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Contents

* Biomedical research questions & relation ta statistical models
* From the “Regression Model” point of ¥iev

e Total Variation =|Systematic|+ Randarn

* Lots of equations & numbers!
* Research designs will not be covered here, though just as important

Introduction to Statistical Models_Panuwat Lertsithichai,MD Slide 2/34



Research Questions

Various biomedical research questions have <arresponding appropriate
statistical models, given appropriate reseci-ch designs

* Incidence, prevalence, average/mean values
* Treatment (Impact of intervention;

* Diagnosis (Diagnostic accuracy)

* Prevention (Impact of intarverition)

* Risk/etiologic/prognostic;/predictive factors
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Regression Point of View (Not Naw)

Many medical research questions can be rephrascadin “Regression” terms,
i.e., as regression models : in terms of statistizu! relations between Outcome/
Variate Y (random) and Predictors/Covariates.a (fixed): mean-value relations

Questions of Incidence, Prevalence, Averuge (no X)

s E(Y) =«

Questions of One Covariate or Risk ractor or One Treatment Factor (one X)
cE(Y|X=x)=a+ fx

Questions of Multiple Covariates (many X1, X5, ...)

s E(Y|X{ =x, X5 .. =a+ B1xy + Boxy + -+

a, B's are regression.coefficients or regression parameters (constants)*

Slide 4/34
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Example 1: Question of Average Value

Average (mean) value of BMI in a target poauiation: Cohort Study
« E(BMI) = «
From a random sample of 20 patients1rom the target population:
« E(BMI) = a = 30.5 kg/m? ; inis'is the estimated average
* If the sample SD = 15.2 kg/m?,
the standard error of thezverage BMI is SE = 15.2/+/20 kg /m?

* Thus, the 95% CI for MIs {30.5 + =222 X9} = (30,5 + 6.6



Example 2: Question of Incidencs

Incidence of postoperative infection in a penuiation: Cohort Study

 Qutcome Y = 1 or 0 (binary)*

Two common forms: firstly, the linearivarametrization™**,

cEFEY)=a=mn

Secondly, by reparametrizing. vsing the logistic transform,

° log(ﬁ) = 0, i.e., the lcg odds parameter, then we have the logistic

parametrization,

6
cE(V)=m=-"S2

1+e@ e—0+1

Introduction to Statistical Models_Panuwat Lertsithichai,MD

*Formally, we set an Indicator Function I(Y), such that I(Y) = 1 for Y = Infecteg,qs.
**]t is common to use 7 to denote the parameter of a Bernoulli/Binomial trial/process



Example 2: cont. 1

A sample of 10 patients with 2 infections*:
Y =1{1,1,0,0,0,0,0,0,0,0}

1+1+0+0+0+0+0+0+0+0

c E(Y) = — = 0.2, this is the estimated incidence**

0.2(1-02) _ 0.13
10

* 95% Clfortis ~ {0.2 + 1/°¢ x 0.13} = {0.2 + 0.25} = {—0.05, 0.45}
* Using linear parametr.zaiion, the incidence may have negative values!

« E(Y) =7 = 0.2; the standard error is SE(77) = \/

Introduction to Statistical Models_Panuwat Lertsithichai,MD * Again, formally, the set is defined for the indicator function I(Y), not the randorg,yasigble Y
**The “hat” in, e.g., 7T is commonly used to denote the “Maximum likelihood” estimator



Example 2: cont. 2

Using the logistic parametrization, on the othernand:

* 0 =log (ﬁ) ~ 0 = log (12'5_2) = log10.25) = —1.39

- SE(6) ~ \/% + oy = 079

* 95% Cl for 6: {—1.39 + 1.96 x (.79} = {—2.94,0.15}
* Transforming back to m, tiie'95% Cl for incidence 7 : {0.05, 0.54}

* No negative values!

