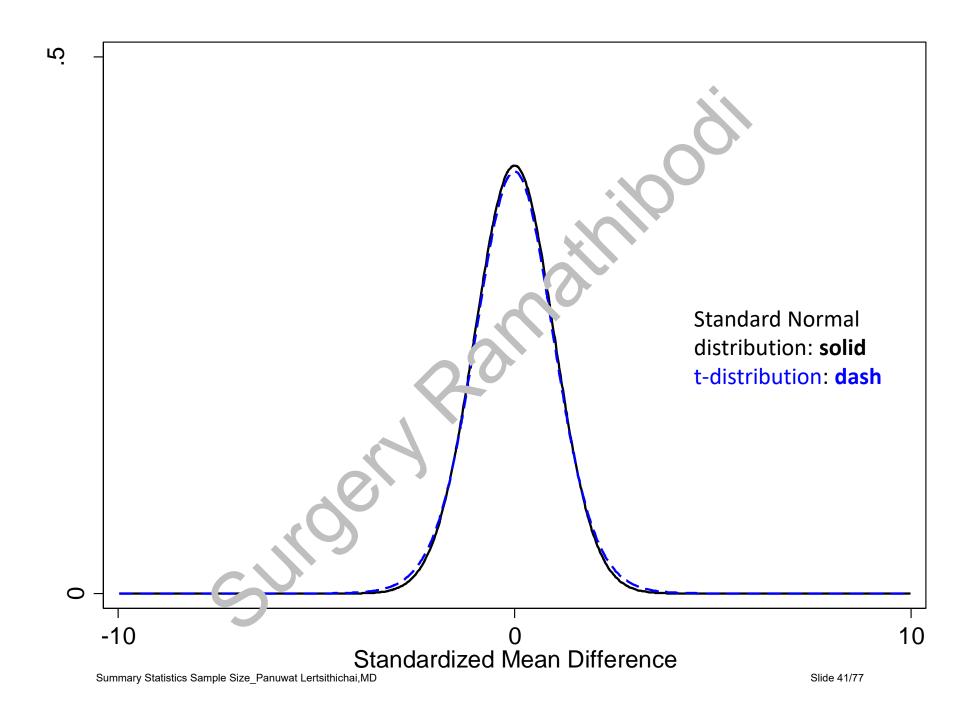
 Use standardized mean difference of quantitative, "Normal", variables to test for significant difference between groups

$$\frac{\bar{x}_A - \bar{x}_B}{\sqrt{(sd_A^2 + sd_B^2)/n}} \equiv t$$

- The standardized mean difference, viewed as a random variable, has a t-distribution (2n 2 df)
- If we hypothetically perform identical experiments many, many times the values of the *t*-statistic will form a probability distribution





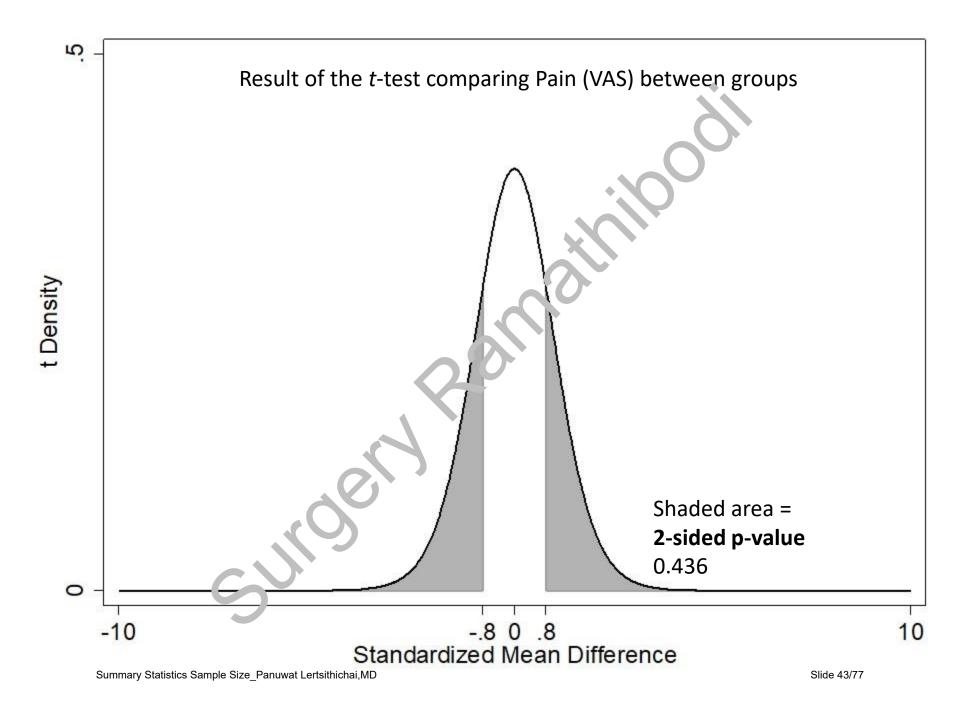


Testing Pain (VAS)

