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Mediation Analysis with Time-Varying
Exposures and Mediators

Tyler J. VanderWeele and Eric Tchetgen Tchetgen

Abstract

In this paper we consider mediation analysis when exposures and mediators vary
over time. We give non-parametric identification results, discuss parametric im-
plementation, and also provide a weighting approach to direct and indirect effects
based on combining the results of two marginal structural models. We also discuss
how our results give rise to a causal interpretation of the effect estimates produced
from longitudinal structural equation models. When there are no time-varying
confounders affected by prior exposure and mediator values, identification of di-
rect and indirect effects is achieved by a longitudinal version of Pearl’s mediation
formula. When there are time-varying confounders affected by prior exposure
and mediator, natural direct and indirect effects are not identified. We define a
randomized interventional analogue of natural direct and indirect effects that are
identified in this setting. The formula that identifies these effects we refer to as the
“mediational g-formula.” When there is no mediation, the mediational g-formula
reduces to Robins’ regular g-formula for longitudinal data. When there are no
time-varying confouders affected by prior exposure and mediator values, then the
mediational g-formula reduces to a longitudinal version of Pearl’s mediation for-
mula. However, the mediational g-formula itself can accomodate both mediation
and time-varying confounders.



Mediation Analysis with Time-Varying Exposures and
Mediators

Tyler J. VanderWeele and Eric J. Tchetgen Tchetgen

1. Introduction

There has recently been considerable methodologic development on approaches to media-
tion and pathway analysis from within the causal inference literature (Robins and Greenland,
1992; Pearl, 2001; van der Laan and Petersen, 2008; VanderWeele and Vansteelandt, 2009,
2010; Imai et al., 2010; Valeri and VanderWeele, 2012; Tchetgen Tchetgen and Shpitser,
2012; Lange et al., 2012; Vansteelandt et al., 2012). This work has extended traditional ap-
proaches to mediation to settings with interactions and non-linearities and has clari�ed the
no-unmeasured confounding assumptions that su¢ ce for a causal interpretation of direct and
indirect e¤ects. Almost all of this literature has considered a single exposure at one point in
time, a single mediator, and a single outcome. Often longitudinal data are available and the
exposure and the mediator vary over time. There is currently very little work in the causal
inference literature with exposures and mediators that very over time. Only a few papers in
the causal inference brie�y touch on such settings with longitudinal data (van der Laan and
Petersen, 2008; VanderWeele, 2009) and an approach that fully accommodates time-varying
exposures and mediators and time-varying confounding is yet to be developed. Although
some work has been done in psychology on mediation analysis with longitudinal data (cf.
MacKinnon, 2008), this does not fall within a formal causal framework. Some of the di¢ -
culty is that the concepts of natural direct and indirect e¤ects (Robins and Greenland, 1992;
Pearl, 2001) that have been employed in the causal inference literature on mediation are not
identi�ed from the data in many settings involving time-varying exposures and mediators.
In particular whenever there is a mediator-outcome confounder a¤ected by the exposure,
these natural direct and indirect e¤ects are not non-parametrically identi�ed irrespective of
whether data is available on this exposure-induced confounder or not (Avin et al., 2005). In
the longitudinal settings such exposure-induced confounding may be very common. In this
paper we propose an approach to pathway analysis that can be used in settings with time-
varying exposures and mediators. To do so, instead of using the natural direct and indirect
e¤ects commonly employed in the literature we use a randomized interventional analgoue of
natural direct and indirect e¤ects (cf. Didelez et al., 2006; VanderWeele et al., 2014) that
can be identi�ed from longitudinal data under weaker assumptions than the natural direct
and indirect e¤ects.

