Introduction to Statistical Models in Biomedical Research

ภาณุ "มน เลิศสิทธิชัย

อบราวิรัสำหรับแพทย์ประจำบ้าน

รางวิทมาลัยศัลยแพทย์แห่งประเทศไทย

ව බ.බ. මාස්වක

Corrected, 16 July 2020

Contents

- Biomedical research questions & relation to statistical models
- From the "Regression Model" point of view
- Total Variation = Systematic + Random
- Lots of equations & numbers!
- Research designs will not be covered here, though just as important

Research Questions

Various biomedical research questions have corresponding appropriate statistical models, given appropriate research designs

- Incidence, prevalence, average/mean values
- Treatment (Impact of intervention)
- **Diagnosis** (Diagnostic accuracy)
- Prevention (Impact of intervention)
- Risk/etiologic/prognostic/predictive factors

Regression Point of View (Not New)

Many medical research questions can be rephrased in "Regression" terms, i.e., as regression models: in terms of statistical relations between Outcome/Variate Y (random) and Predictors/Covariates X (fixed): mean-value relations

Questions of Incidence, Prevalence, Average (no X)

• $E(Y) = \alpha$

Questions of **One Covariate or Risk Factor** or One Treatment Factor (one X)

• $E(Y|X=x)=\alpha+\beta x$

Questions of **Multiple Covariates** (many $X_1, X_2, ...$)

• $E(Y|X_1 = x_1, X_2 ...) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \cdots$

 α , β' s are regression coefficients or regression parameters (constants)*

Example 1: Question of Average Value

Average (mean) value of BMI in a target population: Cohort Study

• $E(BMI) = \alpha$

From a random sample of 20 patients from the target population:

- $E(BMI) = \alpha \approx 30.5 \ kg/m^2$; this is the estimated average
- If the sample $SD=15.2~kg/m^2$, the standard error of the average BMI is $SE\approx15.2/\sqrt{20}~kg/m^2$
- Thus, the 95% CI for BMI is $\left\{30.5 \pm \frac{1.96 \times 15.2}{\sqrt{20}} \frac{kg}{m^2}\right\} = \left\{30.5 \pm 6.6 \frac{kg}{m^2}\right\}$

Example 2: Question of Incidence

Incidence of postoperative infection in a population: Cohort Study

• Outcome $Y = 1 \text{ or } 0 \text{ (binary)}^*$

Two common forms: firstly, the linear parametrization**,

• $E(Y) = \alpha \equiv \pi$

Secondly, by reparametrizing, using the logistic transform,

• $\log(\frac{\pi}{1-\pi}) = \theta$, i.e., the $\log \rho dds$ parameter, then we have the $\log stic$ parametrization,

•
$$E(Y) = \pi = \frac{e^{\theta}}{1+e^{\theta}} = \frac{1}{e^{-\theta}+1}$$

^{**}It is common to use π to denote the parameter of a Bernoulli/Binomial trial/process

Example 2: cont. 1

A sample of 10 patients with 2 infections*;

- $Y = \{1, 1, 0, 0, 0, 0, 0, 0, 0, 0\}$
- $E(Y) \approx \frac{1+1+0+0+0+0+0+0+0+0+0}{10} = 0.2$; this is the *estimated incidence***
- $\widehat{E(Y)} = \widehat{\pi} = 0.2$; the standard error is $SE(\widehat{\pi}) \approx \sqrt{\frac{0.2(1-0.2)}{10}} = 0.13$
- 95% CI for $\hat{\pi}$ is $\approx \{0.2 \pm 1.96 \times 0.13\} = \{0.2 \pm 0.25\} = \{-0.05, 0.45\}$
- Using linear parametrization, the incidence may have negative values!