- The mean difference is 5.4 4.9 = 0.5
- The standardized mean difference for Pain (VAS) is

$$\frac{5.4 - 4.9}{\sqrt{(1.5^2 + 1.6^7)/10}} = 0.80$$

Compare this to a central t-custribution (18 df); 2-sided **p-value** = **0.436**



	id	age	sex	anxiety	operation	Drug	Pain
1	1	48	0	1	0	A	4.5
2	2	46	1	0	0	В	5
3	3	43	1	1	O	А	6
4	4	39	1	1	+ ?	В	7
5	5	57	0	0	0	В	4
6	6	48	0	1	0	В	5
7	7	41	1	8	0	В	2.5
8	8	47	0	Ó	0	Α	3.5
9	9	51	1	1	1	Α	9
10	10	57	0	0	1	Α	4.5
11	11	45	1	1	0	Α	5
12	12	57	1	0	1	В	6
13	13	51	1	0	1	В	7
14	14	48		0	1	Α	7
15	15	56	0	0	0	Α	5
16	16	48	1	0	0	В	3.5
17	17	42	1	1	0	Α	5.5
18	18	54	0	0	0	В	4
19	19	53	0	0	0	А	4
20	20	53	0	0	0	В	4.5

Testing Age

• The standardized mean difference in Age (years) is

$$\frac{49.1 - 49.4}{\sqrt{(5.0^2 + 6.2^2)/10}} = -0.12$$

Compare this to a central t-distribution (18 df); 2-sided **p-value** = **0.907**

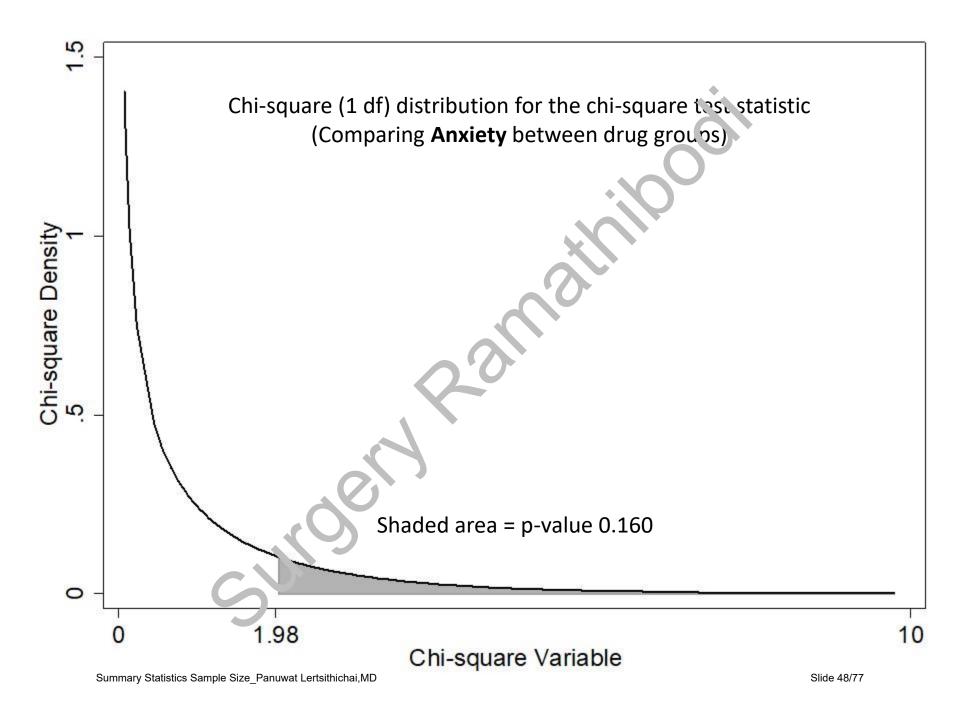
Summarizing Categorical Variables

Variable	Drug A	Drug B	p-value
Sex: Female	3 (30%)	5 (60%)	
Male	7 (70%)	4 (40%)	
Op : Large	3 (30%)	2 (20%)	
Small	7 (70%)	8 (80%)	
Anxiety: Yes	5 (50%)	2 (20%)	
No	5 (50%)	8 (80%)	

Testing Categorical Variables

Variable	Drug A	Qrug B	p-value
Sex: Female	3 (30%)	5 (60%)	0.178*
Male	7 (70%)	4 (40%)	0.370**
Op : Large	3 (30%)	2 (20%)	0.606*
Small	7 (70%)	8 (80%)	0.999**
Anxiety : Yes	5 (50%)	2 (20%)	0.160*
No	5 (50%)	8 (80%)	0.350**

^{*} Chi-square test; ** Fisher's exact test



Ordinal Variables

- Variables with ≤ 5 categories, use counts to summarize data*
- Use median & range for > 5 categories*
- When testing for differences, efficiency (i.e., greater sensitivity to detect differences if they exist) requires the use of ranks

*These are recommendations

Summarizing Ordinal Variables

Pain level	Drug B: n(%)	Drug A: n(%)
1	5 (22)	2 (9)
2	9 (39)	3 (13)
3	3 (13)	5 (22)
4	4 (17)	6 (26)
5	2 (9)	7 (30)
Total	23 (100)	23 (100)

Suppose we perform another study with 46 subjects, 23 per group, and compare the **Pain Level** between the two drugs

Testing Ordinal Variables

Pain level	Drug B: n(%)	Drug A: n(%)
1	5 (22)	2 (9)
2	9 (39)	3 (13)
3	3 (13)	5 (22)
4	4 (17)	6 (26)
5	2 (9)	7 (30)
Total	23 (100)	23 (100)

Chi-square test n-value = 0.093

Ranksum test p-value = 0.011

Fisher's test p-value = 0.099

t-test p-value = 0.009

What's The Interpretation?