2. Natural Direct and Indirect E¤ects Versus Randomized Interventional Anal-
goues

In this section we will review the de�nitions and identi�cation assumptions for the natural
direct and indirect e¤ects de�ned in the causal inference literature on mediation. We will
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moreover contrast this to randomized interventional analgoues of natural direct and indirect
e¤ects which can be identi�ed under weaker assumptions and which will, in the following
section, be extended to settings with time-varying exposures and mediators.
Let A denote the exposure of interest; Y , the outcome and M , the potential mediator,

and V a set of baseline covariates not a¤ected by the exposure. For now we will assume that
the exposure and mediator only occur at one point in time. We will let Ya and Ma denote,
respectively, the values of the outcome and mediator that would have been observed had
exposure A been set to level a. We will let Yam denote the value of the outcome that would
have been observed had exposure A been set to level a, and mediatorM been set to level m.
These counterfactual or potential outcome variables, Ya, Ma and Yam all presuppose that at
least hypothetical interventions on A and M are conceivable. A further assumption is often
generally made, sometimes referred to as the "consistency assumption", that when A = a,
the counterfactual outcomes Ya and Ma are, respectively, equal to the observed outcomes Y
and M , and likewise when A = a and M = m, the counterfactual outcome Yam is equal to
Y .
Using these counterfactuals, Robins and Greenland (1992) and Pearl (2001) de�ned what

have since come to be called controlled direct e¤ects and natural direct and indirect e¤ects.
The average controlled direct e¤ect, conditional on covariates V = v, comparing exposure
level A = a with A = a� and �xing the mediator to levelm, is de�ned by E[Yam�Ya�mjv] and
captures the e¤ect of exposure A on outcome Y , intervening to �xM tom; it may be di¤erent
for di¤erent levels of m. The natural direct e¤ect, conditional on covariates V = v, is de�ned
as E[YaMa� � Ya�Ma� jv] and di¤ers from controlled direct e¤ects in that the intermediate M
is set to the level Ma�, the level that it would have naturally been if the exposure has taken
value A = a�. Similarly, the average natural indirect e¤ect, conditional on V = v, can be
de�ned as E[YaMa � YaMa� jv], which compares the e¤ect of the mediator at levels Ma and
Ma� on the outcome when exposure is set to A = a. Natural direct and indirect e¤ects have
the property that a total e¤ect, E[Y1 � Y0jv], decomposes into a natural direct and indirect
e¤ect: E[Ya � Ya�jv] = E[YaMa � Ya�Ma� jv] = E[YaMa � YaMa� jv] + E[YaMa� � Ya�Ma� jv]; the
decomposition holds even when there are interactions and non-linearities.
In general, stronger no-unmeasured-confounding assumptions are required to identify

direct and indirect e¤ects than total e¤ects. On a causal diagram interpreted as a set of
non-parametric structural equations (Pearl, 2009), the following four assumptions su¢ ce to
identify natural direct and indirect e¤ects from data (Pearl, 2001; Shpitser and VanderWeele,
2011): (i) the e¤ect the exposure A on the outcome Y is unconfounded conditional on V ;
(ii) the e¤ect the mediator M on the outcome Y is unconfounded conditional on V ; (iii) the
e¤ect the exposure A on the mediator M is unconfounded conditional on V ; and (iv) there
is no e¤ect of the exposure that itself confounds the mediator-outcome relationship. The
assumptions would hold if the diagram in Figure 1 were a nonparametric structural equation
model.
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A M YV

Figure 1. Simple model for mediation.

Only assumptions (i) and (ii) are required to estimate controlled direct e¤ects. Assumptions
(i)-(iv) in the text, stated formally in terms of counterfactual independence, are: (i) Yam ??
AjV , (ii) Yam ?? M jfA; V g, (iii) Ma ?? AjV , (iv) Yam ?? Ma�jV . Under these assumptions
natural direct and indirect e¤ects are identi�ed (Pearl, 2001) and given by the following
expressions:

E[YaMa� � Ya�Ma� jv] =
X

m
fE[Y ja;m; v]� E[Y ja�;m; v]gP (mja�; v):

E[YaMa � YaMa� jv] =
X

m
E[Y ja;m; v]fP (mja; v)� P (mja�; v)g:

Importantly, however, note that if there is a mediator-outcome confounder L a¤ected by
exposure then assumption (iv) will fail and natural direct and indirect e¤ects will not be
identi�ed from the data. Assumption (iv) would thus be violated in Figure 2.