^{*} Again, formally, the set is defined for the indicator function I(Y), not the random Y

^{**}The "hat" in, e.g., $\hat{\pi}$ is commonly used to denote the "Maximum likelihood" estimator

Example 2: cont. 2

Using the logistic parametrization, on the other hand:

•
$$\theta = \log\left(\frac{\pi}{1-\pi}\right) \approx \hat{\theta} = \log\left(\frac{0.2}{1-0.2}\right) = \log(0.25) = -1.39$$

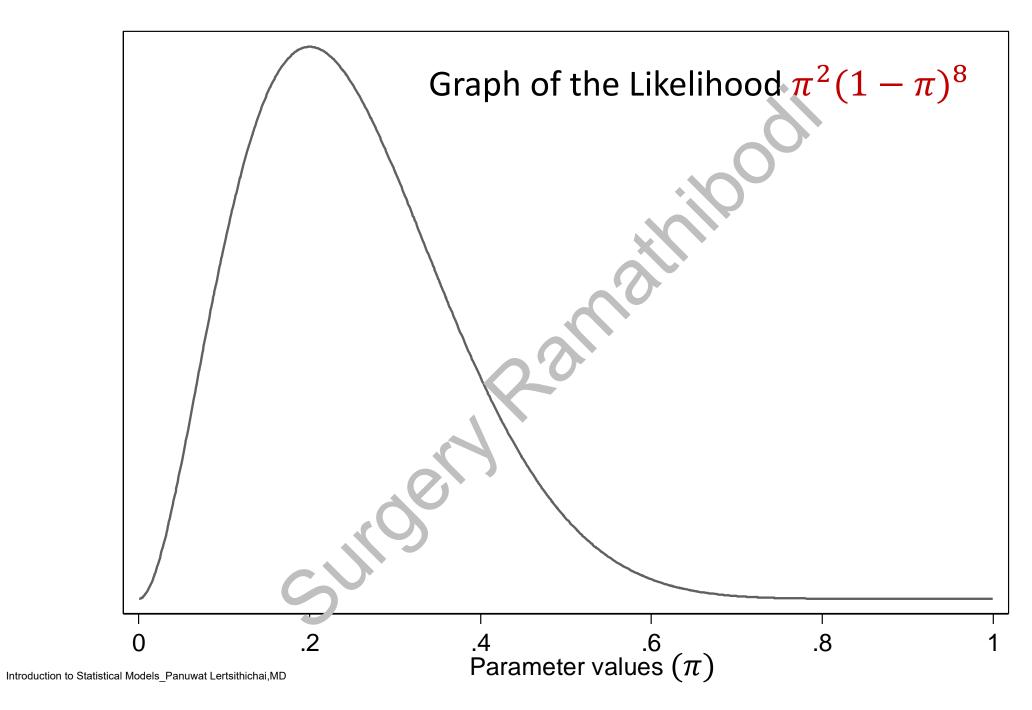
•
$$SE(\hat{\theta}) \approx \sqrt{\frac{1}{2} + \frac{1}{(10-2)}} = 0.79$$

