

Conflicts of Interest Disclosure

- No Conflicts of Interest to declare
- For health education

'''|||

Examples of incidences

□ July 1945: an atomic bomb in New Mexico

- August 1945: nuclear weapons detonated over Hiroshima and Nagasaki, nearly 200,000 acute deaths
- 1986: the Chernobyl nuclear reactor, series of explosions, 31 people died of ARS in the first few weeks after that event, unknown number of millions potentially suffered other long-term sequelae
- 1987: a radiosource was left at an abandoned radiotherapy institute in Goiania, Brazil, 112,000 requiring evaluation, 249 contaminations, 20 requiring hospital admissions, 4 deaths
- 2011: Fukushima Daiichi nuclear plant disaster, about 1000 disaster-related deaths, no deaths attributed to radiation injuries

- Some workers imme
- Eighteen days later when they went to a local hospital
- The accident is similar in some ways to the 1987 radiation accident at Goiania, Brazil, involving a Cs-137 radiotherapy source

Thongpraparn et al, 2002

''''

- Dirty bombs: radiologic dispersal devices, combine radioactive materials with conventional explosives
- □ Panic and psychological distress

Radiation Physics

Nonionizing and Ionizing Radiation

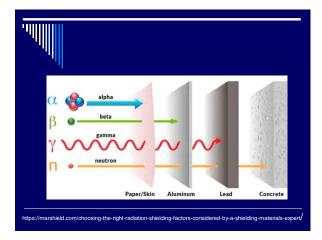
- □ Radiation: energy emitted from a source
- □ The electromagnetic radiation spectrum
- □ Nonionizing radiation:

- -long-wavelength, low-frequency, low-energy
- -not carry enough energy to remove an electron from an atom, not produce charged ions when passing through -UV rays, visible light rays, infrared rays, microwaves,
- radio waves -Lasers, US, nuclear magnetic resonance systems in
- medical field
- Ionizing radiation: short-wavelength, high-frequency, high-energy

Isotope	Half-Life	Mode of Decay	Decay Energy (MeV)
	es of Medicine and Res	earch	
PΗ	Stable		
131	8 days	β-	0.97
201 T I	73 hours	EC	0.41
^{99m} Tc	6 hours	п	0.14
зэхе	5.27 days	β-	0.43
⁶⁷ Ga	78 hours	EC	1.00
™Cs	30.17 years	β-	1.17
чF	109 months	β-, EC	1.65
Military Rad	lioisotopes		
'Н	12.26 years	β-	0.02
⁹⁰ Sr	28.79 years	β-	0.55
235U	7.1×10^{11} years	α, SF	4.68
238U	4.51 × 10 ⁹ years	α, SF	4.27
210Po	138 days	α	5.307
239Pu	24,400 years	cx, SF	5.24
²⁴¹ Am	470 years	α, γ	5.14/0.02

Irradiation, Contamination, Incorporation

- Contamination: radioactive substance covers an object completely or in part
- Incorporation: radionuclide is taken up by tissue via some route that permits radionuclide to enter the body


	Incident	Radiation Location	Source Type	Physical State	Patient Decontamination Necessary	Secondarily Contaminatin
"II	Exposure without skin contact (Irradiation)	External	Electro- magnetic radiation (energy waves)	None	No	No
	External Contamination	External (skin surface)	Particles (matter)	Solid Liquid	Yes Yes	Yes Yes
	Internal Contamination	Internal	Particles (matter)	Solid Liquid Gas	Yes Yes No	Yes Yes No
30-6: Equ	ivalent Chemica Chemical	vs. Radiologi	cal Contan	nination Te	rminology Radiological	
	Absorption			Inte	ernal contaminatio	n
	Distribution				Incorporation	
Me	tabolism (catabo	lism)			Incorporation	
					Decorporation	

AHLS 4th Ed

""			of rad	iation	
TABLE 10-1 Type (Symbol)	Types of Rad Charge	Penetration	Shield	Hazard	Source
Alpha	+2	Few centimeters in air	Paper, keratin layer of skin	Internal contamination only; requires special detection devices	Heavy radioisotopes (e.g., plutonium, uranium, radon)
Beta	-1	~8 mm into skin	Clothing	External (skin) and internal contamination	Most radioisotopes decay by beta followed by gamma emission
Positron	+1	~8 mm into skin	Lead, steel, or concrete	Interacts with electrons and releases photons of energy	Medical tracers
Neutron	0	Variable	Material with high hydrogen content	Whole-body irradiation	Nuclear power plants, particle accelerators, weapons assembly plants
Gamma and radiograph	0	Several centimeters in tissue	Concrete, lead	Whole-body irradiation	Most radioisotopes decay by beta followed by gamma emission

