Course Specification

RARD 513: Physics of Diagnostic Imaging

Institution Name:	Mahidol University	
Campus/Faculty/Departme	nt: Faculty of Medicine, Ramathibodi Hospital, Department of Diagnostic and Therapeutic Radiology	

Section 1: General information

1. Course number and name

Course number: RARD 513

Course name: Physics of Diagnostic Imaging

2. Credits: 2(2-0-2)

3. Curriculum and type of course

3.1 Curriculum: Physics of Diagnostic Imaging

3.2 Type of course: core course

4. Instructors

- 4.1 Course Coordinator: Asst.Prof. Dr. Sawwanee Asaaphatiboon
- 4.2 Instructors:

Asst.Prof. Dr. Sawwanee Asaaphatiboon

Asst.Prof. Dr.Napapong Pongnapang

- 5. Semester/Year:1stSemester, Academic Year 2019,1styear students
- 6. Pre-requisite: Radiation and Nuclear Physics
- 7. Co requisites: None
- **8.** Classroom: To be announced
- **9. Revision Date:**31st July 2019

Note: Revised course learning outcome, course description, and evaluation

Section 2: Purpose and objective

1. Course Learning Outcomes

1.1Student can identify physical concepts of diagnostic radiology

1.2 Student can explain physics, evolution and safety of each modality in diagnostic radiology

1.3 Student can identify the components, the difference of diagnostic equipment and detectors and application of diagnostic radiology

1.4Student can understand concept of image quality and quality control of each modality

1.5Student can understand and apply TRS 457 to perform dosimetry in diagnostic equipment

Section 3: Course details

1. Course Description

Principle of physics; application and quality control of diagnostic imaging systems including conventional radiography, mammography, fluoroscopy, computed tomography (CT), ultrasound, electronic imaging, magnetic resonance imaging (MRI) systems including Technical report series 457 (TRS 457): dosimetry in diagnostic radiology an international code of practice.

2. Hours per semester:

Lecture 30 hours

Self-study 30 hours

3. Assignments feedback: Within 2-4 weeks

Section 4: Course Learning Outcomes

Course level learning	Programme level	Methods	Assessment
outcomes	learning outcomes		
1. Student can identify	ELO 2	- Lecture	- Examination
physical concepts of		- Class discussion	
diagnostic radiology		- Assigned readings	
2. Student can explain	ELO 2	- Lecture	- Examination
physics, evolution and		- Class discussion	
safety of each modality in		- Assigned readings	
diagnostic radiology			
3. Student can identify	ELO 2	- Lecture	- Examination
the components, the		- Class discussion	
difference of diagnostic		- Assigned readings	
equipment and detectors			
and application of			
diagnostic radiology			
4. Student can	ELO 1,2	- Lecture	- Examination
understand concept of		- Class discussion	
image quality and quality		- Assigned readings	
control of each modality			
5. Student can	ELO 1, 2,4,5	- Lecture	- Examination
understand and apply		- Class discussion	
TRS 457 to perform		- Assigned readings	
dosimetry in diagnostic			
equipment			
6. Student can value the	ELO 4,5	- Assigned readings	- Rubric writing
professional conduct of			assessment
diagnostic radiology			

Section 5: Lesson plan and assessment

1. Lesson plan

Time(hr)	Topics	Instructors	Method	Assessment
15 min	Subject introduction	Lect.Dr.Sawwanee		
2	Physical concepts of diagnostic radiology I	Lect.Dr.Napapong	- Lecture - Class discussion	Examination
2	Physical concepts of diagnostic radiology II	Lect.Dr.Napapong	- Lecture - Class discussion	Examination
2	Screen-film radiography	Lect.Dr.Napapong	- Lecture - Class discussion	Examination
2	Computed Radiography and Digital Radiography	Lect.Dr.Napapong	- Lecture - Class discussion	Examination
2	Mammography	Lect.Dr.Napapong	- Lecture - Class discussion	Examination
2	Fluoroscopy	Lect.Dr.Sawwanee	- Lecture - Class discussion	Examination
2	Ultrasonography I and II	Lect.Dr.Napapong	- Lecture - Class discussion	Examination
2	Ultrasonography I and II	Lect.Dr.Napapong	- Lecture - Class discussion	Examination
2	Electronic Imaging	Lect.Dr.Napapong	- Lecture - Class discussion	Examination
2	Computed Tomography I	Lect.Dr.Sawwanee	- Lecture - Class discussion	Examination

Time(hr)	Topics	Instructors	Method	Assessment
2	Computed Tomography II	Lect.Dr.Sawwanee	- Lecture	Examination
			- Class	
			discussion	
2	Magnetic Resonance Imaging	Lect.Dr.Sawwanee	- Lecture	Examination
	Ι		- Class	
			discussion	
2	Magnetic Resonance Imaging	Lect.Dr.Sawwanee	- Lecture	Examination
	II		- Class	
			discussion	
2	Basic imaging concepts and	Lect.Dr.Napapong	- Lecture	Examination
	their relationships I		- Class	
			discussion	
2	Basic imaging concepts and	Lect.Dr.Napapong	- Lecture	Examination
	their relationships II		- Class	
			discussion	

2. Measurement and Evaluation of Student Achievement

2.1 TheoryExamination	(short,long answer questions) 80
-----------------------	----------------------------------

2.2 Class discussion 20%

Section 6: Assessment and improvement of the course operation

1. Strategies to assess the effectiveness of the courses by the students

Assessment of instructor's teaching by student

2. Strategy to assess the instruction

Assessment of students' learning records

Assessment of instructor's teaching by student

3. Improvement of Instruction

Consider the students' learning records

Consider the students' assessment of instructor's teaching

Consider the program committee's comment

4. Verification of student achievement in the subject

By program committee and faculty-level academic committee

5. Review and action plan to improve the effectiveness of the course

Using the results from 1 - 4 as inputs to the instruction improvement

Learning Resources

1. William E. Brant, Clyde A. Helms. Fundamentals of Diagnostic Radiology, Fourth Edition. Lippincott Williams & amp; Wilkins. 2006.

2. http://www.sprawls.org/resources/

3. https://www.imaios.com/en/e-Courses/e-MR

- 4. Stark DD. Magnetic resonance imaging. 3rd ed. St. Louis : Mosby; 1991.
- 5. Mitchell DG. MRI principles. Phyladelphia : Saunders; 1991.

6. Seeram E. Computed tomography : Physical principles, clinical application and quality control. Philadelphia : Saunders; 2001.

7. Bushberg JT. The essential physics of medical imaging. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2011.