Course Specification

RARD 511: Radiation and Nuclear Physics

Institution Name:	Mahidol University
Campus/Faculty/Department:	Faculty of Medicine Ramathibodi Hospital, Department of Diagnostic and Therapeutic Radiology

Section 1: General information

- Course number and name
 Course number: RARD 511
 Course name: Radiation and Nuclear Physics
- 2. Credits: 2(2-0-4)

3. Curriculum and type of course

3.1 Curriculum: Radiation and Nuclear Physics

3.2 Type of course: Pre-Requisite

4. Instructors

- 4.1 Course Coordinator: Lect.Dr.PuangpenTangboonduangjit
- 4.2 Instructors

Lect.Dr.Puangpen	Tangboonduangjit
Asst. Prof. Dr. Sawwanee	Asavaphatiboon
Lect. Dr. Kritsanat	Cheumsaamarkkee
Lect. Dr. Nauljun	Stansook
Lect. Dr.Suphaluck Kajornkum	

- 5. *Semester/Year:* 1st Semester, Academic Year 2020, 1styear students
- 6. Pre-requisite: None
- 7. Co-requisite: None
- 8. *Classroom:* To be announced
- 9. *Revision Date:* Nov 2019 *By:* Committee

Note: Revised course learning outcome, course description, and evaluation

Section 2: Purpose and objective

1. Course Learning Outcomes

- 1. Be able to describe, compare and classify atomic structure, interaction of radiation with matter, x-ray production, and shielding.
- 2. Be able to calculate radioactive activity, attenuated photons, energy of radiation through matter, range of particles, and shielding thickness.
- 3. Be able to relate theory of atomic structure, interaction of radiation, and shielding calculation to the field of nuclear medicine, radiation oncology, and diagnostic imaging.

Section 3: Course details

1. Course description

Atomic structure; nuclear structure, nuclear models, nuclear disintegrations, nuclear reaction; interaction of photon with matter: interaction of charged particle with matter, interaction of neutron with matter; properties and production of X-rays; principle of shielding for photon, charged particle, and neutron

- 2. *Hours per semester:* Lecture 30 hours
- 3. Assignment feedback: Within 2 weeks

Section 4: Course Learning Outcomes

Course level	Programme level	Methods	Assessment
learning outcomes	learning outcomes		
1.Be able to describe,	ELOs 2	-Lecture	- Paper Examination
compare and		- Class discussion	- Rubric participation
classify atomic		- Assignment	assessment
structure,			- Rubric assignment
interaction of			
radiation with			
matter, x-ray			
production, and			
shielding.			
2.Be able to calculate	ELO 2	- Lecture	- Paper Examination
radioactive activity,		- Class discussion	- Rubric
attenuated photons,		- Assignment	participation
energy of radiation			assessment
through matter,			- Rubric assignment
range of particles,			
and shielding			
thickness			

Course level	Programme level	Methods	Assessment
learning outcomes	learning outcomes		
3. Be able to relate	ELOs 2	- Lecture	- Paper Examination
theory of atomic		- Class discussion	- Rubric
structure, interaction		- Assignment	participation
of radiation, and			assessment
shielding calculation			- Rubric assignment
to the field of			
nuclear medicine,			
radiation therapy,			
and diagnostic			
imaging.			

Section 5: Lesson plan and assessment

1. Lesson plan

Time	Topics	Instructors	Method	Assessment
(hr)				
2	Atomic structure	Lect.Dr.Suphaluck	Lecture/ Assignment	 Paper examination Rubric assignment
2	Nuclear structure	Lect.Dr.Nualjun	Lecture/ Assignment	 Paper examination Rubric assignment
2	Nuclear models	Lect.Dr.Nualjun	Lecture/ Assignment	 Paper examination Rubric assignment
3	Nuclear transformations	Lect.Dr.Krisanat	Lecture/ Assignment	 Paper examination Rubric assignment
3	Nuclear reactions	Lect.Dr.Krisanat	Lecture/ Assignment	 Paper examination Rubric assignment
3	Charged particle interactions 1	Lect.Dr.Puangpen	Lecture/ Assignment	 Paper examination Rubric assignment

Time	Topics	Instructors	Method	Assessment
(hr)				
3	Charged particle interactions 2	Lect.Dr.Puangpen	Lecture/ Assignment	 Paper examination Rubric assignment
3	EM interactions 1	Lect.Dr.Puangpen	Lecture/ Assignment	 Paper examination Rubric assignment
3	EM interactions 2	Lect.Dr.Puangpen	Lecture/ Assignment	 Paper examination Rubric assignment
2	Neutron interaction	Asst.Prof.Dr.Sawwanee	Lecture/ Assignment	PaperexaminationRubric assignment
2	X-ray	Asst.Prof.Dr.Sawwanee	Lecture/ Assignment	 Paper examination Rubric assignment
2	Shielding	Asst.Prof.Dr.Sawwanee	Lecture/ Assignment	 Paper examination Rubric assignment

2. Measurement and Evaluation of Student Achievement

2.1	Theory (short answer questions)	70%
2.2	Writing assignment	30%

Section 6: Assessment and improvement of the course operation

1. Strategies to assess the effectiveness of the courses by the students

- Assessment of instructor's teaching by student
- 2. Strategy to assess the instruction
 - Assessment of students' learning records
 - Assessment of instructor's teaching by student
- 3. Improvement of Instruction
 - Consider the students' learning records
 - Consider the students' assessment of instructor's teaching
 - Consider the program committee's comment

4. Verification of student achievement in the subject

• By program committee and faculty-level academic committee

5. Review and action plan to improve the effectiveness of the course

• Using the results from 1 - 4 as inputs to the instruction improvement

Learning Resources

1. Philip Mayles, Alan Nahum, Jean-Claude Rosenwald. Handbook of radiotherapy physics therory and practice: Talor & Francis Group; 2007.

2. James E. Turner. Atoms, radiation, and radiation protection: Wiley-VCH 3rd ed; 2007.

3. Pedro Andreo, Davis T.Burns, Alan E. Nahum, Jan Seuntjens, and Frank H. Attix. Fundamentals of ionizing radiation dosimetry: Wiley-VCH; 2017.