* Also, the logistic scaie 1s.niore convenient for multivariable regression models for
Binary Outcomes (logis:ic regression models)
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Maximum Likelihood Estimate (MLE)

A sample of 10 patients with 2 infections:
Y =1{1,1,0,0,0,0,0,0,0,0}

C E(Y) ~ 1+1+o+0+01+00+0+0+0+0 — 0

* This is the estimated incidence u:itig the Method of Moments*
Another method is that of Maximum Likelihood

* Consider the sequence of natients as a sequence of Bernoulli Trials
* With probability of infe<tion (i.e. incidence)

* The likelihood is zerined as the probability of observed outcome
sequence, as a function of 17 : Likelihood () = % (1 — m)®

Introduction to Statistical Models_Panuwat Lertsithichai,MD *The “tilde” in 7 is used to distinguish this from the Maximum likelihood estimatotids 9/34



Graph of the Likelihood 7% (1 — m)®
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The value of T which maximizes the Likelihood
is the maximum likelihood estinate,

[

0
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Maximum Likelihood Estimate: cont.

Maximize the Likelihood 7% (1 — 1)® with respeciwo i
e Take the log first: log{m?(1 — m)®} = 2 x lagln) + 8 x log(1 — )

: : L 2 8
 Differentiate this with respect to T & s>vto O: 0 0

: : «“ =) A~ 2
* Solve this equation and the “MLE 1s: T = 0 0.2

* The MLE is actually equivalent tc. the method of moments, in this case
* |n general this may not be1h¢e case

* There are theoretical aqvaritages of MLE, and also some disadvantages
* We mention the ViLE here because of its wide spread use*; see later
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Example 3: Question of One Covariate

A RCT comparing operation A vs. B in terms.ctpain (VAS)
* One outcome: Y = pain(VAS)
* One binary Treatment factor: X = 0 for aperation A; X = 1 for operation B

The regression equation is

cE(Y|X=x)=a+ Bx

This can be expanded into Z'eguations, one for each operation:
cE(Y|X=0)=E(Y)y =« for operation A with X = 0; and
cE(YIX=1)=EYyy=a+p for operation Bwith X = 1
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Example 3: cont. 1

cE(Y)y =« is the average pain for operation A

*E(Y); = a+ B isthe average pain forogeration B

* Therefore f is the difference in average pain between 2 operations
* The statistical Null hypothesisis:Hy: f =0

e Given that Y (pain VAS) has a'Normal distribution,

The test for f = 0 is simeiy the t-test
e Statistical tests can be incerpreted as tests for regression parameters

e Note*: E(Y); —E)o =V, -V, =p

Introduction to Statistical Models_Panuwat Lertsithichai,MD . . . T ide 14/
- * Formally, E(Y) is the true mean in a population, while Y is the sample mean, so E( % ) = 4



Example 3: cont. 2

Result of a RCT with 20 patients per arm:

* Average pain (VAS) operation A: 5.6; SB,.2:3
* Average pain (VAS) operation B: 4.3 2D: 2.1
*f=43-56=-1.3

2 2
- SE(B) ~ \/ﬁ +2= = 0.6
B 1.3 .
* The t-test value=——=-=———=-1.87;  2-sided p-value 0.070
SE(P) 0.69

* 95% Cl for f : {—1.3 + 2.02 X 0.69} = {—2.69,0.09} covers 0
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Example 3: cont. 3 — Factors Related to Pain

*E(Y)g=0a +p
*E(Y); =a +p + p)

e E(Y); —E(Y)y =P istrue (cn 2verage) for RCT’s

* Non-randomized (Observztional) study designs cannot achieve this

* One way for observatian2i studies to emulate RCT’s is to do matching
using some appropriace scoring system: known as propensity scoring
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Example 4: Question of Many Ccvariates (a)

The Outcome Y may be affected by many factais X4, X5, ...

Concentrating only on one factor X; witkout consideration of others
may lead to erroneous conclusions in <t ieast 2 ways:

* The prediction of Y may not be-accuirate

* The effect of X; on Y may depend on other X's as well (Confounding);
by ignoring this, the estimation of effect of of X; on Y may be wrong
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Study comparing MAP and CO, insufflation volume in LC
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Study comparing MAP and CO, insufflation volume in LC
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Appropriate Model?