A M YV

L
Figure 2. Mediation with a mediator-outcome confounder L that is a¤ected by exposure.

The counterfactual independence assumption (iv) that Yam ?? Ma�jV is also somewhat
controversial for other reasons. Although it will hold in the causal diagram in Figure 1 if
this diagram is interpreted as a non-parametric structural equation model as in Pearl (2009),
there are other interpretations of causal diagrams wherein assumption (iv) may fail even in
Figure 1 (Robins, 2003; Robins and Richardson, 2010).
Even if this assumption, that Yam ?? Ma�jV , fails, an analogue of natural direct and

indirect e¤ects, based on randomized interventions, can be identi�ed from the data under
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assumptions (i)-(iii) alone. We will conclude this section with a discussion of these random-
ized interventional analogues of natural direct and indirect e¤ects and in the following section
we will consider longitudinal extensions of these e¤ects. These randomized interventional
analogues are essentially equivalent to those proposed by Didelez et al. (2006) and Geneletti
(2007).
Let Gajv denote a random draw from the distribution of the mediator amongst those

with exposure status a conditional on V = v. The e¤ect E(YaGajv) � E(YaGa�jv) is then
the e¤ect on the outcome of randomly assigning an individual who is given the exposure
to a value of the mediator from the distribution of the mediator amongst those given ex-
posure versus not given exposure (conditional on the covariates); this is an e¤ect through
the mediator. Next consider the e¤ect E(YaGa�jv) � E(Ya�Ga�jv); this is a direct e¤ect com-
paring exposure versus no exposure with the mediator in both cases randomly drawn from
the distribution of the population when given no exposure (conditional on the covariates).
Finally, the e¤ect E(YaGajv)� E(Ya�Ga�jv) compares the expected outcome when having the
exposure with the mediator randomly drawn from the distribution of the population when
given the exposure (conditional on covariates) to the expected outcome when not having the
exposure with the mediator randomly drawn from the distribution of the population when
not exposed. With e¤ects thus de�ned we have the decomposition: E(YaGajv)�E(Ya�Ga�jv) =
fE(YaGajv)� E(YaGa�jv)g+ fE(YaGa�jv)� E(Ya�Ga�jv)g so that the overall e¤ect decomposes
into the sum of the e¤ect through the mediator and the direct e¤ect. These are not the
natural direct and indirect e¤ects considered earlier but are instead analogues arising from
�xing the mediator for each individual, not to the level it would have been that for indi-
vidual under a particular exposure, but rather, to a level that is randomly chosen from the
distribution of the mediator amongst all of those with a particular exposure. These e¤ects
are identi�ed under assumptions (i)-(iii) alone (VanderWeele et al., 2014). Under these as-
sumptions (i)-(iii) the randomized interventional analogues, fE(YaGa�jv)� E(Ya�Ga�jv)g and
fE(YaGajv) � E(YaGa�jv)g, are in fact identi�ed by the same empirical expression as those
given above for natural direct and indirect e¤ects. Note that assumption (iv) is not nec-
essary for the identi�cation of these randomized interventional e¤ects; it is not necessary
because the mediator is being �xed to a level that is randomly chosen from the distribution
of the mediator amongst all of those with a particular exposure, rather than �xed to the level
it would have been for that individual under a di¤erent exposure status. Because assump-
tions (iv) is not necessary these randomized interventional analogues of natural direct and
indirect e¤ects are also identi�ed in interpretation of causal diagrams (Robins and Richard-
son, 2010) other than Pearl�s non-parametric structural equations (cf. VanderWeele et al.,
2014). Moreover, even if there is a mediator-outcome confounder a¤ected by the exposure
as in Figure 2, the randomized interventional analogues may still be identi�ed from the data
but the empirical expressions equal to these e¤ects no longer coincide with that given above
for natural direct and indirect e¤ects. They are instead, if Figure 2 is a causal diagram,
given by (VanderWeele, et al., 2014):