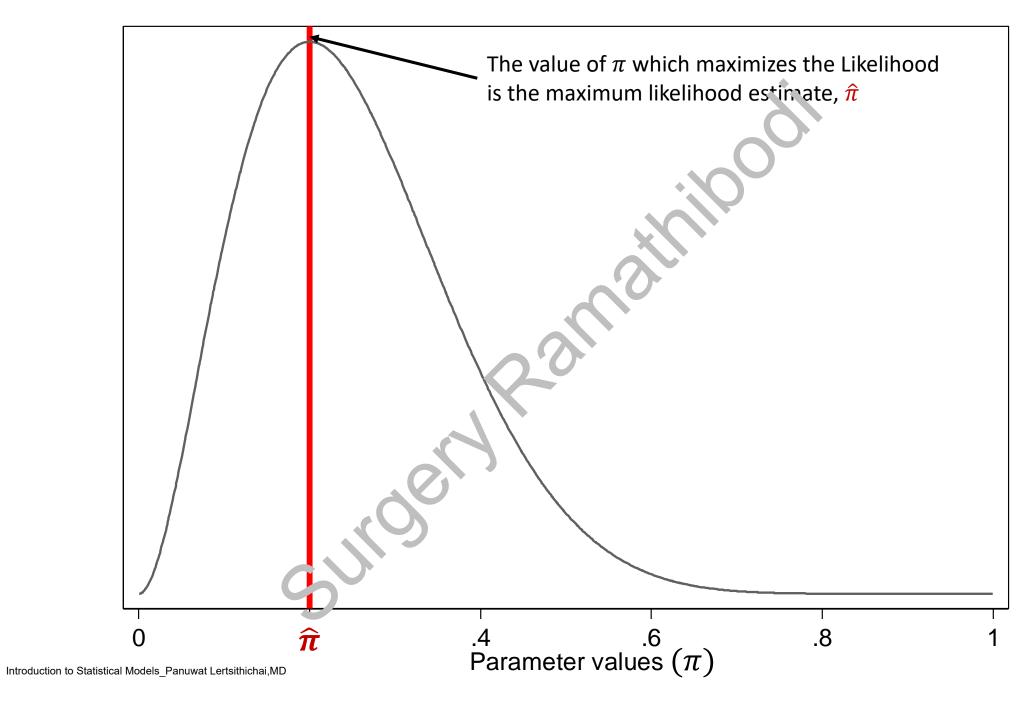
- 95% CI for $\hat{\theta}$: $\{-1.39 \pm 1.96 \times 0.79\} = \{-2.94, 0.15\}$
- Transforming back to π , the 95% CI for incidence $\hat{\pi}: \{0.05, 0.54\}$
- No negative values!
- Also, the logistic scale is piore convenient for multivariable regression models for Binary Outcomes (logistic regression models)

Maximum Likelihood Estimate (MLE)

A sample of 10 patients with 2 infections:

- $Y = \{1, 1, 0, 0, 0, 0, 0, 0, 0, 0\}$
- $E(Y) \approx \frac{1+1+0+0+0+0+0+0+0+0}{10} = 0.2 = \tilde{\pi}$
- This is the estimated incidence using the Method of Moments*
 Another method is that of Maximum Likelihood
- Consider the sequence of patients as a sequence of Bernoulli Trials
- With probability of infection (i.e. incidence) π
- The likelihood is defined as the probability of observed outcome sequence, as a function of π : $Likelihood(\pi) = \pi^2(1-\pi)^8$





Maximum Likelihood Estimate: cont.

Maximize the Likelihood $\pi^2(1-\pi)^8$ with respect to π

- Take the log first: $\log{\{\pi^2(1-\pi)^8\}} = 2 \times \log{(\pi)} + 8 \times \log{(1-\pi)}$
- Differentiate this with respect to π & set to $0: \frac{2}{\hat{\pi}} \frac{8}{(1-\hat{\pi})} = 0$
- Solve this equation and the "MLE" is. $\hat{\pi} = \frac{2}{10} = 0.2$
- The MLE is actually equivalent to the method of moments, in this case
- In general this may not be the case
- There are theoretical advantages of MLE, and also some disadvantages
- We mention the NiLE here because of its wide spread use*; see later

Example 3: Question of One Covariate

A RCT comparing operation A vs. B in terms of pain (VAS)

- One outcome: Y = pain(VAS)
- One binary Treatment factor: X=0 for operation A; X=1 for operation B

The regression equation is

•
$$E(Y|X=x) = \alpha + \beta x$$

This can be expanded into 2 equations, one for each operation:

•
$$E(Y|X=0) \equiv E(Y)_0 = \alpha$$
 for operation A with $X=0$; and • $E(Y|X=1) \equiv E(Y)_1 = \alpha + \beta$ for operation B with $X=1$

•
$$E(Y|X=1) \equiv E(Y)_1 = \alpha + \beta$$
 for operation B with $X=1$

Example 3: cont. 1

- $E(Y)_0 = \alpha$ is the average pain for operation A
- $E(Y)_1 = \alpha + \beta$ is the average pain for operation B
- Therefore β is the difference in average pain between 2 operations
- The statistical *Null hypothesis* is: $H_0: \beta = 0$
- Given that Y (pain VAS) has a Normal distribution, The test for $\beta = 0$ is simply the t-test
- Statistical tests can be interpreted as tests for regression parameters
- Note*: $E(Y)_1 E(Y)_0 \approx \overline{Y}_1 \overline{Y}_0 = \hat{\beta}$

