Multi-state Modeling

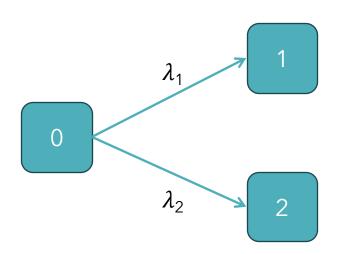
The introduction and practice

Amarit Tansawet, MD, PhD. 15/11/2024 Sukho Place Building

Multi-state working group

... and more to come

Recap


Hazard function

$$h(t) = \lim_{\Delta t \downarrow 0} \frac{P(t \le T < t + \Delta t \mid T \ge t)}{\Delta t}$$

Recap

Cause-specific hazard

$$\lambda_k(t) = \lim_{\Delta t \downarrow 0} \frac{P(t \le T < t + \Delta t, E = k \mid T \ge t)}{\Delta t}$$

$$\sum_{e=1}^{K} \lambda_e(t) = \lim_{\Delta t \downarrow 0} \frac{\sum_{e=1}^{K} P(t \le T < t + \Delta t, E = e \mid T \ge t)}{\Delta t}$$
$$= \lim_{\Delta t \downarrow 0} \frac{P(t \le T < t + \Delta t \mid T \ge t)}{\Delta t} = h(t).$$