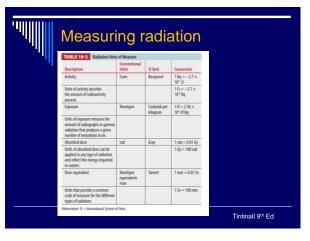
Name	Type	Mass (u)	Charge	Penetration Distance	Main Problem	Adequate Shielding
Alpha	Particle	4	+2	1 to 3 inches (2.54 to 7.62 cm) through air Cannot penetrate dead outer layer of skin (stratum cornaum)	Contamination	A single sheet of paper Standard precautions PP
Beta	Particle	1/1,823	-1 (electron) or +1 (positron)	10 to 12 feet (3 to 3.7 m) through air Can penetrate dead outer layer of skin (stratum corneum), a few millimoters (mm) into the skin	Contamination	Aluminum foil Thick plastic
Neutron	Particle	1	0	Meters (m) through air Several cm into or through the body	Exposure (Irradiation) or Neutron (n) capture: ²² Na + n= ²⁸ Na	Water, polystyrene, paraffin wax, wet concrete, or other materials with high hydrogen content
X-ray	Electro- magnetic radiation (energy waves)	0	0	300 feet (91 m) through air Through the body	Exposure (Irradiation)	Lead Concrete
Gamma	Electro- magnetic radiation (energy waves)	0	0	0.5 mile (0.8 km) through air Through the body	Exposure (Irradiation)	Thick lead (several feet) Thick concrete (several feet) Depleted uranium

Tintinall 9th Ed

'''' Half-Life (HL) Physical Half-Life

Time (in minutes, hours, days, or years) required for the activity of a radioactive material to decrease by one half due to radioactive decay

- Biological Half-Life Time required for the body to eliminate half of the radioactive material
- Effective Half-Life


The net effect of the combination of the physical and biological half-lives in removing the radioactive material from the body

Biologic Effect of Ionizing Radiation

Cellular effects

Ŵ

- □ High doses: causes cell death
- □ Lower doses: interrupt cellular reproduction through inhibition of mitosis, resulting in cellular injury with delayed onset of effects
- □ Rapidly dividing cells with short life spans: cells most vulnerable, because they are quickly depleted, new cells are unable to replete

TABLE 10-3 Equipment Type	Radiation Monitoring	Equipment Common Type of Measurement	Units Commonly Recorded	
Dosimeter	Thermoluminescent dosimeter or film badge	Cumulative dose of beta, radiograph, and gamma	Roentgen equivalents man or sieverts	
Dosimeter	Pocket dosimeter	Cumulative exposure to radiogrpah and gamma	Milliroentgen	
Survey meter	Geiger-Müller tube	Low exposure rates of radiograph, gamma, and beta*	Counts per minute'	
Survey meter	lon chamber	Higher exposure rates of radiograph and gamma	Milliroentgen per hour	

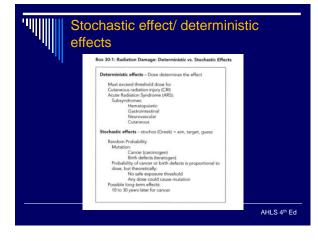
		Dose*		
Source	mSv/year	mrem/year	% of Total dose	
Natural				
Cosmic	0.27	27	5	
Internal	0.31	31	5	
Radon*	2.29	233	37	
Terrestrial	0.19	19	3	
Subtotal	3.10	310	50	
Human-Made				
Consumer products	0.12	12.4	2	
Nuclear medicine	0.74	74.4	12	
Occupational	< 0.01	0.62	0.1	
Medical procedures	2.23	223.2	36	
Subtotal	3.10	310	50	
Total	6.20	620	100	
'All doses are averages and o	ontain some variabi	ity within the measurer	nent.	
*Average effective dose to be				
mSv = millisleverts; mrem =			lear médicine studies in	