E(YaGa�jv )� E(Ya�Ga�jv ) =
X

l;m
fE[Y ja; l;m; v]P (lja; v)� E[Y ja�; l;m; v]P (lja�; v)gP (mja�; v)

E(YaGajv )� E(YaGa�jv ) =
X

l;m
E[Y ja; l;m; v]P (lja; v)fP (mja; v)� P (mja�; v)g:
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3. Time-Varying Exposures and Mediators and the Mediational G-Formula

Suppose now that the exposure, mediators and possibly confounding variables vary over
time. Let (A(1); :::; A(T )), (M(1); :::;M(T )), and (L(1); :::; L(T )) denote values of the ex-
posures, mediator, and time-varying confounders at periods 0; :::; T , with initial baseline
covariates V , and subsequent temporal ordering A(t), M(t), L(t). We will revisit this ques-
tion of temporal ordering again later in the paper. The relationships among the variables
are given in Figure 3.

A(1)V … YM(1) L(1) A(2) M(2) L(2)

Figure 3. Time-varying mediation with ordering of variables of A(t), M(t), L(t).

For any variable W , let W (t) = (W (1); :::;W (t)) and let W = W (T ) = (W (1); :::;W (T )).
Let W (t) = (W (t); :::;W (T ). By convention, we let W (t) denote the empty set for t � 0.
Let Yam be the counterfactual outcome if A were set to a and if M were set to m. Let Ma(t)
be the counterfactual value of M(t) if A were set to a. We assume consistency that when
A = a we have Ma(t) = M(t) and Ya(t) = Y (t) and when A = a and M = m we have
Yam = Y .
Note that if the entire vector A = (A(1); :::; A(T )) is taken as the exposure and M =

(M(1); :::;M(T )) is taken as the mediator then the variable L(1) is itself a¤ected by the ex-
posure (namely, by A(1)) and in turn confounds the mediator-outcome relationship between
M(2) and Y . From this it follows that natural direct and indirect e¤ects are not identi-
�ed in this setting (Avin et al., 2005). However, identi�cation of randomized interventional
analogues may once again be possible.
Let Gajv(t) denote a random draw from the distribution of the mediatorM(t) that would

have been observed in the population with baseline covariates V = v if exposure status
A had been �xed to a. Let a and a� be two distinct exposure histories. We once again
have a decomposition, even with time-varying exposures and mediators: E(YaGajv(t)jv) �
E(Ya�Ga�jv jv) = fE(YaGajv jv)� E(YaGa�jv jv)g+ fE(YaGa�jv jv)� E(Ya�Ga�jv jv)g.
Although these randomized interventional analogues de�ned here are not identical with

natural direct and indirect, they are in some sense the best we may be able to do as the
natural direct and indirect e¤ects themselves will not be identi�ed when a mediator-outcome
confounder is a¤ected by the exposure; in such settings the randomized interventional ana-
logues are then all that we can estimate. Moreover, several further comments merit atten-
tion. First, these randomized interventional analogues do in some sense capture mediated
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e¤ects and pathways; the randomized interventional analogues of the natural indirect e¤ect,
fE(YaGajv jv)� E(YaGa�jv jv)g, will be non-zero only if the exposure changes the distribution
of the mediator and that change in the distribution of the mediator changes the outcome.
Second, when there are no mediator-outcome confounders a¤ected by the exposure, it will
be seen below that the randomized interventional analogues in fact do coincide with natural
direct and indirect e¤ects; thus when the latter e¤ects are identi�ed the randomized inter-
ventional analogues in fact capture these e¤ects. Third, when natural direct and indirect
e¤ects are not identi�ed, it will only be in extremely pathological settings that the random-
ized analogue is non-zero, but there are in fact no natural indirect e¤ects. For that to occur,
it would be necessary that the exposure a¤ects the mediator for a completely di¤erent set
of individual than for whom the mediator a¤ects the outcome i.e. there is no overlap in
those for whom the exposure a¤ects the mediator and for whom the mediator a¤ects the
outcome. Conversely for there to be a non-zero natural indirect e¤ect with a zero randomized
interventional analogue of that e¤ect would essentially require exact cancellations to occur.
Finally, there are arguably some settings in which the randomized interventional analgo-