Let's come back to the results of the present study:

- No significant differences in baseline characteristics
- No significant difference in Fain (VAS)

The Observed Mean Difference

- The **observed** mean difference is $\bar{x}_A \bar{x}_B = 0.5$
- The *observed standardized mean difference* is not "statistically significant":

$$\frac{\bar{x}_{A} - \bar{x}_{B}}{\sqrt{(s \, t_{A}^{2} + s d_{B}^{2})/n}} = 0.8$$

- The sample size, n = 10/gr, is probably too small
- Then how large should a sample size be?

The Sample Size

- An appropriate **sample size** (from a *Frequentist* perspective) *is such that*:
- If a true difference exists, the experiment is able to detect a significant difference (at 5% level) at least 80% of the time (80% sensitivity)
- The 5% and 80% are conventional numbers representing acceptable errors (type I error = 5% & type II error = 20%) in research

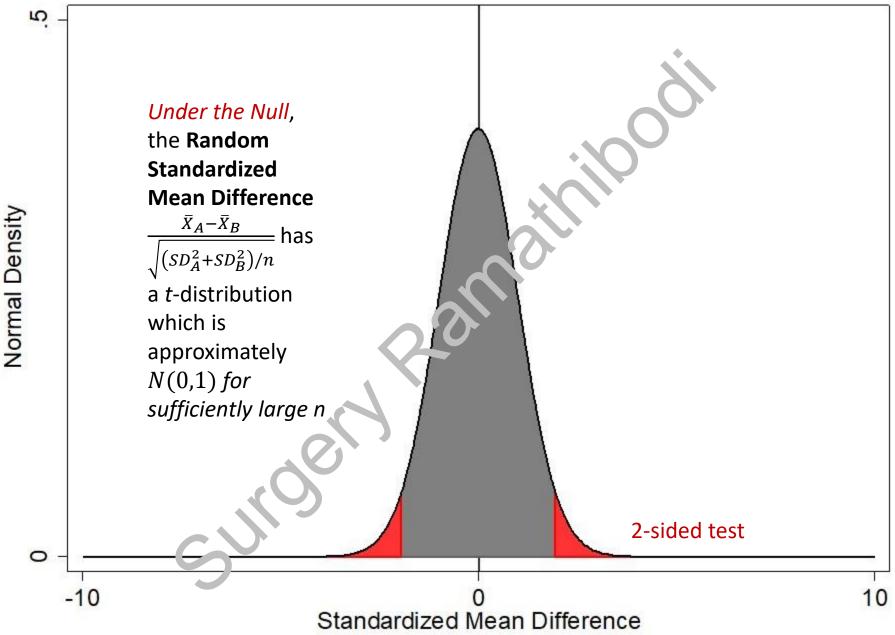
In Other Words ...

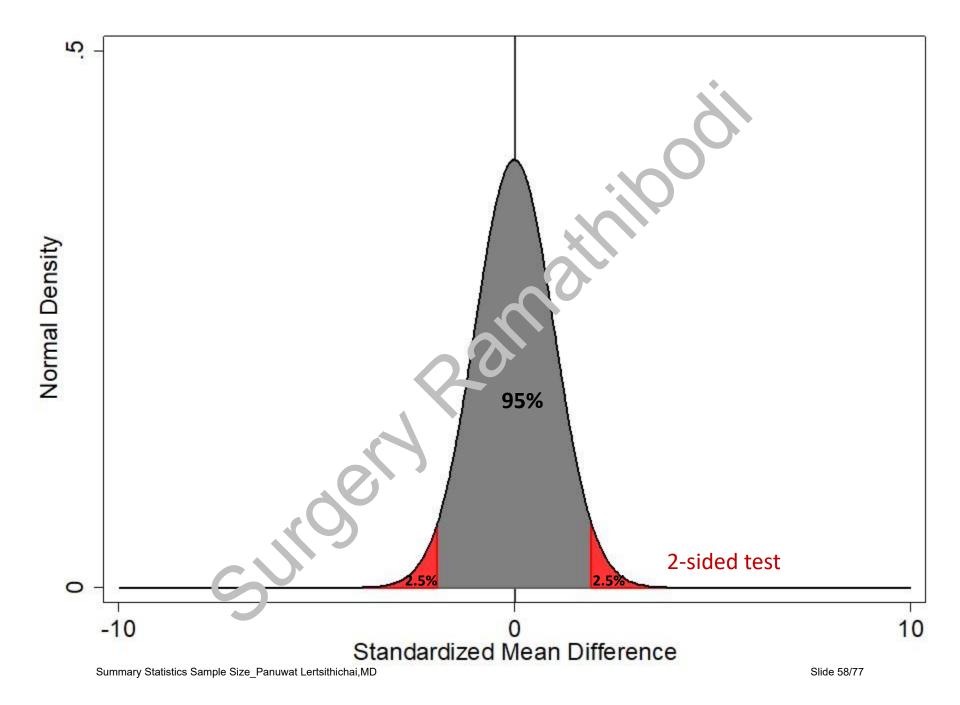
- If a given true mean difference exists, say $\bar{x}_A \bar{x}_B = 0.5$, then in *repeated experiments* the **statistical test** will declare statistical significance in at least 80 out of 100 trials in the long run
- This is, of course, purely hypothetical
- How can we use this idea to estimate a sample size?

