Course Specification

RARD 527: Medical Image Processing

Institution Name:	Mahidol University
Campus/Faculty/Department:	Faculty of Medicine Ramathibodi Hospital, Department of Diagnostic and Therapeutic Radiology

Section 1: General information

- 1. Course number and name Course number: RARD 527 Course name: Medical Image Processing
- 2. Credits: 2(1-1-3)
- 3. Curriculum and type of course
 - 3.1 Curriculum: Medical Image Processing
 - 3.2 Type of course: Core course

4. Instructors

- 4.1 Course Coordinator: Lect.Dr. Krisanat Chuamsaamarkkee
- 4.2 Instructors

Lect.Dr. Krisanat Chuamsaamarkkee Asst. Prof. Dr. Wiwat Owasirikul Asst. Prof. Dr. YudthaphonVichianin

- 5. *Semester/Year:* 1st Semester, Academic Year 2020, 1styear students
- 6. Pre-requisite: None
- 7. Co-requisite: None
- 8. *Classroom:* To be announced
- 9. *Revision Date:* Nov 2019 *By:* Committee

Note: Revised course learning outcome, course description, and evaluation

Section 2: Purpose and objective

1. Course Learning Outcomes

- 1.1 Have a comprehensive knowledge of the basics of medical image processing.
- 1.2 Demonstrate anunderstanding of the image quality, signal to noise ratio (SNR) and modelling image degradation
- 1.3 Describe the role of basic image processing techniquesuch as image registration and image segmentation in high level image analysis
- 1.4 Explain the medical networking and information system, image format, DICOM and PACS
- 1.5 Discuss the current and future roles of image analysis techniques in biomedical researches

Section 3: Course details

1. Course description

This course will cover the fundamental components of medical image analysis and visualization. It will start with an introduction to the underlying concepts and mathematics of biomedical image processing including data storage types and coordinate systems. This will be followed by the image processing techniques, Intensity Correction, Registration and Segmentation. The remainder of the course will focus on specific examples of high-level image processing and their application in medical imaging. The examples covered will be Non-linear registration, image fusion or cross modality data. In addition to this theoretical background, students will be expected to work through real data examples using common image analysis software.

Hours per semester: Lecture 30 hours

2. Assignment feedback: Within 2 - 4 weeks

Section 4: Course Learning Outcomes

	Course level learning outcomes	Program level learning outcomes	Methods	Assessment
1	Student have a knowledge of the basics of medical image processing	ELO 2	-Lecture -Assignment	 Paper/oralExamination Report/Assignment
2	Student can understand the image quality, signal to noise ratio (SNR) and modelling image degradation	ELO 2	 Lecture Assignment 	 Paper/oral Examination Report/Assignment
3	Student can understandthe role of basic image processing techniquesuch as image registration and image segmentation in high level image analysis	ELOs 2, 6	 Lecture Assignment 	 Paper/oral Examination Report/Assignment
4	Student can explain the medical networking and information system, image format, DICOM and PACS	ELOs 2, 6	LectureAssignmentPresentation	 Paper/oral Examination Report/Assignment Presentation Rubric Assessment
5	Student can Discuss the current and future roles of image analysis techniques in biomedical researches	ELOs 2, 5	LectureAssignmentPresentation	 Paper/oral Examination Report/Assignment Presentation Rubric Assessment

Section 5: Lesson plan and assessment

1. Lesson plan								
Time	Topics	Instructors	Method	Assessment				
(h)	Introduction to Medical							
2	Introduction to Medical	Lect. Dr. Krisanat	Lecture	Paper/Oral				
	Image Processing and the Human Visual Perception	Lect. Dr. Krisanat		examination/Assignment Paper/Oral examination/Assignment				
	Medical Image Formation							
	Datatypes & co-ordinate							
2	systems in medical	Lect. Dr. Krisanat						
	imaging.							
	Image Quality, SNR and		Lecture	Paper/Oral examination/Assignment				
3	Modelling Image	Lect. Dr. Krisanat						
	Degradation							
2	Image Reconstruction and	Last Da Kalasast	т.,	Paper/Oral				
3	Filtering	Lect. Dr. Krisanat	Lecture	examination/Assignment				
	Image Transformation,	Asst. Prof. Dr.		Paper/Oral examination/Assignment				
6	Linear and non-linear	Wiwat	Lecture					
	medical image registration	wiwat						
	Sources of intensity		Lecture	Paper/Oral examination/Assignment				
	variation and geometric							
	distortion in Biomedical	Asst. Prof. Dr.						
3	Images. BO correction,	Wiwat						
	geometric distortion							
	correction, EPI distortion							
	correction. Biomedical image							
	segmentation		Lecture	Paper/Oral examination/Assignment				
	Multi-spectral							
	segmentation, spatial							
	priors, Guassian Mixture	Asst. Prof. Dr.						
6	modelling,kmean,	Wiwat						
	Expectation Maximisation							
	(EM). Atlas creation and							
	applications, model based							
	segmentation							
	Medical networking and		Lecture	Paper/Oral examination/Assignment				
5	information system, image	Asst. Prof. Dr.						
5	format, DICOM and	Yudthaphon						
	PACS							

1. Lesson plan

Measurement and Evaluation of Student Achievement

2.1	Theory (short/Long answer questions)	60%
2.2	Assignment	25%
2.3	Journal presentation	10%
2.4	Class discussion	5%

Section 6: Assessment and improvement of the course operation

1. Strategies to assess the effectiveness of the courses by the students

- Assessment of instructor's teaching by student
- 2. Strategy to assess the instruction
 - Assessment of students' learning records
 - Assessment of instructor's teaching by student
- 3. Improvement of Instruction
 - Consider the students' learning records
 - Consider the students' assessment of instructor's teaching
 - Consider the program committee's comment
- 4. Verification of student achievement in the subject
 - By program committee and faculty-level academic committee
- 5. Review and action plan to improve the effectiveness of the course
 - Using the results from 1 4 as inputs to the instruction improvement

Learning Resources

- 1. Birkfellner, W., 2015. Applied medical image processing: a basic course. CRC Press.
- 2. Bushberg, J.T. ed., 2002. The essential physics of medical imaging. Lippincott

Williams & Wilkins.