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Contents

• Biomedical research questions & relation to statistical models

• From the “Regression Model” point of view

• Total Variation = Systematic + Random

• Lots of equations & numbers!

• Research designs will not be covered here, though just as important
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Research Questions

Various biomedical research questions have corresponding appropriate 
statistical models, given appropriate research designs

• Incidence, prevalence, average/mean values

• Treatment (Impact of intervention)

• Diagnosis (Diagnostic accuracy)

• Prevention (Impact of intervention)

• Risk/etiologic/prognostic/predictive factors
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Regression Point of View (Not New)

Many medical research questions can be rephrased in “Regression” terms, 
i.e., as regression models : in terms of statistical relations between Outcome/ 
Variate 𝑌 (random) and Predictors/Covariates 𝑋 (fixed): mean-value relations

Questions of Incidence, Prevalence, Average (no 𝑋)

• 𝐸 𝑌 = 𝛼

Questions of One Covariate or Risk Factor or One Treatment Factor (one 𝑋)

• 𝐸 𝑌|𝑋 = 𝑥 = 𝛼 + 𝛽𝑥

Questions of Multiple Covariates (many 𝑋1, 𝑋2, …)

• 𝐸 𝑌|𝑋1 = 𝑥1, 𝑋2… = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯

𝛼, 𝛽′s are regression coefficients or regression parameters (constants)*

*We will confine our discussions to the Frequentist version/School of Statistics
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Example 1: Question of Average Value

Average (mean) value of BMI in a target population: Cohort Study

• 𝐸 𝐵𝑀𝐼 = 𝛼

From a random sample of 20 patients from the target population:

• 𝐸 𝐵𝑀𝐼 = 𝛼 ≈ 30.5 𝑘𝑔/𝑚2 ; this is the estimated average

• If the sample 𝑆𝐷 = 15.2 𝑘𝑔/𝑚2,

the standard error of the average BMI is 𝑆𝐸 ≈ 15.2/ 20 𝑘𝑔/𝑚2

• Thus, the 95% CI for BMI is 30.5 ±
1.96×15.2

20

𝑘𝑔

𝑚2 = {30.5 ± 6.6
𝑘𝑔

𝑚2}
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Example 2: Question of Incidence

Incidence of postoperative infection in a population: Cohort Study

• Outcome 𝑌 = 1 𝑜𝑟 0 (binary)*

Two common forms: firstly, the linear parametrization**,

• 𝐸(𝑌) = 𝛼 ≡ 𝜋

Secondly, by reparametrizing, using the logistic transform,

• log(
𝜋

1−𝜋
) = 𝜃 , i.e., the log odds parameter, then we have the logistic

parametrization, 

• 𝐸 𝑌 = 𝜋 =
𝑒𝜃

1+𝑒𝜃
=

1

𝑒−𝜃+1

*Formally, we set an Indicator Function 𝐼(𝑌), such that 𝐼 𝑌 = 1 for 𝑌 = 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑, etc. 
**It is common to use 𝜋 to denote the parameter of a Bernoulli/Binomial trial/process
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Example 2: cont. 1

A sample of 10 patients with 2 infections*:

• 𝑌 = {1, 1, 0, 0, 0, 0, 0, 0, 0, 0}

• 𝐸 𝑌 ≈
1+1+0+0+0+0+0+0+0+0

10
= 0.2;   this is the estimated incidence**

• ෣𝐸(𝑌) = ො𝜋 = 0.2; the standard error is 𝑆𝐸 ො𝜋 ≈
0.2 1−0.2

10
= 0.13

• 95% CI for ො𝜋 is  ≈ 0.2 ± 1.96 × 0.13 = 0.2 ± 0.25 = {−0.05, 0.45}

• Using linear parametrization, the incidence may have negative values!

* Again, formally, the set is defined for the indicator function 𝐼(𝑌), not the random variable 𝑌
**The “hat” in, e.g., ො𝜋 is commonly used to denote the “Maximum likelihood” estimator 
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Example 2: cont. 2

Using the logistic parametrization, on the other hand:

• 𝜃 = log
𝜋

1−𝜋
≈ መ𝜃 = log

0.2

1−0.2
= log 0.25 = −1.39

• 𝑆𝐸 መ𝜃 ≈
1

2
+

1

(10−2)
= 0.79

• 95% CI for መ𝜃: −1.39 ± 1.96 × 0.79 = {−2.94, 0.15}

• Transforming back to 𝜋, the 95% CI for incidence ො𝜋 ∶ {0.05, 0.54}

• No negative values!
• Also, the logistic scale is more convenient for multivariable regression models for 

Binary Outcomes (logistic regression models)
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Maximum Likelihood Estimate (MLE)

A sample of 10 patients with 2 infections:

• 𝑌 = {1, 1, 0, 0, 0, 0, 0, 0, 0, 0}

• 𝐸 𝑌 ≈
1+1+0+0+0+0+0+0+0+0

10
= 0.2 = ෤𝜋

• This is the estimated incidence using the Method of Moments*

Another method is that of Maximum Likelihood

• Consider the sequence of patients as a sequence of Bernoulli Trials

• With probability of infection (i.e. incidence) 𝜋

• The likelihood is defined as the probability of observed outcome 
sequence, as a function of 𝜋 : 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝜋 = 𝜋2(1 − 𝜋)8

*The “tilde” in ෤𝜋 is used to distinguish this from the Maximum likelihood estimator, ො𝜋Introduction to Statistical Models_Panuwat Lertsithichai,MD Slide 9/34
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Graph of the Likelihood 𝜋2(1 − 𝜋)8
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ෝ𝝅

The value of 𝜋 which maximizes the Likelihood 
is the maximum likelihood estimate, ො𝜋
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Maximum Likelihood Estimate: cont. 

Maximize the Likelihood 𝜋2(1 − 𝜋)8 with respect to 𝜋

• Take the log first: log{𝜋2(1 − 𝜋)8} = 2 × log 𝜋 + 8 × log(1 − 𝜋)

• Differentiate this with respect to 𝜋 & set to 0: 
2

ෝ𝜋
−

8

1−ෝ𝜋
= 0

• Solve this equation and the “MLE” is:  ො𝜋 =
2

10
= 0.2

• The MLE is actually equivalent to the method of moments, in this case

• In general this may not be the case

• There are theoretical advantages of MLE, and also some disadvantages

• We mention the MLE here because of its wide spread use*; see later

*Used in likelihood-based models, especially useful in the case of Exponential Family of modelsIntroduction to Statistical Models_Panuwat Lertsithichai,MD Slide 12/34
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Example 3: Question of One Covariate

A RCT comparing operation A vs. B in terms of pain (VAS)

• One outcome: 𝑌 = 𝑝𝑎𝑖𝑛(𝑉𝐴𝑆)

• One binary Treatment factor: 𝑋 = 0 for operation A; 𝑋 = 1 for operation B

The regression equation is

• 𝐸 𝑌|𝑋 = 𝑥 = 𝛼 + 𝛽𝑥

This can be expanded into 2 equations, one for each operation:

• 𝐸 𝑌|𝑋 = 0 ≡ 𝐸 𝑌 0 = 𝛼 for operation A with 𝑋 = 0; and

• 𝐸 𝑌|𝑋 = 1 ≡ 𝐸 𝑌 1 = 𝛼 + 𝛽 for operation B with 𝑋 = 1
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Example 3: cont. 1

• 𝐸 𝑌 0 = 𝛼 is the average pain for operation A

• 𝐸 𝑌 1 = 𝛼 + 𝛽 is the average pain for operation B

• Therefore 𝛽 is the difference in average pain between 2 operations

• The statistical Null hypothesis is: 𝐻0 ∶ 𝛽 = 0

• Given that 𝑌 (pain VAS) has a Normal distribution,

The test for 𝜷 = 𝟎 is simply the t-test

• Statistical tests can be interpreted as tests for regression parameters

• Note*: 𝐸 𝑌 1 − 𝐸 𝑌 0 ≈ ഥ𝑌1 − ഥ𝑌0 = መ𝛽

* Formally, 𝐸 𝑌 is the true mean in a population, while ത𝑌 is the sample mean, so 𝐸 𝑌 ≈ ത𝑌
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Example 3: cont. 2

Result of a RCT with 20 patients per arm:

• Average pain (VAS) operation A: 5.6; SD: 2.3

• Average pain (VAS) operation B: 4.3; SD: 2.1

• መ𝛽 = 4.3 − 5.6 = −1.3

• 𝑆𝐸 መ𝛽 ≈
2.32

20
+

2.12

20
= 0.69

• The t-test value = 
෡𝛽

𝑆𝐸 ෡𝛽
= −

1.3

0.69
= −1.87;       2-sided p-value 0.070

• 95% CI for መ𝛽 ∶ −1.3 ± 2.02 × 0.69 = {−2.69, 0.09} covers 0
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Example 3: cont. 3 – Factors Related to Pain

• 𝐸 𝑌 0 = 𝛼′ + 𝛽𝑎𝑔𝑒0𝑎𝑔𝑒0 + 𝛽𝑠𝑒𝑥0𝑠𝑒𝑥0 +⋯ for operation A

• 𝐸 𝑌 1 = 𝛼′ + 𝛽 + 𝛽𝑎𝑔𝑒1𝑎𝑔𝑒1 + 𝛽𝑠𝑒𝑥0𝑠𝑒𝑥1 +⋯ for operation B

• 𝐸 𝑌 1 − 𝐸 𝑌 0 = 𝛽 is true (on average) for RCT’s

• Non-randomized (Observational) study designs cannot achieve this

• One way for observational studies to emulate RCT’s is to do matching 
using some appropriate scoring system: known as propensity scoring 
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Example 4: Question of Many Covariates (a)