Example 3: cont. 2

Result of a RCT with 20 patients per arm:

- Average pain (VAS) operation A: 5.6; SD. 2.3
- Average pain (VAS) operation B: 4.3, SD: 2.1
- $\hat{\beta} = 4.3 5.6 = -1.3$
- $SE(\hat{\beta}) \approx \sqrt{\frac{2.3^2}{20} + \frac{2.1^2}{20}} = 0.69$
- The *t*-test value = $\frac{\hat{\beta}}{SF(\hat{\beta})} = -\frac{1.3}{0.69} = -1.87$; 2-sided *p*-value 0.070
- 95% CI for $\hat{\beta}$: $\{-13 \pm 2.02 \times 0.69\} = \{-2.69, 0.09\}$ covers 0

Example 3: cont. 3 – Factors Related to Pain

•
$$E(Y)_0 = \alpha'$$
 + $\beta_{age0}age_0$ + $\beta_{sex0}sex_0$ + \cdots for operation A
• $E(Y)_1 = \alpha' + \beta + \beta_{age1}age_1 + \beta_{sex0}sex_1$ + \cdots for operation B

- $E(Y)_1 E(Y)_0 = \beta$ is true (consverage) for RCT's
- Non-randomized (Observational) study designs cannot achieve this
- One way for observational studies to emulate RCT's is to do matching using some appropriate scoring system: known as *propensity scoring*

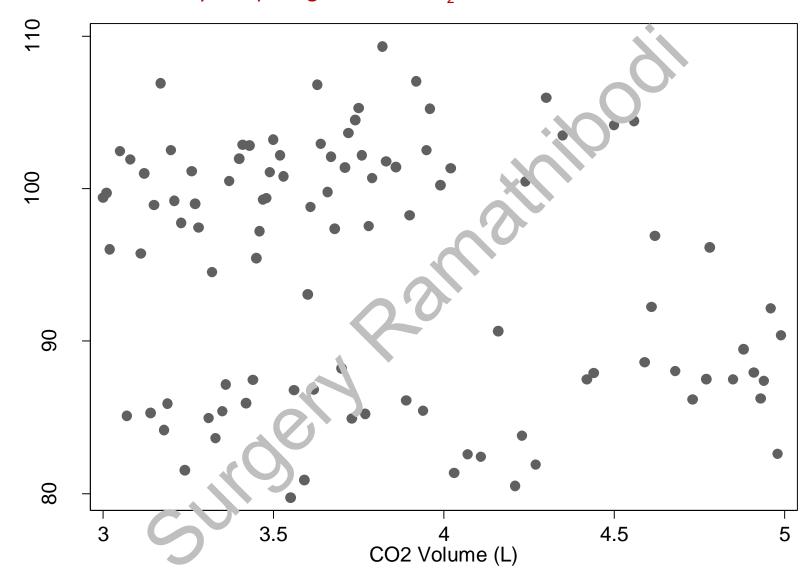
Example 4: Question of Many Covariates (a)