'''		
ll'	TABLE 10-4 Selected Approximate L	evels of Radiation Exposure
	Natural background radiation	620 mrem/y (U.S. average)
	Chest radiograph (effective dose)	10 mrem
	Abdominal radiograph	120 mrem
	Lumbar spine radiograph	70 mrem
	CT head	200 mrem
	CT chest	700 mrem
	CT abdomen or pelvis	1000 mrem
	Jet travel	1 mrem per 1000 miles traveled
	Annual radiation dose limit (public)	100 mrem/y"
	Occupational exposure limit	5000 mrem/y
	Lethal dose in 50% of exposed subjects within 60 d (3.5-4.5 Gy)	350,000-450,000 mrem (350-450 rad')
	"Over natural background radiation.	

Direct effects:

- particles physically damage the DNA in a cell, can occur at the sugar phosphate backbone, hydrogen bonds, or base molecules
- □ High-LET radiation: more likely to cause direct effects
- □ Mutation, may then result in alteration of germ line, development of a neoplasm, or cell death.

Pathophysiology


Indirect effects:

- when radiation impacts a molecule and creates a reactive species, then chemically reacts with organic molecules in cells altering their structure or function
- Predominantly caused by low-LET radiation (xrays, gamma-rays, fast electrons)

Pathophysiology

- Bystander effect: refers to cellular damage in unirradiated cells that neighbor irradiated cells.
- □ Genomic instability: a single mutation followed by a cascade of further mutations altering the fidelity of genomic replication

Lethal Dose of Radiation

- □ The LD_{50/60}: the dose of penetrating ionizing radiation that will result in the deaths (lethal dose) of 50% of the exposed population within 60 days without medical treatment
- The most commonly cited human value: LD50/60 of approximately 3.5 to 4.5 Gy (350 to 450 rad)

Clinical Effects of Radiation

Local Radiation Injury/ Cutaneous radiation injury

- Partial body exposure, rarely causes systemic manifestations
- Dose dependent cutaneous involvement

- the 1st week: asymptomatic or may be transient erythemaa (6 Gy), hyperesthesia, itching
- the 2nd week: erythema progresses to hair loss (3 Gy)
 The 3rd week: skin tenderness, swelling, pruritus
- the 4th week: dry (10 to 15 Gy) or wet (20 to 50 Gy) desquamation and radionecrosis with ulceration (>50 Gy)

Local Radiation Injury/ Cutaneous radiation injury

- □ May be indistinguishable from thermal burns, except for delayed onset of prolonged and severe pain
- □ At doses > 50 Gy, onset of pain will occur immediately, indistinguishable from thermal burns
- □ Surgical intervention: may be required

Acute Radiation Syndrome

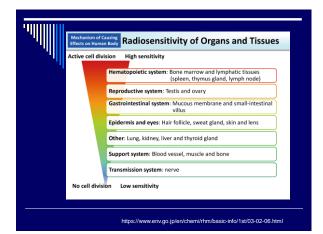
- □ After a significant exposure (whole-body gamma dose exceeds 2 Gy) within a 24hour time period
- □ Can also occur in the setting of neutron source exposure or internal contamination with alpha and/or beta radiation
- □ 4 distinct phases: prodrome, latent phase, manifest-illness, recovery

The prodromal phase

- □ Transient autonomic nervous system
- Nausea, vomiting, anorexia, diarrhea accompanied by hypotension, pyrexia, diaphoresis, cephalgia, and fatigue
- Directly related to the dose received: high doses cause acute and severe symptoms, lower doses lead to milder symptoms and prolonged onset