Systematic Random
[ | AT
Y=a+ fpx +e

MAP|CO,vol = v+ [1CO,v0l + €

E(MAP|CGyvo0l) = a + [;CO,vol

e ~N (O’ 0'2) o2 = Residual variance
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Appropriate Model?

0
Values of Residuals 'e'

e~N(0,5?)

Although extremely important, we ignore modeling the random component
Introduction to Statistical Models_Panuwat Le@fhiti@ostatistical model for now, as the issue is more difficult to explain Slide 21/34



Study comparing MAP and CO, insufflation volume in LC
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Study comparing MAP and CO, insufflation volume in LC

110
|

o ° o Slope =2.29; ;=0.027
o

100
|

90

80

CO2 Volume (L)

Introduction to Statistical Models_Panuwat Lertsithichai,MD Slide 23/34



Study comparing MAP and CO, insufflation volume in LC
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Linear Regression Ananisis

Univariable Analysis “ het ivariable Analysis

Mean Effect (95% CI)  P-value Mean Effect (95% CI)  P-value

CO, volume —-3.39 (-6.22 to —0.56) 0.01) 2.18 (0.95 to 3.40) 0.001

Gender (men) -14.9(-16.3to-13.6! <0 Ju01 -159(-17.3to-14.5) <0.001

For every 1 L of CO2 volurae increase, a 3.39 mmHg reduction
in MAP is expected if everything else is unknown;

For every 1 L of CC:2 olume increase, a 2.18 mmHg increase
in MAP is expecied arter adjustment for effect of gender

“Simpson’s Paradox”
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Uni- vs. Multi-variable Analysis™®
-3.39

E(MAP) = + ﬁ1C02:7Ul

Univariable

Analysis [

E(MAP) = a -+ _bzu'ender Men = 1; Women =0
-14.9

Multivariable

Analysis

E(MAP) =« + ,CO,vol + B,Gender
2.18 -15.9

Introduction to Statistical Models_Panuwat Lertsithichai,MD *We drop the conditional notation for convenience: thus, E(MAP) is E(MAP [f0£881), etc.



Example 5: Question of Many Ccovariates (b)

Important risk factors for post-operative infection; a Cohort Study

e Qutcome is occurrence of SSI: Y (yes =1, No = 0)*

* Multiple risk factors: X{, X5, ...

The regression equation is

cE(Y|X{ =x,X, ..)=a+6:x;+Loxy +-=m

e Since for binary data m ccr.not be negative, we use the logistic scale**

VIA
* log (E) =0 =a 4813 + fax; + -

* This is the multipie 'ogistic regression model

* Again, formally, the binary values are for the indicator function I(SS1) _
*AnfRLHCR 8 SRErRIPReBRUME ST RILINE AR parametrization, e.g. the log-odds is the canonical or natural parameter for Generalized Linear Model (GLM) with tRE8&¢Abulli/
Binomial Probability Distribution
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Table 1. Characteristics of patients and operations, with and without SSI

Characteristics® Total Without SSI l With SSI
(n = 458 operations)® n = 423 operations) .ﬂ = 35 operations)

Age (years): mean (SD) 59.6 (14.4) 57.5(17.2)
Gender (males) 205 (49%) 18 (51%)
Preoperative stay (days):

Median (range) 2 (1toCR) 2 (1 to 68)
ASA class SSl rate:

I 17,0493, 0

I 122.(=3%) 8 (23%) 35/458=0076

i 174°41) 21 (60%)

v £ 20(12%) 6(17)

A% 1(0) 0
Wound classilication N

Clean® 37 (9%) 4 (11%)

Clean-contaminated 348 (82%) 23 (66%)

Contaminated 23 (5%) 3 (9%)

Dirty 15 (4%) 5 (14%)
Duration of surgery (minutes):

Median (range) 120 (30 to 550) 150 (60 to 615)
NNIS index

0 139 (33%) 1 (3%)

| 203 (48%) 17 (49%)