The Outcome Y may be affected by many factors $X_1, X_2, ...$

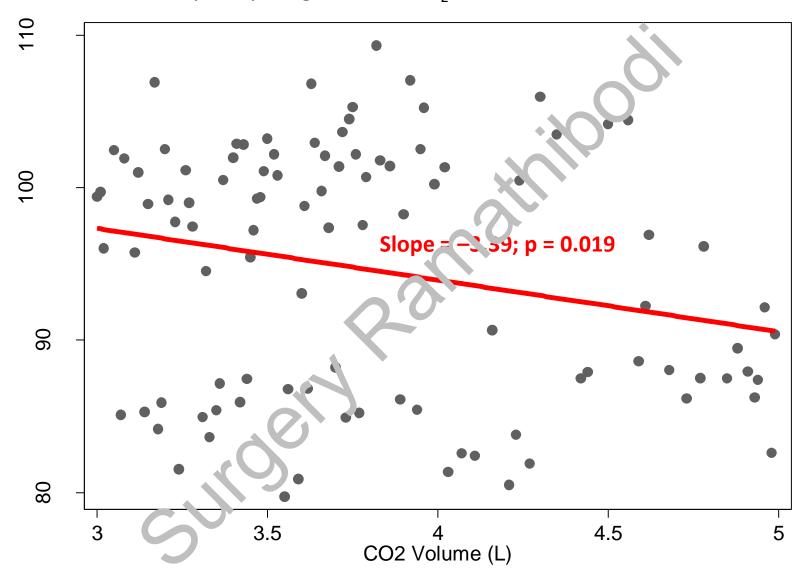
Concentrating only on one factor X_1 without consideration of others may lead to erroneous conclusions in at least 2 ways:

- The prediction of Y may not be accurate
- The effect of X_1 on Y may depend on other X's as well (*Confounding*); by ignoring this, the estimation of effect of of X_1 on Y may be wrong

Research Design: prospective crosssectional study



Scatter Plot 100 subjects



Appropriate Model?

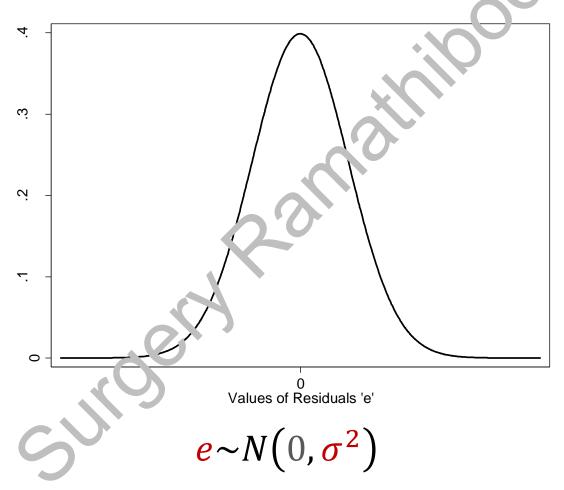
$$Y = \alpha + \beta x + e$$
Systematic Random

$$MAP|CO_2vol = x + \beta_1CO_2vol + e$$

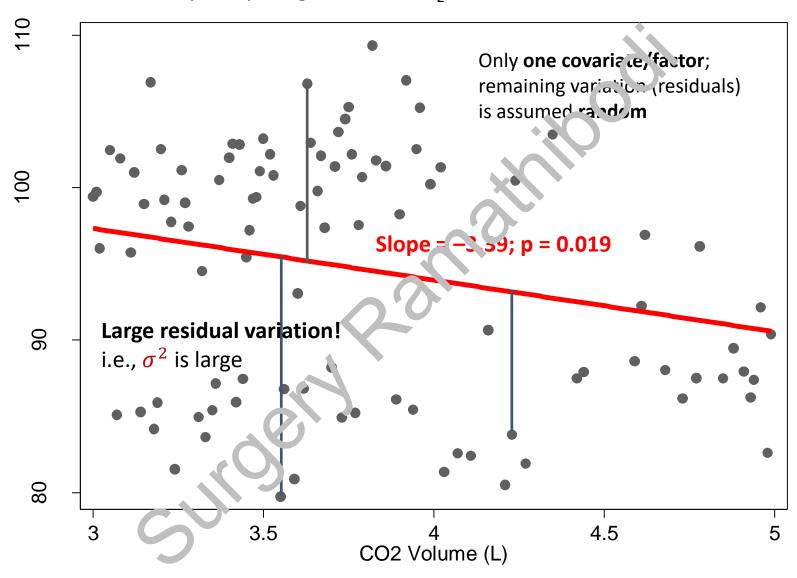
$$E(MAP|CO_2vol) = \alpha + \beta_1 CO_2vol$$