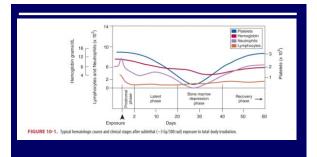
Signs and Sympton	ni 1 to 2 Gy		4 to 6 Gy	>8 Gy
Vomiting Onset Incidence (N)	>2 h 10 to 50	1 to 2 h 70 to 90	<1 h 100	<10 min 100
Diarchea Onset Incidence (%)	None	None to mild	Mild to moderate 3 to 8 h <10	Heavy <1 h -100
Temperature Onset Incidence (%)	Normal	<38.5% 1 to 3 h 10 to 80	Ferver >38.5°C 1 to 2 h 80 to 100	High fever >38.5%C <1 h 100
Headache Oriset Incidence (%)	Slight	Mid	Moderate 4 to 24 h 50	Severe 1 to 2 h 80 to 90
Level of Conscious Orset Incidence (%)	ess Normal	Normal	Normal	Unconscious for sec to min 100% with >50 Gy
Source: Radiation Emerg	imaphases2.htm, http://w	vww.remm.nlm.gawl	ers_timaphases3.htm, an	d
http://www.remm.rkm.gc Table 30-8: Prodrome Prognosis		COLORIS COLORS	Prodromal P Key Manifest	hase itions
http://www.remm.rkm.go Table 30-8: Prodroma	l Phase Key Manifest	on Dote	Predromal P	hase itions
http://www.remm.nim.go Table 30-8: Prodroms Prognosis Survival likely	l Phase Key Manifest Whole Body Rediati	on Dote mild r	Prodromal P Key Manifest	hase itions esms, or éV) for a few hours

The latent phase


- □ A symptom-free interval the
- Depend on the received dose, with larger doses resulting in a shorter duration
- Doses < 4 Gy: associated with a period that may last 1-3 weeks

. . .

The manifest illness phase


Subdivided into 3 dose-dependent syndromes hallmarked by the affected organ system

Approximate Dose	Onset of Prodrome	Duration of Latent Phase	Manifest Illness
>2 Gy (200 rad)	Within 2 d	1-3 wk	Hematopoietic syndrome with pancytopenia, infection, and hemorrhage; survival possible
>6 Gy (600 rad)	Within hours	<1 wk	Gl syndrome with dehydration, electrolyte abnormalities, Gl bleeding, and fulminant enterocolitis; death likely
>20-30 Gy (2000-3000 rad)	Within minutes	None	Cardiovascular/CNS syndrome with refractory hypotension and circulatory collapse; fatal within 24–72 h

Hematopoietic Syndrome

- □ With doses > 2 Gy
- □ The first affected organ system
- □ Damage the bone marrow stem cells, destruction of the circulating hematopoietic cells
- Lymphocytes: preferentially destroyed
- □ The peripheral lymphocyte count: the most readily available marker to grade the extent of the injury
- □ Granulocytes and platelets: markers of inflammation, their counts initially rise following exposure, but reach a nadir within 30 days of the injury
- Morbidity and mortality: pancytopenia, immunosuppression, hemorrhage

The lymphocyte nadir: typically occurs 8-30 days postexposure

Tintinall 9th Ed

Neurovascular Syndrome

(Cardiovascular and Central Nervous System)

- □ Doses > 12 Gy
- Mechanism: combination of radiation-induced vascular lesions & free radical induced neuronal death, cerebral edema
- Immediate persistent and intractable hypotension, prostration, nausea, vomiting, explosive bloody diarrhea
- CNS symptoms: develop within hours, seizures, lethargy, disorientation, ataxia, tremors
- Hyperthermia, loss of motor control, apathy, cardiovascular shock
- □ The lymphocyte count quickly falls to near-zero levels
- Death from circulatory collapse: within 24-48 hours

Symptom	Degree 1	Degree 2	Depree 3	Degree 4
Reurewascular System				
Assessia	Able to eat.	Decreased	Mexeal	Parentinal
Nauna	MAG	Moderate	Severe	Excentiating
Kundung	1/day	2-5/dey	6-10/day	> 10/May
leipze	Able to work	impaired	Assisted ADLs	No ADL
Feer	(<38°0)	Of94-180	1>40°O <24hours	(>40°O>34 hean
Readache	Minimal	Moderate	Seven	Exceptioning
Pypotension (BP, mm Hgi (Adult)	> 100/70	<106/70	<90/60	<80 systalic
Cognitive defatts	Mage	Moderate	Major	Complete
Neurological deficits	Barely detectable	Easily detectable	Prominine	Life threatening
Hematopoletic System (all counts	×NM			
lymphocytes	15-15	0.5-1.5	0.25-1	0.1-0.25
Ganderytes	4-5	< 1'	<0.5'	0-0.5
Finlen	150-350	50-100	0-50	'Very loss"
Gestrobutestinal System				
Diarthea				
Requency (Adap)	2-1	4-6	7-4	210
Conditionery	Bulky	Louis	Loose	Watery
firedro	0mM	internationt.	Persistent	Large, persistent
Abdominal crampulpain	Ministal	Moderata	Severe	Excentioning
Cataneous System				
Eythena	Minimal	<10% 858	10%-40% 85A	>42%858
blena	Asymptometic	Symptomatic	Secondary deshanction	Total dysfunction
Billioting	Ears, sterile	Rare, bloody	Bullas, stelle	Ballan, blandy
Desparation	Absect	Patistry, dry	Pathfry, meild	Coefficient, maint
Elizention or neurois	Epidectual	Dennal	Subcataneous	Mascle or bone
Hair kess	Reset	Partial	Fartial	Complete
Response Category	1	2	1	4
Trape and Monitoring	Antalatory	kristinn	Waspitalized	Hespitaland
		¥.	KU	Specialized hespitals
		Hophsterd		
		Supportive care	Blood products	Slood products
		Blood products	CFh	CiFs ec1Cl