2 74 (17%) 14 (40%)

3 7 (2%) 3 (9%)
Cancer (yes) 235 (56%) 18 (51%)
Operations on Organs

Gall bladder 121 (31%) 8 (23%)

Biliary trac 38 (9%) 10 (29%)

Colon 205 (49%) 15 (43%)

Liver 35 (8%) 2 (6%)

Pancreas 16 (4%0) 0
Older o .%ﬁé‘.t}\?@ theaters (> 12 yrs) 282 (67%) 25 (71%) Siide 28/34
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Testing for Significant Difference

Finding important factors related to SSI can ke .done by looking for
significant differences between patients witr; SSI and those without SSI
in terms of these factors

* We can do this one by one — “univeriable” analysis
* In terms of regression models, Tor factor X;:

-log(ﬁ) =0 =a+ fix,

* By testing for f; = 0 in2'univariable logistic regression model
* If we decide [, # 1), tnen factor X; is significantly related to SSI
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Interpretation of [ in Logistic Regression

Consider a binary factor X (1 or 0)

* log (é) = a + [x can be written as 2'equations:

°log( 70 )=a if X-=.0; thus

U5

* log (1n1 ) — log (1?—) =: 3; or log (E) = B = log(OR); or

—TT
1 1-1Tg

« OR = ef : the Odds Ratio
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Example 5: cont.

* Factors identified to be important on univariadle analysis are inserted
into a multivariable analysis to obtain a ririal multivariable model with

a set of independent risk factors
* This is a commonly used strategv : reasonable in many situations

* Estimates of 8's can be obtained by maximizing the Likelihood function
and using asymptotic propeities (point & interval estimates)®:

J¥aax’  Likelihood(fy, 57, ...)
L1=81.52=P2,--

Introduction to Statistical Models_Panuwat Lertsithichai,MD *Lachin JM. Biostatistical methods: the assessment of relative risk. 2" ed. Wileys 2011



Table: Logistic Regression Models for SSI

Odds Ratio (95% Cl)

Odds Ratio (95% Cl)

Age (years)
Gender (m=1; f=0)
Preop stay (d)
ASA Class
Wound Class

1

2

3

4
Duration of Surg (hr)
Cancer (yes)

Introduction to Statistical Models_Panuwat Lertsithichai,MD

Univariable

0.99 (0.97, 1.01)
1.23 (0.56, 2.24)
1.03 (0.99, 1.06)
1.78 (1.14, 2.84)

1
0.61 (0.26, 2 86)
1.21 (0.25, 5.89)
3.03 (0.73, 13.1)
1.42 (1.20, 1.67)
(.85 (0.42, 1.69)

0.41¢
0726
0.102
J.012

0.030

<0.001
0.637

ultivariable

1.88 (1.15, 3.09)

1
0.94 (0.28, 3.14)
1.65 (0.31, 8.90)
5.92 (1.21, 28.9)
1.47 (1.23, 1.76)

0.013

0.018

<0.001

N = 458
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A “Predictive/Prognostic Score”

°* From log(ﬁ) =0 =a+181x1+f2y2+...
* Construct a “score” for SSI = a + [1x,.4- 52x, + +-+  “Linear predictor”

* In this case™®: S = —6.88 + 0.622ASA~+0.698Wound + 0.3940ptime
* The risk of SSl is calculated as

\ 1
(LS =
) 14+e°
 Example: a patient with ASA = 2; Wound class = 2; op time = 1.5 hr
. S = —3.651 Risk = ——— = 0.025

1+€3'651

Introduction to Statistical Models_Panuwat Lertsithichai,MD *For this scoring system, Wound class was entered as a quantitative sariabta



Extensions of Statistical Models

The idea of regression modeling extends to mare complicated data
structures or generating mechanisms (ana aiternatives):

e Other categorical outcomes: > 2 catezcries; ordinal outcomes

* Correlated and longitudinal data: multiple measurements on 1 person
* Robust regression

* Non-parametric regression

* Bayesian version of regrezsion models

e efc.
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