Course Specification

RARD529: Electronics Instrumentation and Radiation Dosimetry

Institution Name:	Mahidol University	
Campus/Faculty/Department:	Faculty of Medicine Ramathibodi Hospital, Department of Diagnostic and Therapeutic Radiology	

Section 1: General information

- Course number and name
 Course number: RARD 529
 Course name: Electronics Instrumentation and Radiation Dosimetry
- 2. Credits: 3(2-3-5)

3. Curriculum and type of course

3.1 Curriculum: Electronics Instrumentation and Radiation Dosimetry

3.2 Type of course: Core course

4. Instructors

- 4.1 Course Coordinator: Lect.Dr.PuangpenTangboonduangjit
- 4.2 Instructors

Asst.Prof.Suvit	Punnachaiya
Lect.Dr. Puangpen	Tangboonduangjit
Lect.Somnuk	Monthonjulkej

- 5. *Semester/Year:* 1stSemester, Academic Year 2020, 1styear students
- 6. *Pre-requisite:* None
- 7. Co-requisite: None
- 8. *Classroom:* To be announced
- 9. *Revision Date:* Nov 2019 *By:* Committee

Note: Revised course learning outcome, course description, and evaluation

Section 2: Purpose and objective

1. Course Learning Outcomes

1.1 Understand the role of electronics technology and signal controls; the components and electronic board circuit in nuclear science instrument

1.2 Analyse the basic design of electronics circuit, classify and test the nuclear system

1.3 Apply electronics knowledge to the nuclear medicine instrument and radiation machine and aware of the maintenance and also detect some unusual signals

1.4 Define the definition of radiation dose and measurement unit and explain the basic principles of radiation measurement

1.5 Describe the principles of ionization for measuring the radiation dose and methods of benchmarking in photon and electron beams

1.6 Explain, analyze and compare the principle of radiation measurement of various types of detectors i.e., ionization chamber, TLD/OSLD, Diode, Film, and Fricke dosimeter

Section 3: Course details

1. Course description

Introduction to electronics, circuit analysis, electronic passive devices, electronic active devices, amplifying and switching principle, electronic circuits, time and frequency domain, analog signal system, amplitude and time measurement, digital signal system, nuclear radiation detection process, nuclear instrumentation, radiation machine principle, radiation quantities and units, charged particle equilibrium, cavity theory, calibration traceability, radiation dosimeters.

2. *Hours per semester:* Lecture 30 hours

Practice 30 hours

3. Assignment feedback: Within 2 weeks

Section 4: Course Learning Outcomes

Course level learning outcomes	Programme level learning	Methods	Assessment
	outcomes		
1 Understand the role of electronics technology and signal controls; the components and electronic board circuit in nuclear science instrument	ELO 2, 4	 Lecture Demonstration Experiment 	 Paper Examination Rubric experiment report assessment
2 Analyse the basic design of electronics circuit, classify and test the nuclear system			
3 Apply electronics knowledge to the nuclear medicine instrument and radiation machine and aware of the maintenance and also detect some unusual signals			
4 Define the definition of radiation dose and measurement unit and explain the basic principles of radiation measurement	ELO 2, 5	- Lecture	- Paper examination
5 Describe the principles of ionization for measuring the radiation dose and methods of benchmarking in photon and electron beams	ELO 2, 4, 5	 Lecture Demonstration Experiment 	 Paper/Oral examination Rubric experiment report assessment Rubric presentation
6 Explain, analyze and compare the principle of radiation measurement of various types of detectors i.e., ionization chamber, TLD/OSLD, Diode, Film, and Fricke dosimeter			