The Outcome 𝑌 may be affected by many factors 𝑋1, 𝑋2, …

Concentrating only on one factor 𝑋1 without consideration of others 
may lead to erroneous conclusions in at least 2 ways:

• The prediction of 𝑌 may not be accurate 

• The effect of 𝑋1 on 𝑌 may depend on other 𝑋′𝑠 as well (Confounding); 
by ignoring this, the estimation of effect of of 𝑋1 on 𝑌 may be wrong
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100 subjects

Study comparing MAP and CO2 insufflation volume in LC

Research Design: 
prospective cross-
sectional study
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Study comparing MAP and CO2 insufflation volume in LC

Slope = –3.39; p = 0.019
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Appropriate Model?

𝑌 = 𝛼 + 𝛽𝑥 + 𝑒

𝑀𝐴𝑃|𝐶𝑂2𝑣𝑜𝑙 = 𝛼 + 𝛽1𝐶𝑂2𝑣𝑜𝑙 + 𝑒

𝐸 𝑀𝐴𝑃|𝐶𝑂2𝑣𝑜𝑙 = 𝛼 + 𝛽1𝐶𝑂2𝑣𝑜𝑙

𝑒~𝑁 0, 𝜎2

Systematic Random

𝜎2 = Residual variance
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Appropriate Model?

𝑌 = 𝑎 + 𝑏𝑥 + 𝑒

𝑀𝐴𝑃|𝐶𝑂2𝑣𝑜𝑙 = 𝛼 + 𝛽1𝐶𝑂2𝑣𝑜𝑙 + 𝑒

𝐸 𝑀𝐴𝑃|𝐶𝑂2𝑣𝑜𝑙 = 𝛼 + 𝛽1𝐶𝑂2𝑣𝑜𝑙

𝑒~𝑁 0, 𝜎2

Systematic Random

0
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0
Values of Residuals 'e'

Although extremely important, we ignore modeling the random component 
of the statistical model for now, as the issue is more difficult to explainIntroduction to Statistical Models_Panuwat Lertsithichai,MD Slide 21/34
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Slope = –3.39; p = 0.019

Only one covariate/factor; 
remaining variation (residuals) 
is assumed random

Large residual variation!
i.e., 𝜎2 is large
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Slope = 2.29; p = 0.027

Slope = 2.11; p = 0.012

Slope = –3.39; p = 0.019

Women

Men

(56)

(44)

Much less residual variation!
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Linear Regression Analysis

Covariates Univariable Analysis Multivariable Analysis

Mean Effect (95% CI) P-value Mean Effect (95% CI) P-value

CO2 volume

Gender (men)

–3.39 (–6.22 to –0.56)

–14.9 (–16.3 to –13.6)

0.019

< 0.001

2.18 (0.95 to 3.40)

–15.9 (–17.3 to –14.5)

0.001

< 0.001

For every 1 L of CO2 volume increase, a 3.39 mmHg reduction
in MAP is expected if everything else is unknown;

“Simpson’s Paradox”

For every 1 L of CO2 volume increase, a 2.18 mmHg increase
in MAP is expected after adjustment for effect of gender

Introduction to Statistical Models_Panuwat Lertsithichai,MD Slide 25/34

Surg
ery

 R
am

ath
ibo

di



Uni- vs. Multi-variable Analysis*

𝐸 𝑀𝐴𝑃 = 𝛼 + 𝛽1𝐶𝑂2𝑣𝑜𝑙

𝐸 𝑀𝐴𝑃 = 𝛼 + 𝛽2𝐺𝑒𝑛𝑑𝑒𝑟

𝐸 𝑀𝐴𝑃 = 𝛼 + 𝛽1𝐶𝑂2𝑣𝑜𝑙 + 𝛽2𝐺𝑒𝑛𝑑𝑒𝑟

-3.39107.5

Univariable
Analysis

Multivariable
Analysis

101.2 -14.9

93.3 2.18 -15.9

*We drop the conditional notation for convenience: thus, 𝐸 𝑀𝐴𝑃 𝑖𝑠 𝐸(𝑀𝐴𝑃|𝐶𝑂2𝑣𝑜𝑙), etc.