ues are in fact what is of principal substantive interest, rather than the natural direct and
indirect e¤ect. Suppose we were interested in whether a racial health disparity (race consti-
tuting the exposure, and health the outcome) was mediated by di¤erences in socioeconomic
distributions. The natural direct and indirect e¤ects would entail hypothetical interventions
on the mediator of �xing a black individual�s socioeconomic status to what it would have
been had they been white. Counterfactual queries of the form of what a black individual�s
socioeconomic status would have been had they been of a di¤erent race strike most people as
strange or meaningless. However, the randomized interventional analogues arguably involve
much less problematic comparisons. The randomized interventional analogue of the natural
direct e¤ect say, essentially entails just asking how much of a racial health disparity would
remain if we �xed the socioeconomic distributions of the black individual to be the same
distribution as that of the white individuals. By randomly �xing the distributions to equal
one another, we avoid peculiar counterfactuals of the form of what would have happened to
an individual had they been of a di¤erent race. See VanderWeele and Robinson (2014) for
further discussion. Thus, in some cases at least, the randomized interventional analogues are
not simply a second-best alternative to natural direct and indirect e¤ects, but are themselves
arguably the causal e¤ects of interest.
Suppose now that at each time, conditional on the past, the exposure-outcome-, mediator-

outcome-, and exposure-mediator- relationships are unconfounded. Formally, analogous
to (i)-(iii): for all t, (iy) Yam ?? A(t)jA(t � 1);M(t � 1); L(t � 1); V and (iiy) Yam ??
M(t)jA(t);M(t � 1); L(t � 1); V and (iiiy) Ma(t) ?? A(t)jA(t � 1);M(t � 1); L(t � 1); V .
It can be shown that although natural direct and indirect e¤ects are not in general identi�ed
in this setting, the randomized interventional analogues, fE(YaGajv jv) � E(YaGa�jv jv)g and
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fE(YaGa�jv jv)� E(Ya�Ga�jv jv)g, are identi�ed. This is because:

E[YaGa�jv jv]

=
X

m
E[YamjGa�jv = m; v]P (Ga�jv = mjv)

=
X

m
E[Yamjv]P (Ma� = mjv)

and applying the g-formula (Robins, 1986) to each of E[Yamjv] and P (Ma� = mjv) we obtainX
m

X
l(T�1)

E[Y ja;m; l; v]
YT�1

t=1
Pfl(t)ja(t);m(t); l(t� 1); v)g (1)

�
X

l
y
(T�1)

YT

t=1
PfM(t)ja�(t);m(t� 1); ly(t� 1); vgPfly(t� 1)ja�(t� 1);m(t� 1); ly(t� 2); v)g:

An alternative derivation is also given in the appendix.
We refer to this �nal expression in (1) as the mediational g-formula. We will denote this

quantity by Q(a; a�). Our randomized interventional analogues of natural direct and indirect
e¤ects are under assumptions (iy)-(iiiy) then given by

E(YaGajv jv)� E(YaGa�jv jv) = Q(a; a)�Q(a; a�)
E(YaGa�jv jv)� E(Ya�Ga�jv jv) = Q(a; a�)�Q(a�; a�)

Note that if L is empty as in Figure 4 then the mediational g-formula reduces to

Q(a; a�) =
X

m
E[Y ja;m; v]

YT

t=1
PfM(t)ja�(t);m(t� 1); vg:

We show in the appendix that if L is empty then, under a non-parametric structural equation
model, natural direct e¤ects are identi�ed by the mediational g-formula and are equal to
Q(a; a�)�Q(a�; a�) and natural indirect e¤ects are identi�ed by the mediational g-formula
and are equal to Q(a; a)�Q(a; a�).

