

Heatstroke & Heat-related illness

Virissorn Wongsrichanalai M.D.

Division of Pulmonary and Critical Care Medicine

Department of Medicine

King Chulalongkorn Memorial Hospital

I have no conflict of interest

Outline

- Mechanism of heat on body
- Core temperature
- Pitfall in diagnosis
- Prehospital care
- Hospital management
- Pitfall in management

Morbidity & Mortality of EHS in RTA since 2004

Heat & Human Body

- 1. Heat transfer 4 mechanisms
 - Conduction
 - Convection
 - Evaporation
 - Radiation

- 2. Heat controlled center
 - 1) Preoptic Area of Hypothalamus (PAoH)
 - 2) Temperature is controlled with ANS and Behavior

Heat & Human Body

Core temperature (Tc)

 $30^{\circ}C$ — Ambient temperature — $20^{\circ}C$

https://www.cosinuss.com/en/measured-data/vital-signs/body-temperature/

Heat accumulation

Heat-related illness

Temperature (°c)

Heatstroke = Multiorgan failure

Common pitfalls for diagnosis

- 1. Delay diagnosis
- 2. Delay emergency management
- 3. Misleading diagnosis & treatment

DDx
polypharmacy
toxic ingestions
meningitis
sepsis
neuroleptic malignant syndrome
serotonin syndrome
malaria

Clarify term of fever/ hyperthermia

DDx heatstroke from fever

Classical heatstroke

Classic Exertional Heatstroke

Factor-Induced Exertion Heatstroke

Management

- Severity of HRI
- Starting time (onset of symptoms)
- Scene (environment)

Prehospital care

- Early detection: hyperthermia with alteration of consciousness
- Avoidance: remove from injury place to cooling place
- Start cooling: conduction, convection, evaporation, radiation
- Transportation with care: keep cooling during transportation

Lowering the temperature is the key to treatment

Cooling methods

External cooling

- 1. Conduction: ice pack, ice sheet, ice submersion
- 2. Convection: fan
- 3. Evaporation: foggy, tepid sponge
- 4. Radiation: cooling place

Internal cooling

- 1. Conduction: IV cold crystalloid
- Total fluid not over
 4 Liters per day

Hospital management

- Temperature control
- Infectious management
- Hemodynamic support
- Organ support

Level of heatstroke care

level	Temperature control	Infectious control	Hemodynamic support	Organ support
at scene				
at ER				
at ICU				

reach the target temperature within 3 h

Target temperature

remperature	Place	Modalities				
38°C	Scene	Cooling place, tepid sponge, ice-sheet, cold pack, fan				
<38°C	EMS/ER	+ Cold NSS infusion, Tepid sponge, fan, cold pack				
< 36°c or < 33°c	ICU	Cooling pad, cold IV				

Temperature control

Common pitfall in heatstroke management

Prevent reheat after temp controlled

Decrease temperature within 3 h Beware infection in late

Sustain target temp at least 24 h

24h fever

Restoration

Infectious control

- 1. Treat precipitated infection
- 2. Prophylaxis antibiotics
- 3. Treat nosocomial or opportunistic infection

Hemodynamic

- Cold NSS loading
 (30 mL/kg) total ≤ 4L
 in first 24h
- 2. Keep MAP ≥ 65 mmHg
- 3. Keep UO ≥ 0.5 mL/kg/h

Organ

- control seizure
 (sedation, AEDs)
- 2. Keep MAP ≥ 65 mmHg
- 3. monitor electrolyte, CPK, urine
- 4. etc.

Current RTA heatstroke treatment guideline

Current RTA heatstroke guideline

- Hospital in area: small, medium, large size or medical schools
- Facility of health care provider
- Temperature, critical and organs management

RTA heatstroke guideline

Hospi	tal level	Management			
RTA	MoPH	Temperature control Critically resuscitation		Organ support	
At scene					
Small hospital					
Medium si	zed hospital				
Large	hospital	pital			
	ospital / medical hospital				

Level		Management										
RTA	МоРН		Temperature control			Resuscitation		Organ support				
			Target temp.	Time to target	Transfer time	Hemodynamic	Monitor	Respiratory	Labolatory	KUB	Neurology	Others
scene			T < 38°c	ASAP	within 30 min	none	T, BP, HR, RR		none	none	none	none
30 beds			T < 38°c	ASAP	within 1 h*	IV fluid**	T, BP, HR, RR	O ₂ cannula	Labolatory #	correct life- threatening electrolyte	sedative IV push*	
60 beds	รพช.		T < 38°c	ASAP	within 2 h*	IV fluid**, c-line	T, BP, HR, RR, SpO₂	ET tube	Labolatory ##	correct electrolyte, Ca, P, Mg	sedative IV push*, sedative IV drip***	stat ATB prophylaxis, PPI prophylaxis
150 beds	รพ.ท.	ER	T < 38°c	ASAP	within 1 h*	IV fluid**, c-line	T, BP, HR, RR, SpO₂	ET tube	Labolatory ##	correct electrolyte, Ca, P, Mg	sedative IV push米, sedative IV drip米米	stat ATB prophylaxis, PPI prophylaxis
		ICU	< 36°c, 33°c if GCS 3	within 3 h		fluid assessment***	T, BP, HR, RR, SpO ₂ , CVP	ET tube	Labolatory ###	correct all lab, Hemodialysis	sedative + analgesia***	surviving sepsis campaign
> 400 beds	รพ.ศูนย์, รร.แพทย์	ER	T < 38°c	ASAP	within 1 h*	IV fluid**, c-line	T, BP, HR, RR, SpO₂	ET tube	Labolatory ##	correct electrolyte, Ca, P, Mg	sedative IV push米, sedative IV drip米米	stat ATB prophylaxis, PPI prophylaxis
			< 36°c, 33°c if GCS 3	within 3 h		fluid assessment***	T, BP, HR, RR, SpO ₂ , CVP, A-line	ET tube	Labolatory ###	correct all lab, Hemodialysis, CRRT	sedative + analgesia***	surviving sepsis campaign

* if hemodynamic stable, reach to target temperature ** cold NSS infusion 30 cc/kg IBW *** fluid assessment: CVP, urine output, IVC, fluid responsiveness # electrolyte, BUN/Cr, BS, UA, ECG ## electrolyte, BUN/Cr, BS, ECG, CBC, LFT, Uric, UA, ABG, Ca, P, Mg, septic work ### electrolyte, BUN/Cr, BS, ECG, CBC, LFT, Uric, UA, ABG, Ca, P, Mg, septic work up, CPK, Lactate, DIC profile * Diazepam 5 mg IV push or Midazolam 5mg IV push: if seizure or agitation ** Midazolam IV drip 2.5 - 5 mg/h: for status epilepticus or agitation *** Midazolam IV drip 2.5-5 mg/h + Fentanyl IV 25-50 μ g/h : continuous drip 24h then daily interruption

Morbidity & Mortality of EHS in RTA since 2004

Summary

- Heatstroke affects the entire body, especially the functioning of the brain
- Time is of the utmost importance to heatstroke outcome
- Reducing the temperature will be useful in any high grade fever