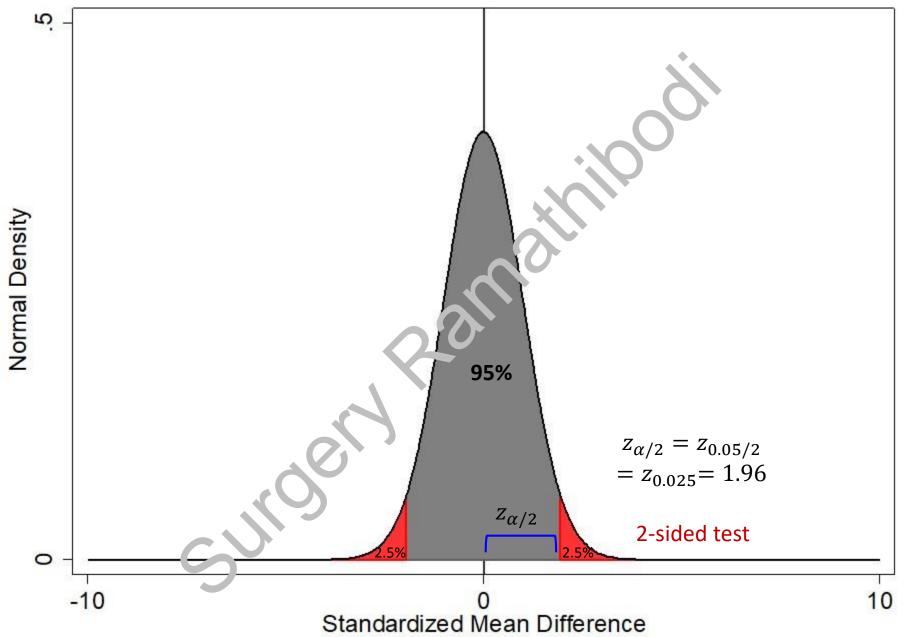
The Random Mean Difference

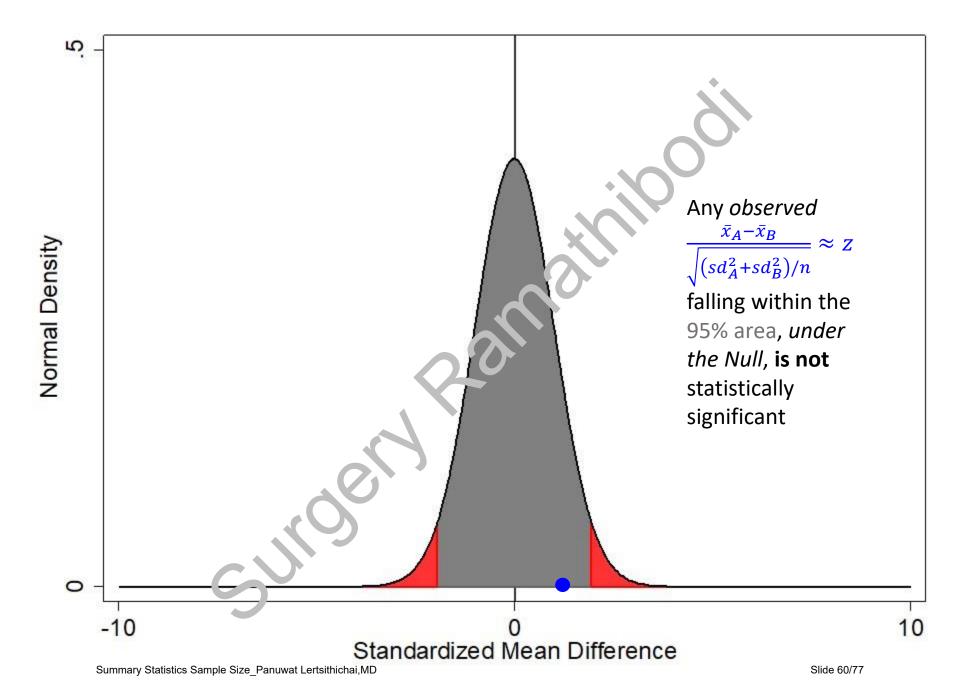
- The Standardized Mean Difference, under repeated experiments, will be a random variable with a probability distribution of values
- Under certain conditions, this probability distribution is approximately Normal
- Under the additional assumption of no real difference (Null Hypothesis) the distribution is Standard Normal N(0,1)

$$\sqrt{\frac{\bar{X}_A - \bar{X}_B}{\left(SD_A^2 + SD_B^2\right)/n}} \equiv T \approx Z$$