Goldfrank 11th Ed

Signs and Sympt	oms 1	to 2 Gy	2 to 4 Gy	4 to 6 G	Gy ⇒8 Gy
Latent Phase Duratio	n (days)	1 to 35	18 to 28	8 to 18	0
Table 30-10: Manifest I	liness (Critical) I	hase: Sever	ity of Signs an	1 Symptoms I	Rased on
Table 30-10: Manifest I Absorbed Dose of Rad	iation				
		hase: Sever		d Symptoms E to 6 Gy	Based on >8 Gy
Absorbed Dose of Rad	iation		4 Gy 4		
Absorbed Dose of Rad Signs and Symptoms	iation 1 to 2 Gy	2 to	4 Gy 4	to 6 Gy	>8 Gy
Absorbed Dose of Rad Signs and Symptoms Onset (days)	1 to 2 Gy >30	2 to 18 to	4 Gy 4 5 28 s arate Mo	to 6 Gy 8 to 18 Yes iderate to	>8 Gy 0 (Immediate
Absorbed Dose of Rad Signs and Symptoms Onset (days) Fatigue or weakness	1 to 2 Gy >30 Yes	2 to 18 to Ye	4 Gy 4 28 s erate Mc O	to 6 Gy 8 to 18 Yes	>8 Gy 0 (Immediate Yes

Onset (weeks) N/A 6 to 8 Source: Radiation Emergency Medical Management (REMM): http://www.remm.nlm.opu/ars.timeshases/2.htm..http://www.remm.nlm.opu/

http://www.remm.nlm.gov/ars_timephases5.htm.

ality (%

AHLS 4th Ed

4 to 8

Emergency response planning

- Multiple community-wide organizations: hospitals, EDs, and public safety, public health, emergency management officials
- Every EMS system: prehospital plan for the evacuation of victims from a radiation disaster
- Every hospital: protocol detailing instructions for receiving and treating radiation victims

Radiation Protection

□ Time

- Distance
- □ Shielding
- Quantity

Prehospital Emergency Medical Management

- Emergency responders should rapidly establish incident command in a situation involving radioactive materials
- Care and transportation of seriously injured victims should not be delayed, even if the patient is contaminated

ED Notification/Preparation

- First responders must communicate with hospitals prior to arrival e.g. circumstances of the event, number of victims, traumatic injuries, type of radiologic insult
- □ Local radiation specialists, health physics professionals
- □ If radiation monitors are not available, patients should undergo decontamination and then be surveyed for residual contamination when monitoring equipment is available

TABLE 10-6 ED Preparation Initiate hospital disaster plan Mobilize hospital radiation experts (radiation safety officer, nuclear medicine and radiation oncology experts and staff). · Request dosimeters for staff and radiation monitoring and survey instruments Prepare the ED

- Establish an ad hoc triage area based on the location designated in the hospital disaster plan.
- · Establish a "contaminated" area and "clean" area separated by a buffer zone using Ensemble of the second and any second account of the populated of a balance test change ropes, tape, and signs to designate areas. Remove contaminated outer garments when leaving contaminated area and have your body surveyed with a radiation meter prior to leaving the area.
- · Cover floors with plastic or paper secured with heavy tape.
- Remove pregnant women, nonessential personnel, and nonessential equipment.
- · Request extra gloves, other medical supplies, and extra large plastic bags for disposal. Use standard precautions to protect staff

Staff should wear a water-resistant gown, cap, and shoe covers to keep contaminants off skin and clothes.