Multi-state model

Initial state

#0001

Bulbasaur

Grass · Poison

Transit 1

Intermediate state

Absorbing state

Ivysaur

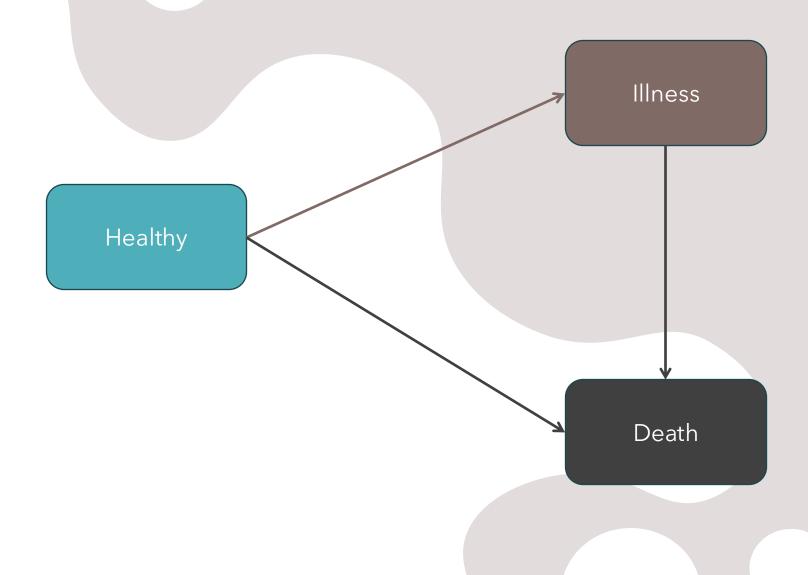
Grass · Poison

Remain in the same state

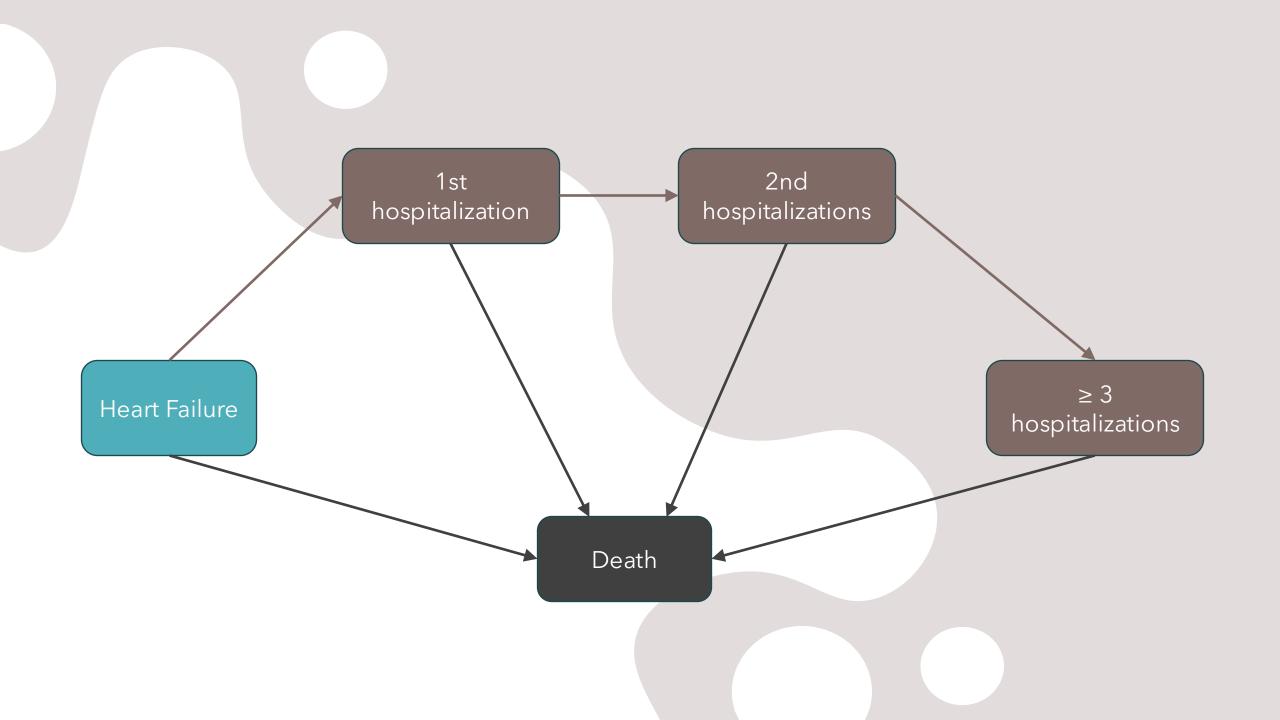