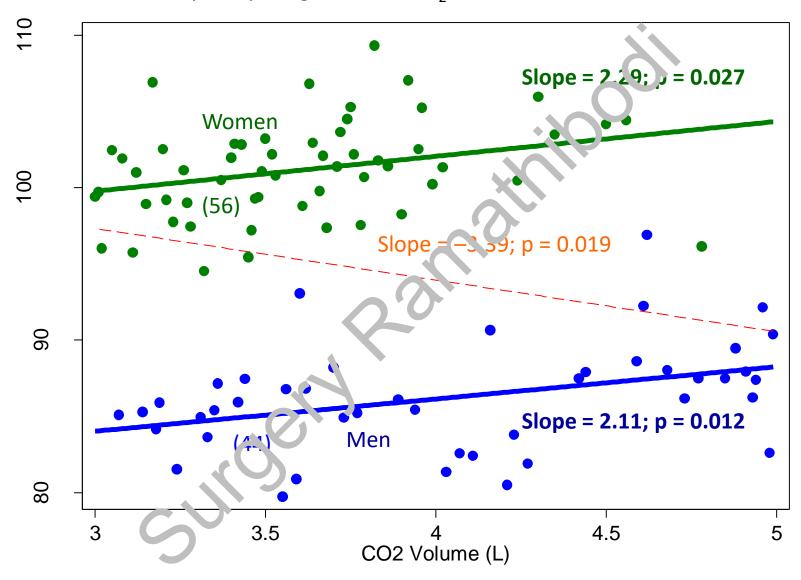
$$e \sim N(0, \sigma^2)$$
 $\sigma^2 = \text{Residual variance}$

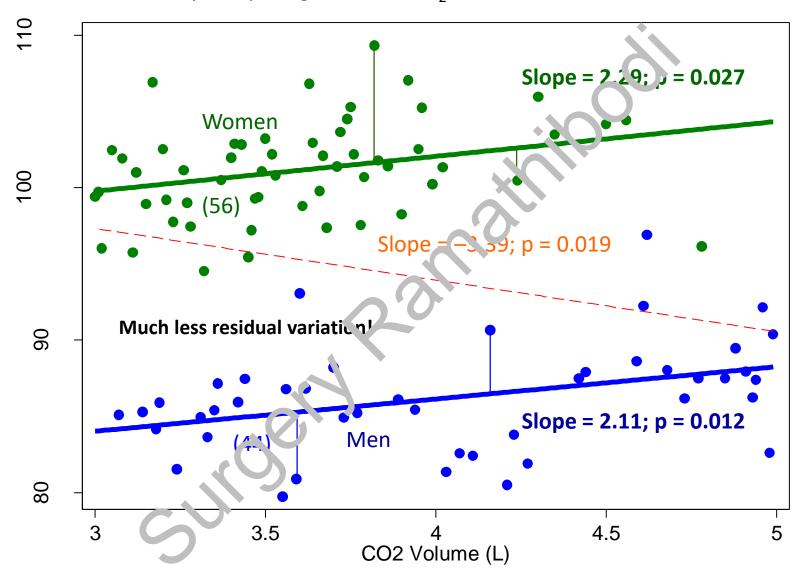
Appropriate Model?



Although extremely important, we ignore modeling the random component Introduction to Statistical Models_Panuwat Letoffithe Statistical model for now, as the issue is more difficult to explain







Linear Regression Analysis

Covariates	Univariable Analysis		Mativariable Analysis		
	Mean Effect (95% CI)	P-value	Mean Effect (95% CI)	P-value	
CO ₂ volume	-3.39 (-6.22 to -0.56)	0.019	2.18 (0.95 to 3.40)	0.001	
Gender (men)	-14.9 (-16.3 to -13.6)	< 0 001	-15.9 (-17.3 to -14.5)	< 0.001	

For every 1 L of CO2 volume increase, a 3.39 mmHg reduction in MAP is expected if everything else is unknown;