Men = 1; Women = 0
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Example 5: Question of Many Covariates (b)

Important risk factors for post-operative infection; a Cohort Study

• Outcome is occurrence of SSI: 𝑌 (yes =1, No = 0)*

• Multiple risk factors: 𝑋1, 𝑋2, …

The regression equation is

• 𝐸 𝑌|𝑋1 = 𝑥1, 𝑋2… = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯ = 𝜋

• Since for binary data 𝜋 cannot be negative, we use the logistic scale**

• log
𝜋

1−𝜋
= 𝜃 = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯

• This is the multiple logistic regression model
* Again, formally, the binary values are for the indicator function 𝐼(𝑆𝑆𝐼)
** There are theoretical reasons for using this parametrization, e.g. the log-odds is the canonical or natural parameter for Generalized Linear Model (GLM) with the Bernoulli/ 
Binomial Probability Distribution

Introduction to Statistical Models_Panuwat Lertsithichai,MD Slide 27/34

Surg
ery

 R
am

ath
ibo

di



SSI rate: 
35/458=0.076
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Testing for Significant Difference

Finding important factors related to SSI can be done by looking for 
significant differences between patients with SSI and those without SSI 
in terms of these factors

• We can do this one by one – “univariable” analysis

• In terms of regression models, for factor 𝑋1:

• log
𝜋

1−𝜋
= 𝜃 = 𝛼 + 𝛽1𝑥1

• By testing for 𝛽1 = 0 in a univariable logistic regression model

• If we decide 𝛽1 ≠ 0, then factor 𝑋1 is significantly related to SSI
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Interpretation of 𝛽 in Logistic Regression

Consider a binary factor 𝑋 (1 or 0)

• log
𝜋

1−𝜋
= 𝛼 + 𝛽𝑥 can be written as 2 equations:

• log
𝜋1

1−𝜋1
= 𝛼 + 𝛽 if 𝑋 = 1

• log
𝜋0

1−𝜋0
= 𝛼 if 𝑋 = 0; thus

• log
𝜋1

1−𝜋1
− log

𝜋0

1−𝜋0
= 𝛽; or log

𝜋1
1−𝜋1
𝜋0

1−𝜋0

= 𝛽 ≡ log 𝑂𝑅 ; or

• 𝑂𝑅 = 𝑒𝛽 : the Odds Ratio
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Example 5: cont. 

• Factors identified to be important on univariable analysis are inserted 
into a multivariable analysis to obtain a final multivariable model with 
a set of independent risk factors

• This is a commonly used strategy : reasonable in many situations

• Estimates of 𝛽′𝑠 can be obtained by maximizing the Likelihood function 
and using asymptotic properties (point & interval estimates)*:

max
𝛽1=෡𝛽1,𝛽2=෡𝛽2,…

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝛽1, 𝛽2, … )

*Lachin JM. Biostatistical methods: the assessment of relative risk. 2nd ed. Wiley, 2011Introduction to Statistical Models_Panuwat Lertsithichai,MD Slide 31/34
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Factor Odds Ratio (95% CI)
Univariable 

p-value Odds Ratio (95% CI)
Multivariable 

P-value

Age (years)
Gender (m=1; f=0)
Preop stay (d)
ASA Class
Wound Class

1
2
3
4

Duration of Surg (hr)
Cancer (yes)

0.99 (0.97, 1.01)
1.23 (0.56, 2.24)
1.03 (0.99, 1.06)
1.78 (1.14, 2.84)

1
0.61 (0.20, 1.86)
1.21 (0.25, 5.89)
3.08 (0.73, 13.1)
1.42 (1.20, 1.67)
0.85 (0.42, 1.69)

0.416
0.736
0.162
0.012

0.030

<0.001
0.637

-
-
-

1.88 (1.15, 3.09)

1
0.94 (0.28, 3.14)
1.65 (0.31, 8.90)
5.92 (1.21, 28.9)
1.47 (1.23, 1.76)

-

0.013

0.018

<0.001

N = 458

Table: Logistic Regression Models for SSI
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A “Predictive/Prognostic Score”

• From log
𝜋

1−𝜋
= 𝜃 = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯

• Construct a “score” for SSI = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯ “Linear predictor”

• In this case*: 𝑆 = −6.88 + 0.622ASA + 0.698Wound + 0.394Optime

• The risk of SSI is calculated as

𝑅𝑖𝑠𝑘 =
1

1 + 𝑒−𝑆

• Example: a patient with ASA = 2; Wound class = 2; op time = 1.5 hr

• 𝑆 = −3.651 𝑅𝑖𝑠𝑘 =
1

1+𝑒3.651
= 0.025

*For this scoring system, Wound class was entered as a quantitative variableIntroduction to Statistical Models_Panuwat Lertsithichai,MD Slide 33/34
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Extensions of Statistical Models

The idea of regression modeling extends to more complicated data 
structures or generating mechanisms (and alternatives):

• Other categorical outcomes: > 2 categories; ordinal outcomes

• Correlated and longitudinal data: multiple measurements on 1 person

• Robust regression

• Non-parametric regression

• Bayesian version of regression models

• etc.
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