Venusaur

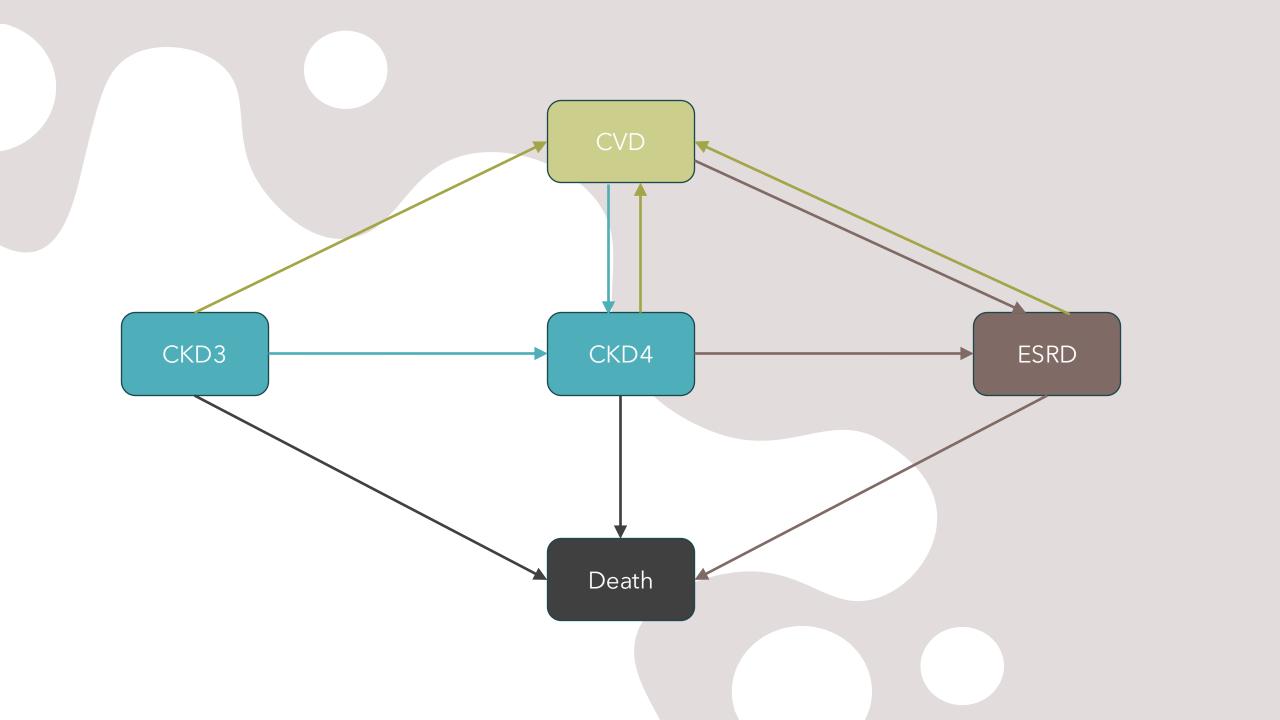
Grass · Poison

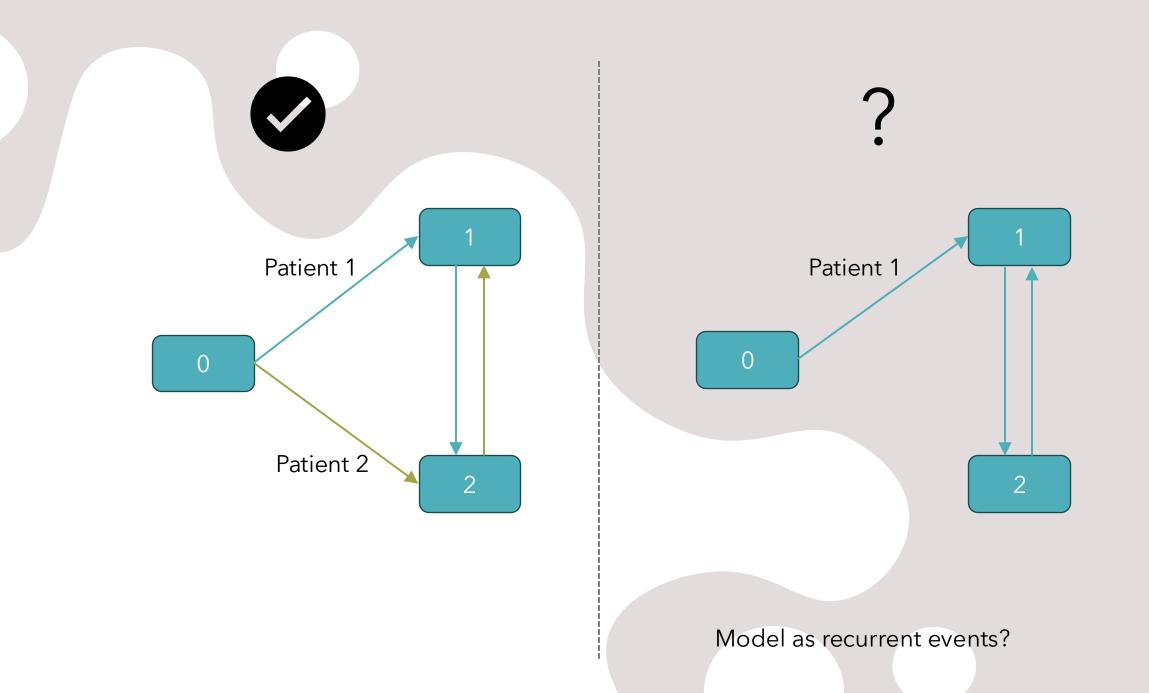
Mutually exclusive


Why do we need multi-state model?

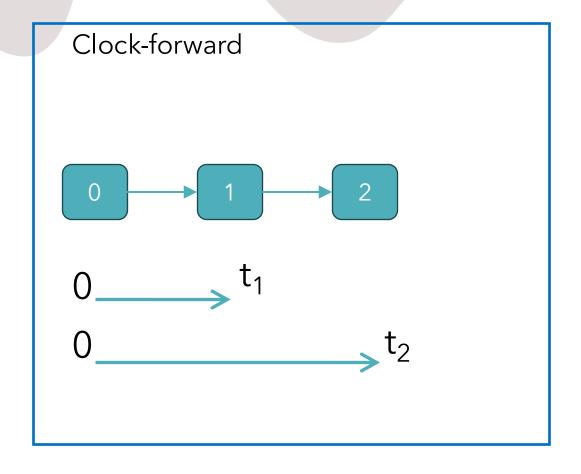
Need information on etiological mechanism