For every 1 L of CC2 volume increase, a 2.18 mmHg increase in MAP is expected after adjustment for effect of gender

"Simpson's Paradox"

Uni- vs. Multi-variable Analysis*

107.5 **-3.39**

Univariable Analysis

$$E(MAP) = \alpha + \beta_1 CC_2 vol$$

$$E(MAP) = \alpha + \beta Gender$$

Men = 1; Women = 0

01.2 -14.9

Multivariable Analysis

$$E(MAP) = \alpha + \beta_1 CO_2 vol + \beta_2 Gender$$

93.3 **2.1**8

15.9

Example 5: Question of Many Covariates (b)

Important risk factors for post-operative infection; a Cohort Study

- Outcome is occurrence of SSI: Y (yes =1, No = 0)*
- Multiple risk factors: $X_1, X_2, ...$

The regression equation is

•
$$E(Y|X_1 = x_1, X_2 ...) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \cdots = \pi$$

• Since for binary data π connot be negative, we use the logistic scale **

•
$$\log\left(\frac{\pi}{1-\pi}\right) = \theta = \alpha + \beta_1 x_1 + \beta_2 x_2 + \cdots$$

• This is the multiple 'ogistic regression model

^{*} Again, formally, the binary values are for the indicator function I(SSI)

^{**ੀ}ਜ਼ੀ ਸਿਵਾਇੰ ਕਾਰ ਵਿਸ਼ਾ ਰਿਵਾਈ ਕਾਰ ਜ਼ਿਲ੍ਹਾ ਵਿਸ਼ਾ ਰਿਵਾਈ ਕਰ ਜ਼ਿਲ੍ਹਾ ਦੀ ਸਿਲ੍ਹਾ ਦੀ ਸਿਲ੍ਹਾ ਜ਼ਿਲ੍ਹਾ ਜ਼ਿਲ੍ਹਾ

Table 1. Characteristics of patients and operations, with and without SSI

	'haracteristics ^a	Total $(n = 458 \text{ operations})^b$	Without SSI $(n = 423 \text{ operations})$	With SSI (n = 35 operations)
A	ge (years): mean (SD)		59.6 (14.4)	57.5 (17.2)
	ender (males)		205 (49%)	18 (51%)
P	reoperative stay (days):			
	Median (range)		2 (1 to 63)	2 (1 to 68)
A	SA class			
	I		17 (4° 5)	0
	II		1°2 (4,3%)	8 (23%)
	III		174 (41)	21 (60%)
	IV		(12%)	6 (17)
	V		1(0)	0
V	Vound classification			
	Clean ^d		37 (9%)	4 (11%)
	Clean-contaminated		348 (82%)	23 (66%)
	Contaminated	O'O'	23 (5%)	3 (9%)
	Dirty		15 (4%)	5 (14%)
I	ouration of surgery (minutes):			
	Median (range)		120 (30 to 550)	150 (60 to 615)
N	NIS index			
	0		139 (33%)	1 (3%)
	1		203 (48%)	17 (49%)
	2		74 (17%)	14 (40%)
	3		7 (2%)	3 (9%)
C	ancer (yes)	9)	235 (56%)	18 (51%)
C	perations on Organs			
	Gall bladder		121 (31%)	8 (23%)
	Biliary trac		38 (9%)	10 (29%)
	Colon		205 (49%)	15 (43%)
	Liver		35 (8%)	2 (6%)
	Pancreas		16 (4%)	0
C	older operating theaters (> 12 yr at Lertsithichai,MD	·a)	282 (67%)	25 (71%)

SSI rate: 35/458=0.076

Slide 28/34 J Med Assoc Thai 2007; 90 (7): 1356-62

Testing for Significant Difference

Finding important factors related to SSI can be done by looking for significant differences between patients with SSI and those without SSI in terms of these factors

- We can do this one by one "univariable" analysis
- In terms of regression models, for factor X_1 :