- Double-glove with inner glove taped in place, changing the top pair after handli contaminated items and between patients.
- · N95 masks, if available, are recommended, but surgical masks should be adequa
- · Survey hands and clothing at frequent intervals with a radiation meter.
- · Dosimeters, if available, should be worn at the collar, under protective clothing

Tintinall 9th Ed

Triage

- Field triage protocols: minor, delayed, immediate, or deceased depending on physical trauma or burns
- Not alter triage principles based solely on radiation exposure
- Radioactive contamination: never immediately lifethreatening, do not delay treatment of lifethreatening injuries for radiologic surveying
- Morbidity and mortality: physical trauma, thermal burns, significant medical conditions

- ||||||

Triage

- First responders: must use universal precautions, should assume that all victims are contaminated
- Most events will only require C- or Dlevel protection

Treatment

- Most radiation injuries: not immediately lifethreatening, there is usually time to determine whether patient was irradiated, externally contaminated, or internally contaminated
- Early treatment decisions: based on biologic dosimetry, signs and symptoms evident in the first 24 to 48 hours, laboratory test results

Decontamination of external contamination

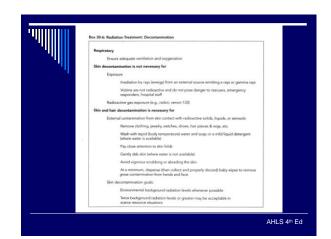

Goal: to decrease total exposure of patient and staff, by minimizing radiation exposure from a source external to the body to a level that is as low as reasonably achievable

TABLE 10-7 Steps of Patient Decontamination

- Assess external contamination

 Contact radiation safety officer.
- Assess contamination with radiation survey meter (Geiger counter).
- Evaluate for radioactive shrapnel. Easily accessible pieces should be removed with a forceps and placed in a lead container.
- Document contamination pattern on a body diagram.
- · Swab each nostril separately to estimate level of internal contamination of the lungs.
- Decontaminate whole body
- Carefully cut and roll clothing away from the face to contain contamination.
- Double bag clothing and label as hazardous waste.
- Wash wounds first with saline or water.
- If facial contamination is present, rinse as appropriate.
- Gently cleanse intact skin and avoid scrubbing.
- Repeat patient scan with radiation survey meter. Repeat washing until radiation is <2 times background. Avoid scrubbing.
- Cover wounds with waterproof dressing.

Tintinall 9th Ed

Treatment of Local radiation injury

- Focuses on analgesia, wound care, infection control
- Interruption of radiation-induced inflammation in the dermis
- Burn care
- Consider applying topical steroids to control local inflammation, vitamin A, C, E, pentoxifylline to decrease blood viscosity & increase blood flow

Treatment of Local radiation injury

- □ Silver-based creams
- □ Hyperbaric oxygen may be considered
- □ Systemic steroids: not recommended

Treatment of Acute radiation syndrome

- Immediate treatment of the irradiated patient: alleviating symptoms of the prodromal phase
- □ Pain: acetaminophen and opioids
- □ if dose > 5 to 6 Gy, avoid using NSAIDs, may be at risk for GI bleeding
- Antiemetics: Ondansetron or other 5hydroxytryptamine-3 antagonists
- Antidiarrheal agents: use of fluoroquinolone for 2 -4 days after an acute exposure

Treatment of Acute radiation syndrome

Biologic dosimetry

- □ Use of physiological, chemical, biological markers to reconstruct doses & assess probability of developing ARS
- Cytogenetic analysis for chromosomal aberrations (dicentrics): the gold standard
- Time of onset of all symptoms, especially vomiting & diarrhea, laboratory analyses (e.g., rate & nadir of lymphocyte depletion), clinical signs

'''IIII

Treatment of Acute radiation syndrome

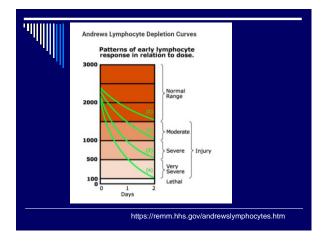
- Obtain baseline CBC and check every 6 hours for 24-48 hours
- Obtain baseline serum amylase, because dose-dependent increases are expected after 24 hours in a significant exposure
- Consultation with hematologist/ oncologist/infectious disease specialist