More accurate prediction

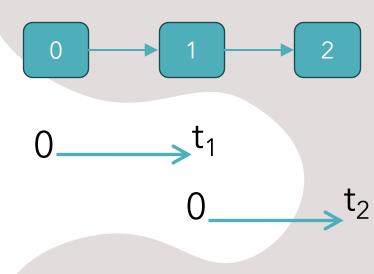

Patients don't have to enter from the initial state


Illness-death model

ACYCLIC



Markov property


What happens next only depends on the current state, not on what happened before

Need to be relaxed in more complex models

Time scale

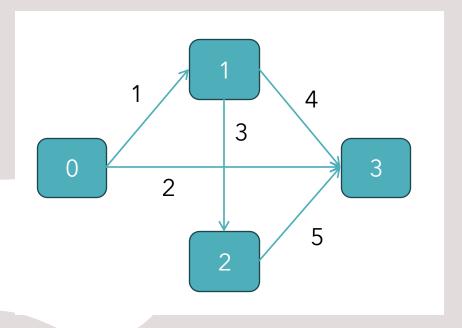
Clock-reset

Model different transitions with different time scales?

Basic data format: Stage-ordered format

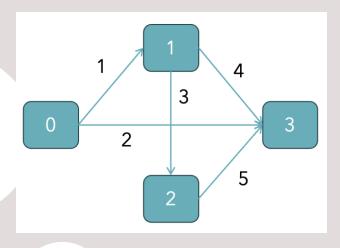
ID	1.time	1.status	2.time	2.status	3.time	3.status
1	10	1	20	0	20	0
2	20	0	20	0	20	0
3	10	1	20	1	30	0
4	10	1	20	1	30	1
5	10	1	20	0	20	1
6	20	0	20	0	20	1

Basic data format


Stage-ordered format (irreversible multi-state data): One column contains the first observation time in that state and the other column is a zero-one variable that denotes whether the state was reached during follow-up

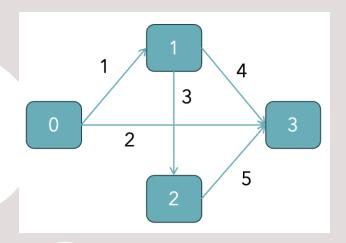
Basic data format: Stage-ordered format

1 10	4			
	1 20	0	20	0
2 20	0 20	0	20	0
3 10 Sta	ate diac	ara¹m'	7 30	0
4 10	1 20	1	30	1
5 10	1 20	0	20	1
6 20	0 20	0	20	1


Basic data format: Stage-ordered format

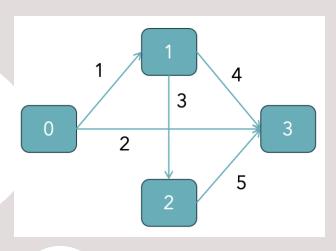
ID	1.time	1.status	2.time	2.status	3.time	3.status
1	10	1	20	0	20	0
2	20	0	20	0	20	0
3	10	1	20	1	30	0
4	10	1	20	1	30	1
5	10	1	20	0	20	1
6	20	0	20	0	20	1

ID	1.time	1.status	2.time	2.status	3.time	3.status
1	10	1	20	0	20	0


ID	From	То	Trans	Start	Stop	Status
1	0	1	1	0	10	1
1	0	3	2	0	10	0
1	1	2	3	10	20	0
1	1	3	4	10	20	0

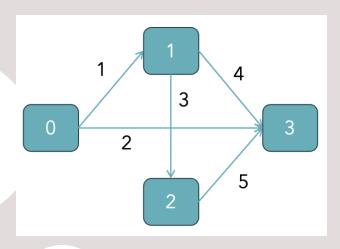
i.e.,
$$1 \rightarrow censor$$

ID	1.time	1.status	2.time	2.status	3.time	3.status
2	20	0	20	0	20	0

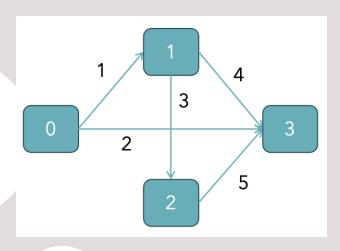

ID	From	То	Trans	Start	Stop	Status
2	0	1	1	0	20	0
2	0	3	2	0	20	0

i.e., 0→ censor

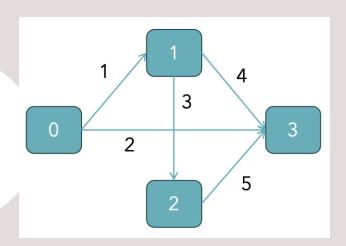
ID	1.time	1.status	2.time	2.status	3.time	3.status
3	10	1	20	1	30	0