•
$$\log\left(\frac{\pi}{1-\pi}\right) = \theta = \alpha + \beta_1 x$$

- By testing for $\beta_1=0$ in a univariable logistic regression model
- If we decide $\beta_1 \neq 0$, then factor X_1 is significantly related to SSI

Interpretation of β in Logistic Regression

Consider a binary factor X (1 or 0)

•
$$\log\left(\frac{\pi_1}{1-\pi_1}\right) = \alpha + \beta$$
 if $X = 1$

•
$$\log\left(\frac{\pi_0}{1-\pi_0}\right) = \alpha$$
 if $X = 0$; thus

Consider a binary factor
$$X$$
 (1 or 0)

• $\log\left(\frac{\pi}{1-\pi}\right) = \alpha + \beta x$ can be written as 2 equations:

• $\log\left(\frac{\pi_1}{1-\pi_1}\right) = \alpha + \beta$ if $X = 1$

• $\log\left(\frac{\pi_0}{1-\pi_0}\right) = \alpha$ if $X = 0$; thus

• $\log\left(\frac{\pi_1}{1-\pi_1}\right) - \log\left(\frac{\pi_0}{1-\pi_0}\right) = \beta$; or $\log\left(\frac{\pi_1}{1-\pi_1}\right) = \beta \equiv \log(OR)$; or

• $OR = e^{\beta}$: the **Odds Ratio**

• $OR = e^{\beta}$: the Odds Ratio

Example 5: cont.

- Factors identified to be important on **univariable analysis** are inserted into a **multivariable analysis** to obtain a final multivariable model with a set of *independent* risk factors
- This is a commonly used strategy creasonable in many situations
- Estimates of $\beta's$ can be obtained by maximizing the Likelihood function and using asymptotic properties (point & interval estimates)*:

$$\max_{\beta_1 = \widehat{\beta}_1, \beta_2 = \widehat{\beta}_2, \dots} Likelihood(\beta_1, \beta_2, \dots)$$

Table: Logistic Regression Models for SSI

Factor	Odds Ratio (95% CI) Univariable	p-value	Odes Ratio (95% CI) Multivariable	P-value
Age (years)	0.99 (0.97, 1.01)	0.416	-	
Gender (m=1; f=0)	1.23 (0.56, 2.24)	0.726	-	
Preop stay (d)	1.03 (0.99, 1.06)	0.162	-	
ASA Class	1.78 (1.14, 2.84)	0.012	1.88 (1.15, 3.09)	0.013
Wound Class				
1	1	0.030	1	0.018
2	0.61 (0.20, 1 86)		0.94 (0.28, 3.14)	
3	1.21 (0.25, 5.89)		1.65 (0.31, 8.90)	
4	3.03 (0.73, 13.1)		5.92 (1.21, 28.9)	
Duration of Surg (hr)	1.43 (1.20, 1.67)	<0.001	1.47 (1.23, 1.76)	<0.001
Cancer (yes)	0.85 (0.42, 1.69)	0.637	-	

A "Predictive/Prognostic Score"

• From
$$\log\left(\frac{\pi}{1-\pi}\right) = \theta = \alpha + \beta_1 x_1 + \beta_2 x_2 + \cdots$$

- Construct a "score" for SSI = $\alpha + \beta_1 x_1 + \beta_2 x_2 + \cdots$ "Linear predictor"
- In this case*: S = -6.88 + 0.622 ASA + 0.698 Wound + 0.3940 ptime
- The risk of SSI is calculated as

$$K(isk) = \frac{1}{1 + e^{-s}}$$

• Example: a patient with ASA = 2; Wound class = 2; op time = 1.5 hr

•
$$S = -3.651$$
 $Risk = \frac{1}{1+e^{3.651}} = 0.025$

Extensions of Statistical Models

The idea of regression modeling extends to more complicated data structures or generating mechanisms (and alternatives):

- Other categorical outcomes: > 2 categories; ordinal outcomes
- Correlated and longitudinal data: multiple measurements on 1 person
- Robust regression
- Non-parametric regression
- Bayesian version of regression models
- etc.