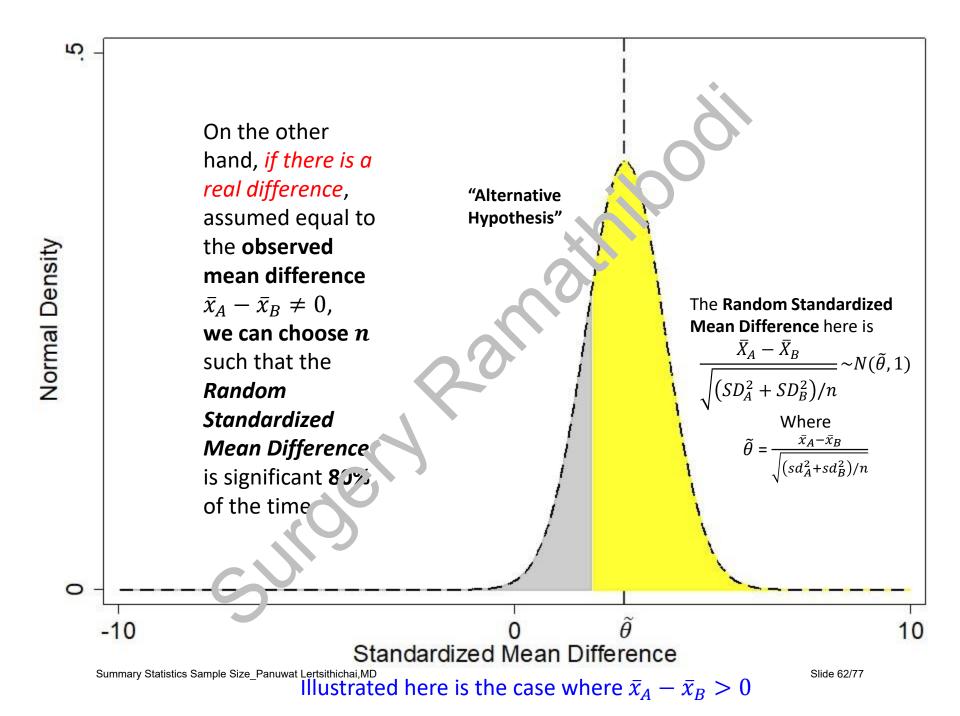


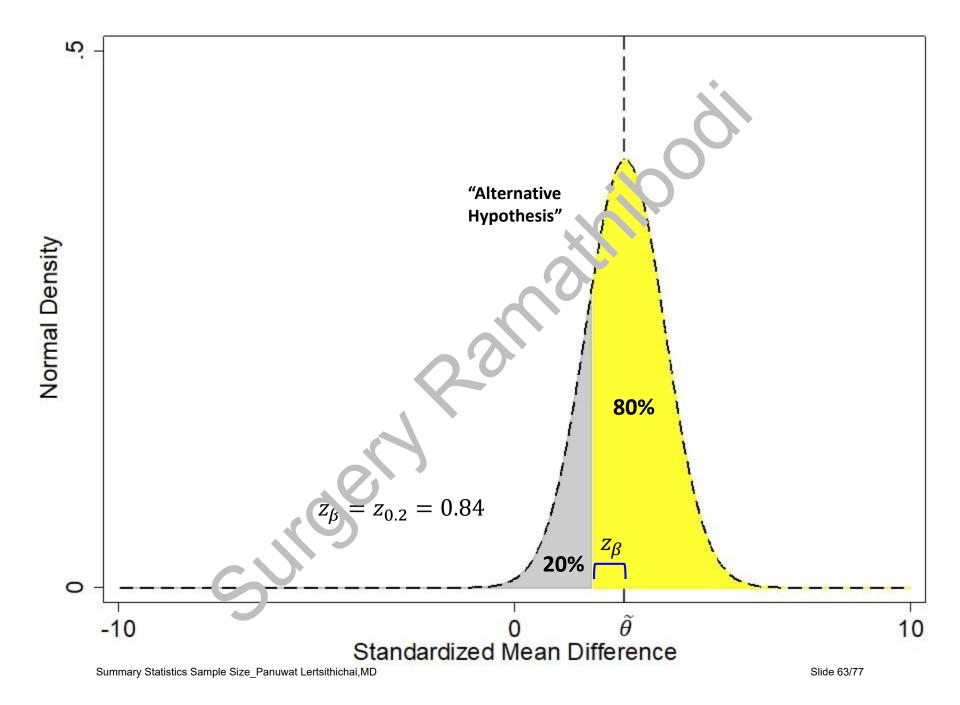


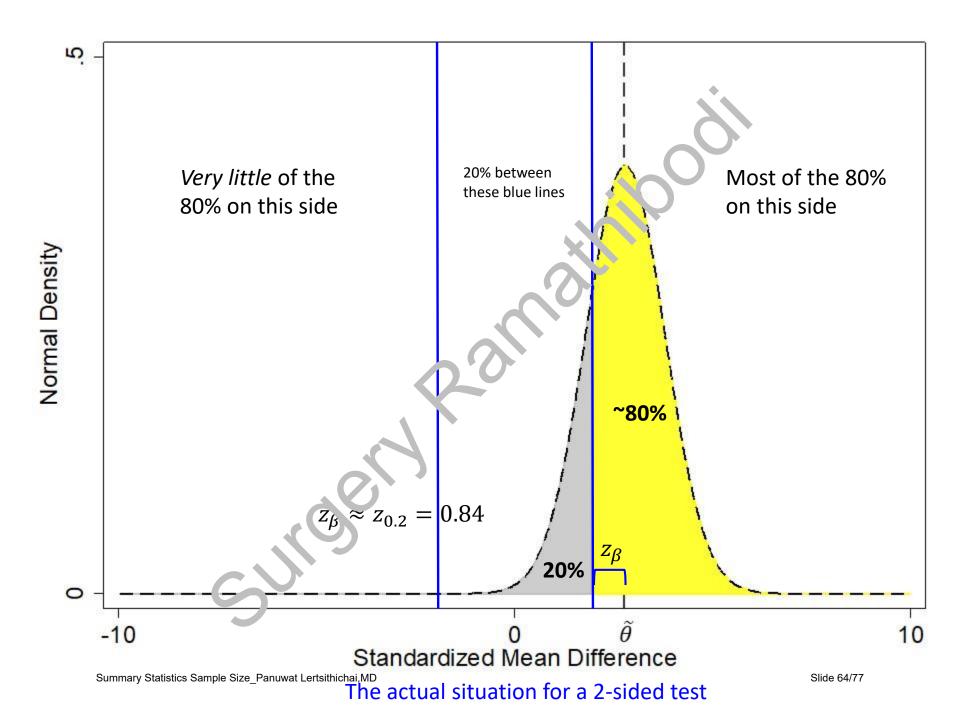


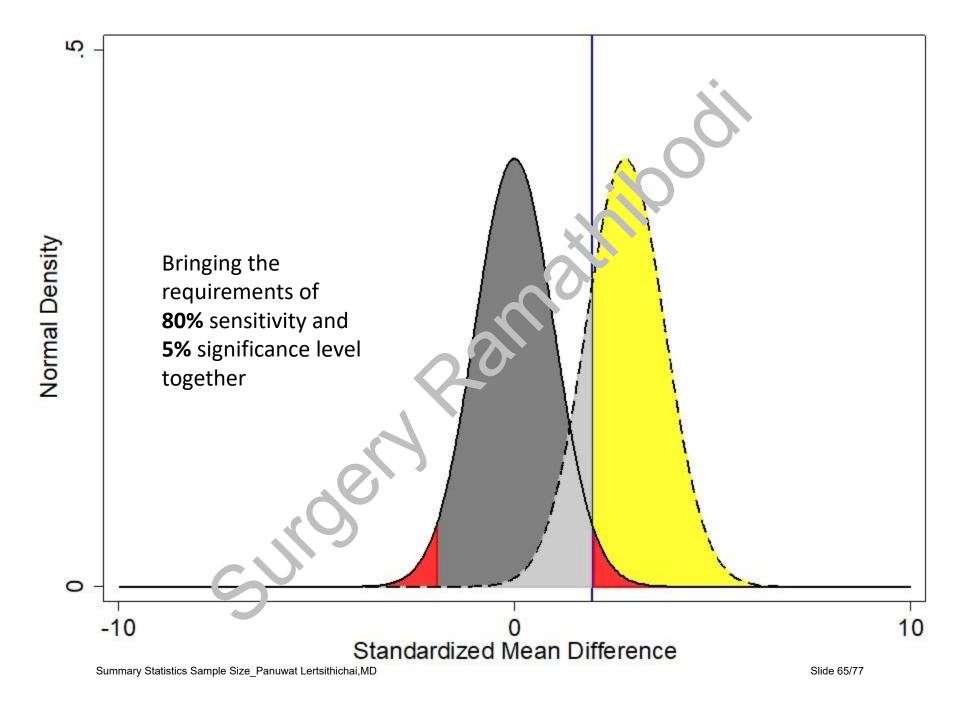


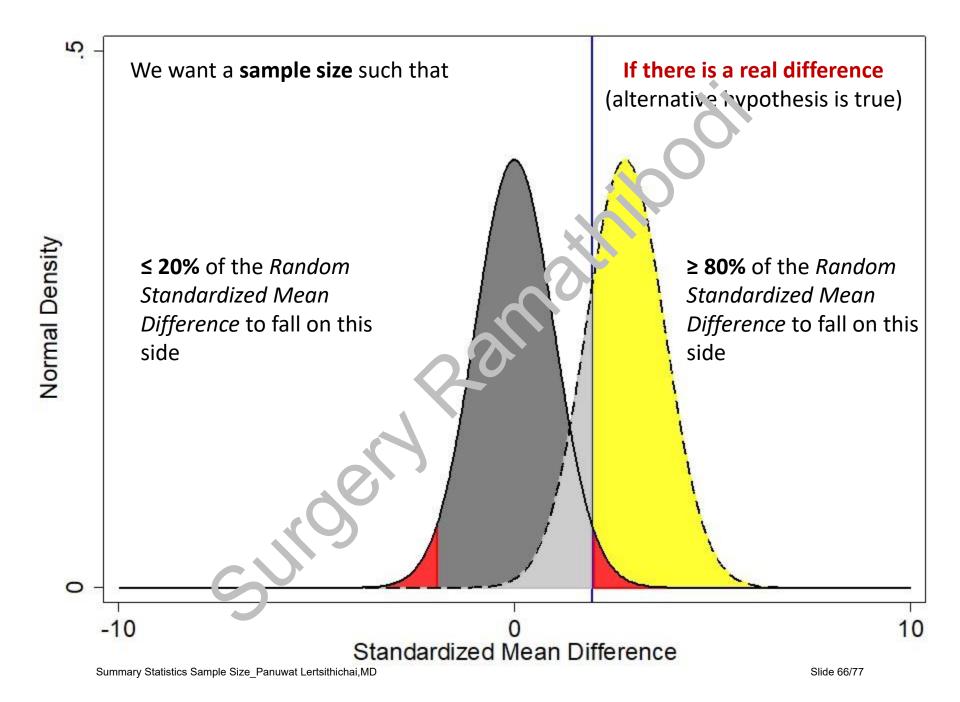


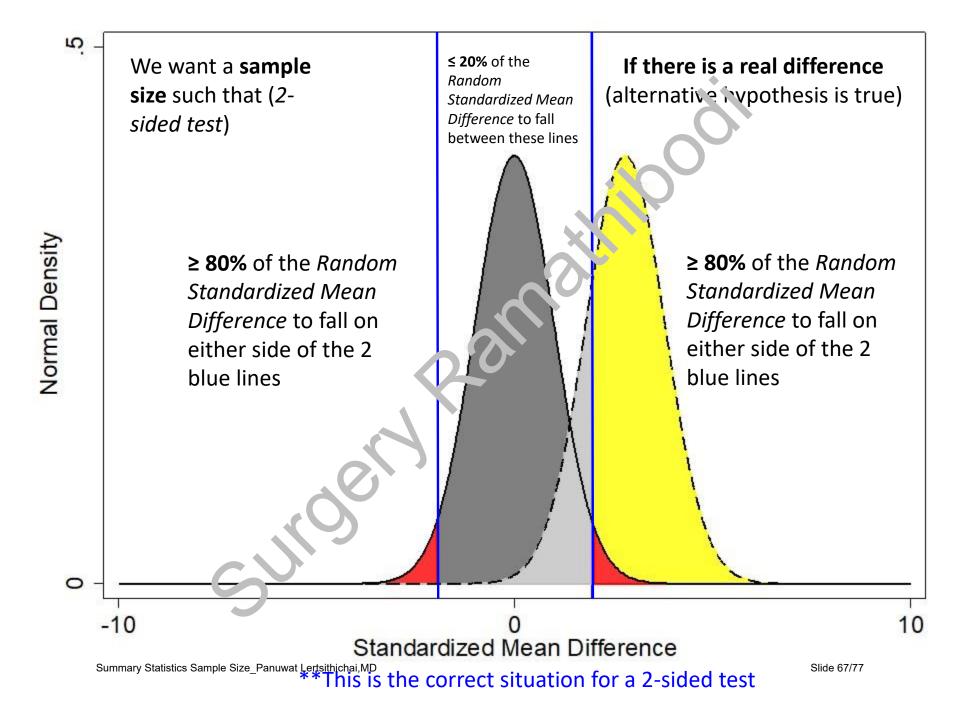


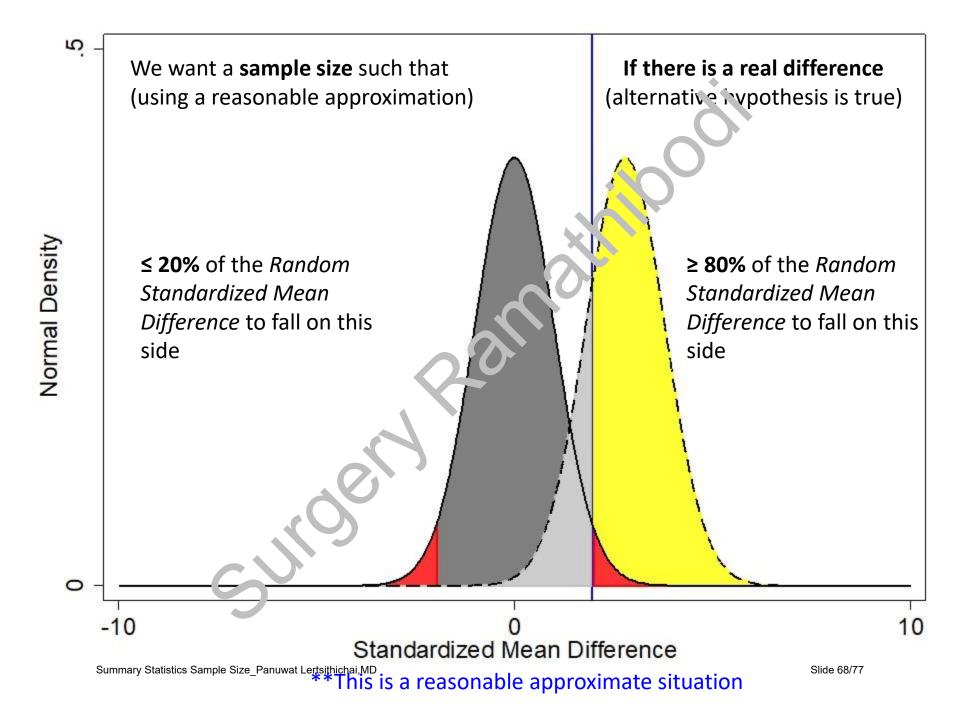


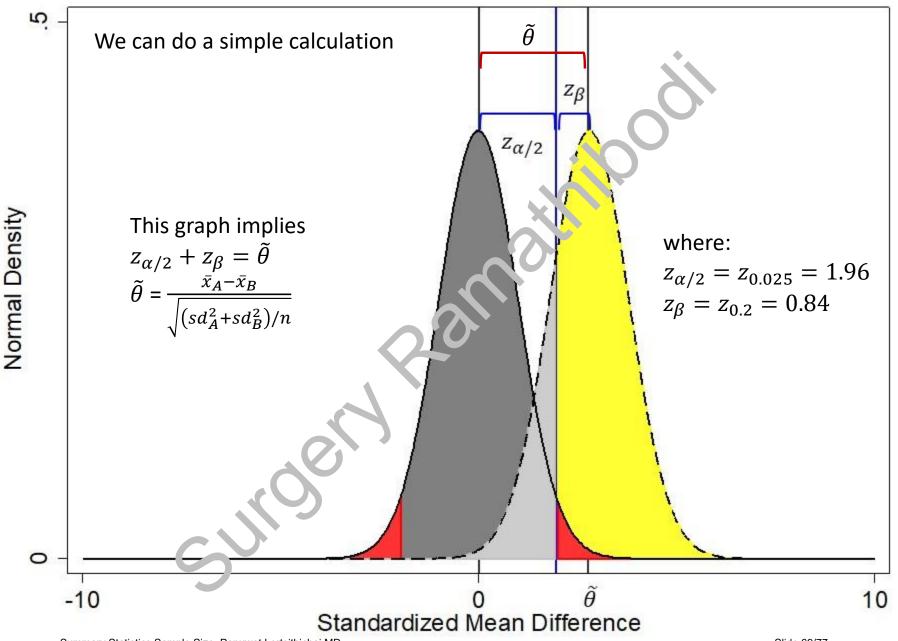












The Sample Size Formula

Since

$$z_{\alpha/2} + z_{\beta} = \frac{\bar{x}_A - \bar{x}_B}{\sqrt{(sd_A^2 + sa_B^2)/n}}$$
, therefore

$$n = \frac{(z_{\alpha/2} + z_{\beta})^{2} (s_{A}z_{\beta} + s_{A}z_{B}^{2})}{(\bar{x}_{A} - \bar{x}_{B})^{2}} = \frac{(2.8)^{2} (s_{A}z_{\beta}^{2} + s_{A}z_{B}^{2})}{(\bar{x}_{A} - \bar{x}_{B})^{2}}$$

And this is the prototypical sample size formula (for the "equality triai") – the *minimum* value