Treatment of Acute radiation syndrome

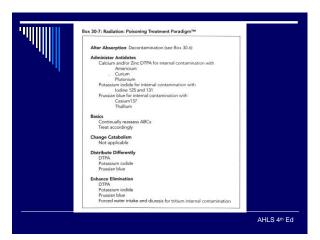
- Mainly on the support and recovery of the hematologic system
- May require prophylactic antibiotics, antifungals, antivirals or appropriate monotherapy for infections

Treatment of Internal contamination

□ Generally does not produce early symptoms


- Consider if persistently high radiation survey readings noted, all nose or mouth contamination cases
- Obtain 24-hour urine collection for possible radionuclide identification
- Consult radiation experts: cathartics, activated charcoal, gastric lavage, and radionuclidespecific decorporation agents

Treatment of Internal contamination


- Not measured but calculated
- □ Calculations: by a health physicist on samples such as nasal swabs, urine, stool to estimate how much activity entered the body
- Committed doses: defined as the doses received that last more than 50 years because of the internal deposit of radionuclide

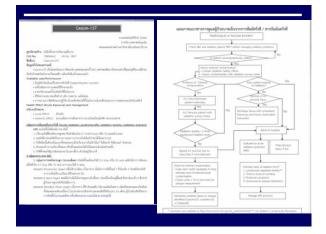
Specimen/Type of Analysis	Reason	Mechanism
Suspected radiation exposure		
Check a CBC every 6 h for 24-48 h	Establish baseline and assess lymphocyte depletion as an early predictor of dose.	Venipuncture
Serum amylase and CRP, repeat daily for 3 d	Parotid glands are sensitive to radiation; amylase will rise if exposed to >0.5 Gy.	Venipuncture
Blood: chromosomal analysis (dicentrics)	Gold standard for estimating dose.	Venipuncture. Call REAC/TS for assistance.
Urine: routine urinalysis	Establish baseline kidney function, especially if internal contamination is suspected.	Clean catch
Suspected external contamination	ation	
Swabs of body orifices and samples from dressings/ wounds	Assess internal con- tamination and identify radionuclide.	Use separate saline or water-moistened swabs to wipe the inside of each nostril, ear, and mouth.
Suspected internal contamina	ition	
Urine bioassay: 24-h specimen; repeat for 4 d	Radionuclide identification	Standard specimen containers
Consider feces bioassay in consult with radiation expert		

TABLE 10-9	Internal Contamination Treatment			
Radionuclide	lonizing Radiation	Treatment	Mechanism of Action	Usual Administration
lodine (I-131)	β, γ	Potassium iodide	Block thyroid uptake	130 milligrams PO for adults
Plutonium (Pu-239)	a	Ca-DTPA or Zn-DTPA	Chelation	1 gram in 250 mL NS or 5% dextrose in water over 60 min
Tritium (H-3)	β	Water	Dilution	Oral: 3–4 L a day for 2 wk
Cesium (Cs-137)	β, γ	Prussian blue	Decrease GI uptake	1 gram in 100–200 mL water three times a day for several days
Uranium (U-235)	۵	Bicarbonate	Urine alkalinization	2 ampules in 1 L NS at 125 mL/h

Tintinall 9th Ed

Prenatal Exposures

- □ Factors: dose. gestational age
- □ Fetus: shielded in part by the uterus and surrounding tissues.
- Gamma and radiographs: directed toward a pregnant woman's abdomen could harm the fetus
- □ Before about 2 weeks: all-or-none phenomenon, > 0.1 Gy expected to be lethal



Prenatal Exposures

- 2-8 weeks: organogenesis occur, at risk for congenital malformations and growth retardation.
- □ After 8 weeks: increased risk of mental retardation and miscariage
- Consult with radiation medicine physicians regarding fetal dose estimation and risk assessment counseling for the expecting parents

- The REMM Scarce Resources Triage Tool: available onlin e for assistance in evaluating a patient's prognosis
- Contaminated bodies: should not be cremated because this will only redistribute the nuclear material, which is not destroyed by fire

Conclusions

- Ioninzing radiation: irradiation, contamination, incorporation
- □ Clinical effects:
- Local Radiation Injury/ Cutaneous radiation injury
- Acute Radiation Syndrome
- □ Treatment of life-threatening injuries
- Decontamination, Decorporation