Section 5: Lesson plan and assessment

1. Lesson plan

Time	Topics	Instructors	Method	Assessment
1	Basic circuit analysis	Asst.Prof.Suvit,	Lecture/	Paper
	- Lab : Introduction	Lect.Somnuk	Experiment	exam/Rubric
				Report
1	Electronic passive	Asst.Prof.Suvit,	Lecture/	Paper
	devices	Lect.Somnuk	Experiment	exam/Rubric
	-Lab 1: Practical use			Report
	of test instruments			
1	Electronic active	Asst.Prof.Suvit,	Lecture/	Paper
	devices	Lect.Somnuk	Experiment	exam/Rubric
	-Lab 2: Transistor			Report
	voltage amplifier			
2	Amplifying and	Asst.Prof.Suvit,	Lecture/	Paper
	switching principle	Lect.Somnuk	Experiment	exam/Rubric
	-Lab 3: Rectifier,			Report
	filter and voltage			
	multiplier			
2	Electronic circuits I	Asst.Prof.Suvit,	Lecture/	Paper
	- Lab 4: Voltage	Lect.Somnuk	Experiment	exam/Rubric
	regulated power			Report
	supply			
2	Electronic circuits II	Asst.Prof.Suvit,	Lecture/	Paper
	-Lab 5: Operational	Lect.Somnuk	Experiment	exam/Rubric
	amplifier		.	Report
2	Analog signal system	Asst.Prof.Suvit,	Lecture/	Paper
	- Lab 6: Frequency	Lect.Somnuk	Experiment	exam/Rubric
	generator		T (Report
2	Amplitude and time	Asst.Prof.Suvit,	Lecture/	Paper
	measurement	Lect.Somnuk	Experiment	exam/Rubric
2	-Lab /: Katemeter	A ant Draf Curvit	L a aturna /	Report
2	Lah 9. Lagia gatag	Asst.Prof.Suvit,	Lecture/	Paper
	-Lab 8: Logic gates	Lect.Sommuk	Experiment	Report
2	Analog digital	A got Drof Survit	L octuro/	Deport
Z	Analog-digital	Asst.Prof.Suvit,	Lecture/	Paper
	Lob 9: Elip Elop and	Lect.Sommuk	Experiment	Poport
	-Lau 9. Filp-Filop and			Report
1	Rosia pueleer	A get Drof Survit	L octuro/	Dapar
	instrumentation	ASSI.FIOI.SUVII,	Experiment	rapei
	I ab 10: Nuclear	Lett.Sommuk	Experiment	Peport
	-Lau IV. Nuclear			Report
	counting system			

Time	Topics	Instructors	Method	Assessment
2	Basic concept of radiation dosimetry I/II	Dr. Puangpen	Lecture	Paper/Oral exam
2	Radiation quantities and units	Dr. Puangpen	Lecture	Paper/Oral exam
2	Basic concept of radiation dosimetry I/II	Dr. Puangpen	Lecture	Paper/Oral exam
2	Radiation dosimeters (Ionization chamber) and Reference measurement Lab 11: Leakage testing and Sr-90 time check	Dr. Puangpen	Lecture/ Experiment	Paper /Oral exam/Rubric Report
2	Calibration of photon beams with cavity chamber	Dr. Puangpen	Lecture/Demonstration	Paper/Oral exam
2	Chemical dosimetry and calorimetry Lab 12: Chemical dosimetry	Dr. Vitit	Lecture/ Experiment	Paper exam/ Rubric Report
1	Semiconductor dosimeters	Dr. Nauljun	Lecture	Paper exam
1	Passive dosimeters	Dr. Suphaluck	Lecture/Demonstration	Paper exam
3	Student's journal presentation	Dr. Puangpen		

2. Measurement and Evaluation of Student Achievement

2.1	Theory (short answer questions)	60%
2.2	Experiment report	20%
2.3	Assignment	10%
2.4	Behavior/Discipline	10%

Section 6: Assessment and improvement of the course operation

- 1. Strategies to assess the effectiveness of the courses by the students
 - Assessment of instructor's teaching by student
- 2. Strategy to assess the instruction
 - Assessment of students' learning records
 - Assessment of instructor's teaching by student

3. Improvement of Instruction

- Consider the students' learning records
- Consider the students' assessment of instructor's teaching
- Consider the program committee's comment

4. Verification of student achievement in the subject

• By program committee and faculty-level academic committee

5. Review and action plan to improve the effectiveness of the course

• Using the results from 1 - 4 as inputs to the instruction improvement

Learning Resources

Thai language

 สุวิทย์ ปุณณชัยยะ. เอกสารประกอบการสอน วิชา อิเล็กทรอนิกส์และอุปกรณ์ทางนิวเคลียร์: ภาควิชาวิศวกรรมนิวเคลียร์ คณะ วิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, ๒๕๕๐.

English language

1. Freeman S. Electronics devices: discrete and integrated. New Jersey: Prentice-Hall,1990.

2. Braneal D. Analog and digital electronics for scientific application. North Scituate, Breton publisher, 1982

3. Knoll GF. Radiation detection and measurement. 3rd edition, New York, John Wiley & sons, 2000.

4. Nicholson P.W. Nuclear Electronics. New York, John Wiley & sons, 1974.

5. Philip Mayles, Alan Nahum, Jean-Claude Rosenwald. Handbook of radiotherapy physics therory and practice: Talor & Francis Group; 2007.

6. Faiz M. Khan. The Physics of Radiation Therapy: Lippincott Williams & Wilkins, a Wolters Kluwer business, 4th edition; 2010.

7. Frank H. Attix. Introduction to radiological physics and radiation dosimetry. John Wiley & Sons; 1986.

8. Pedro Andreo, Davis T.Burns, Alan E. Nahum, Jan Seuntjens, and Frank H. Attix. Fundamentals of ionizing radiation dosimetry: Wiley-VCH; 2017.