The Sample Size Formula

Since

$$z_{\alpha/2} + z_{\beta} = \frac{\bar{x}_A - \bar{x}_B}{\sqrt{(sd_A^2 + sa_B^2)/n}}$$
 therefore

$$(1.96 + 0.84) = 2.8$$

$$n = \frac{(z_{\alpha/2} + z_{\beta})^{2} (s_{A}z_{A}^{2} + s_{A}z_{B}^{2})}{(\bar{x}_{A} - \bar{x}_{B})^{2}} = \frac{(2.8)^{2} (s_{A}z_{A}^{2} + s_{B}z_{B}^{2})}{(\bar{x}_{A} - \bar{x}_{B})^{2}}$$

And this is the prototypical sample size formula (for the "equality triai") – the *minimum* value

Let's Re-evaluate the Sample Size

- From the previous study
- We know the values of \bar{x}_A , \bar{x}_B $\lesssim d_A$, sd_B
- We can re-evaluate the sample size required to detect this specific difference with 80% sensitivity (in statistics, sensitivity is called **Power**)
- The appropriate sample size should be, at least ...

•
$$\eta = \frac{(2.8)^2 (sd_A^2 + 5d_B^2)}{(\bar{x}_A - \bar{x}_E)^2} = \frac{(2.8)^2 (1.5^2 + 1.6^2)}{(5.4 - 4.9)^2} = \cdots$$

What if the Outcome is Binary?

- What if we are interested in pain level as the outcome?
- Suppose we wish to compare severe pain between the two groups, defined as VAS > 5
- From the previous study:

Drug A: no. of patients with VAS > 5 = 4 (0.4)

Drug B: no. of parients with VAS > 5 = 3 (0.3)

• Call these proportions p_A and p_B

What if the Outcome is Binary?

Replace

$$\bar{x}_A - \bar{x}_B$$
 with $p_A - p_B$

$$sd_A$$
 with $\sqrt{p_A}\overline{(1-p_A)}$

$$sd_B$$
 with $\sqrt{p_B(1-p_B)}$

Sample Size Formula for Proportions

• The sample size formula becomes

$$n = \frac{2.8^2 \{ p_A (1 - p_A) + p_B (1 - p_B) \}}{(p_A - p_B)^2}$$

- What is the estimated sample size for $p_A=0.4$ and $p_B=0.3$? (significance level 5%, power 80%)
- $n = \frac{2.8^2 \{0.4 (1-0.4)+0.3 (1-0.3)\}}{(0.4-0.3)^2} = ?$ What do you see?

More Exercises

- A clinical trial comparing preoperative antibiotics with no antibiotics in the prevention of postoperative infection
- No antibiotics: infection (ate 20% (0.2)
- Calculate the sample size required ...

•
$$n = \frac{2.8^2 \{p_A(1-p_A) + p_B(1-p_B)\}}{(p_A - y_B)^2}$$

• What is p_A ? What is p_B ?

Summary

We discussed/introduced

- Summary statistics
- Simple statistical tests
- Sample size estimation
 Hopefully this is useful!

Thank you for Your Attention!