ID	From	То	Trans	Start	Stop	Status
3	0	1	1	0	10	1
3	0	3	2	0	10	0
3	1	2	3	10	20	1
3	1	3	4	10	20	0
3	2	3	5	20	30	0

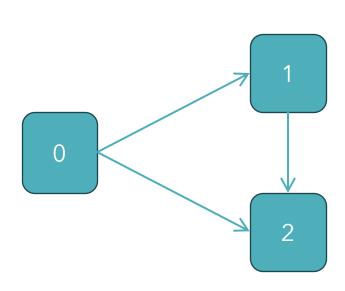
i.e., $2 \rightarrow$ censor


ID	1.time	1.status	2.time	2.status	3.time	3.status
4	10	1	20	1	30	1

ID	From	То	Trans	Start	Stop	Status
4	0	1	1	0	10	1
4	0	3	2	0	10	0
4	1	2	3	10	20	1
4	1	3	4	10	20	0
4	2	3	5	20	30	1


ID	1.time	1.status	2.time	2.status	3.time	3.status
5	10	1	20	0	20	1

ID	From	То	Trans	Start	Stop	Status
5	0	1	1	0	10	1
5	0	3	2	0	10	0
5	1	2	3	10	20	0
5	1	3	4	10	20	1



ID	1.time	1.status	2.time	2.status	3.time	3.status
6	20	0	20	0	20	1

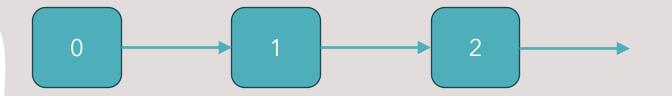
ID	From	То	Trans	Start	Stop	Status
6	0	1	1	0	20	0
6	0	3	2	0	20	1

Aalen-Johansen estimator

Irreversible illness-death model

$$\begin{split} \widehat{\mathbf{P}_{00}}(s,t) &= \prod_{s < u \le t} \left\{ 1 - \widehat{\lambda_{01}}(u) - \widehat{\lambda_{02}}(u) \right\} \\ \widehat{\mathbf{P}_{11}}(s,t) &= \prod_{s < u \le t} \left\{ 1 - \widehat{\lambda_{12}}(u) \right\} \\ \widehat{\mathbf{P}_{12}}(s,t) &= \sum_{s < u \le t} \widehat{\mathbf{P}_{11}}(s,u-)\widehat{\lambda_{12}}(u) \\ \widehat{\mathbf{P}_{01}}(s,t) &= \sum_{s < u \le t} \widehat{\mathbf{P}_{00}}(s,u-)\widehat{\lambda_{01}}(u)\widehat{\mathbf{P}_{11}}(u+,t) \\ \widehat{\mathbf{P}_{02}}(s,t) &= \sum_{s < u \le t} \widehat{\mathbf{P}_{00}}(s,u-)\widehat{\lambda_{01}}(u)\widehat{\mathbf{P}_{12}}(u+,t) \\ &+ \sum_{s < u \le t} \widehat{\mathbf{P}_{00}}(s,u-)\widehat{\lambda_{02}}(u) \end{split}$$

But if we would like to consider for the covariate pattern ...


Covariate

Fixed at baseline

Transition specific

Time-varying within transition

Each transition has a different hazard function, which could have the same or different set of covariates

$$X = x_0$$

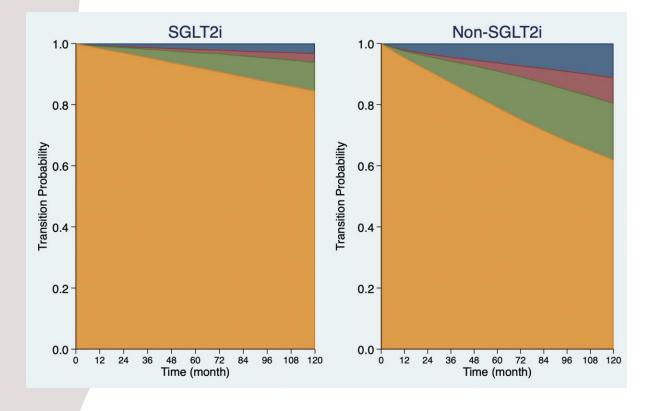
$$X = x_0 \longrightarrow X = x_1 \longrightarrow X = x_2 \longrightarrow$$

$$X = X_{0.1} \quad X_{0.2} \quad X_{0.3} \quad X_{1.1} \quad X_{1.2} \quad X_{2.1}$$

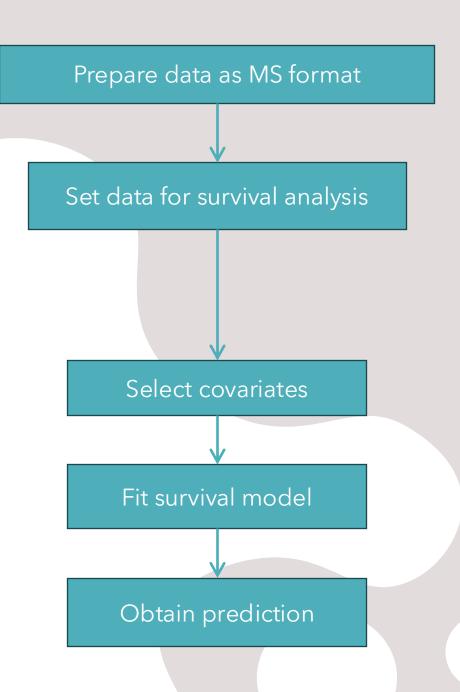
ID	From	То	Trans	Start	Stop	Status	HbA1c
3	0	1	1	0	10	1	7.2
3	0	3	2	0	10	0	7.2
3	1	2	3	10	20	1	7.2
3	1	3	4	10	20	0	7.2
3	2	3	5	20	30	0	7.2

ID	From	То	Trans	Start	Stop	Status	HbA1c
3	0	1	1	0	10	1	7.2
3	0	3	2	0	10	0	7
3	1	2	3	10	20	1	7.8
3	1	3	4	10	20	0	6.7
3	2	3	5	20	30	0	7

Modeling


Cox PH model

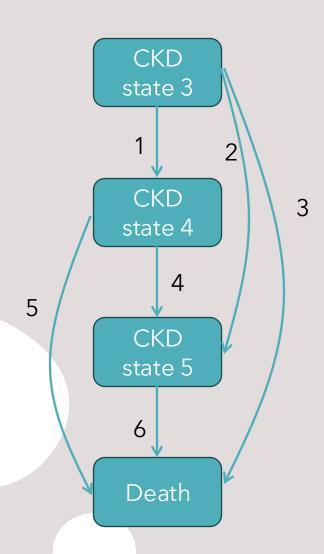
Parametric survival model


Spline-based model

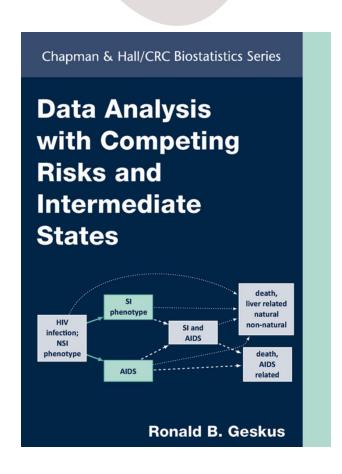
Transition probability

the probability of a subject being in a certain stage given the <u>subject's starting</u> <u>stage</u>, the time at which the subject began moving through the process, and the subject's covariate profile.

Steps of analysis


Data for workshop

5266 patients


We want to know about the CKD progression

SGLT2i is the intervention of interest (compared with other 2nd-medications)

Match 1:2 by the date of prescription

STATA time!

<< Suggested reading