A(1)V … YM(1) A(2) M(2) A(3) M(3)

Figure 4. Time-varying exposures and mediators, with no time-varying confounders.

In other words if L is empty then the empirical expressions that su¢ ce to identify the
randomized interventional analogues of natural direct and indirect e¤ects under assumptions
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(i)-(iii) in fact also in this setting identify the natural direct and indirect e¤ects as well by
a time-varying analogue of Pearl�s "mediation formula" (Pearl, 2012). However, even when
L is not empty so we cannot identify the natural direct and indirect e¤ects themselves, we
still can, under assumptions (iy)-(iiiy) identify the randomized interventional analogues of
the natural direct and indirect e¤ects.
Note also that if M were empty then the expression in (1) simply reduces to:X

m

X
l(T�1)

E[Y ja; l; v]
YT�1

t=1
Pfl(t)ja(t); l(t� 1); v)g

because, with M empty,
X

l
y
(T�1)

YT

t=1
Pfly(t� 1)ja�(t� 1); ly(t� 2); v)g = 1. Thus with

M empty, the formula in (1) simply reduces to the regular g-formula of Robins (1986). We
see then that, on the one hand, if there is no-time-varying confounding the "mediational
g-formula" in (1) reduces to the time-varying analogue of the mediational formula. And if,
on the other hand, there is no mediation, then the "mediational g-formula" reduces to the
regular g-formula.
We now consider some variations on this approach. First, suppose instead that after the

initial baseline covariates V , the subsequent temporal ordering of the variables were A(t),
L(t), M(t), as in Figure 5, and that analogous to (iy)-(iiiy) we have that: for all t, (iz)
Yam ?? A(t)jA(t� 1);M(t� 1); L(t� 1); V and (iiz) Yam ??M(t)jA(t);M(t� 1),L(t); V and
(iiiz) Ma(t) ?? A(t)jA(t� 1);M(t� 1); L(t� 1); V .

A(1)V … YL(1) M(1) A(2) L(2) M(2)

Figure 5. Time-varying mediation with variable ordering A(t), L(t), M(t).

Under assumptions (iz)-(iiiz) we would then have:

E[YaGa�jv jv]

=
X

m
E[YamjGa�jv = m; v]P (Ga�jv = mjv)

=
X

m
E[Yamjv]P (Ma� = mjv)

=
X

m

X
l(T�1)

E[Y ja;m; l; v]
YT�1

t=1
Pfl(t)ja(t);m(t� 1); l(t� 1); v)g

�
X

l
y
(T�1)

YT

t=1
PfM(t)ja�(t);m(t� 1); ly(t); vgPfly(t)ja�(t);m(t� 1); ly(t� 1); v)g
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where the �nal equality again follows by applying the g-formula of Robins (1986).
As another variation instead of considering randomized interventions that �x the mediator

M for each individual to a value randomly drawn the distribution in the subpopulation with
baseline covariates V = v if A had been �xed to a�, we could instead consider randomizing
the mediator M for each individual to the value randomly drawn the distribution in the
entire population if A had been �xed to a�. We then let Ga(t) denote a random draw from
the distribution of the mediator M(t) that would have been observed in the population if
exposure A had been �xed to a and we have the decomposition: E(YaGa(t)) � E(Ya�Ga� ) =
fE(YaGa) � E(YaGa� )g + fE(YaGa� jv) � E(Ya�Ga� )g. Using under assumptions (iy)-(iiiy) we
have: E[YaGa� ] =X

m

X
l(T�1)

E[Y ja;m; l; v]
YT�1

t=1
Pfl(t)ja(t);m(t); l(t� 1); v)gP (v)

�
X

l
y
(T�1)

YT

t=1
PfM(t)ja�(t);m(t� 1); ly(t� 1); vgPfly(t� 1)ja�(t� 1);m(t� 1); ly(t� 2); v)gP (v)

and under assumptions assumptions (iz)-(iiiz) we would then have: E[YaGa� ]

=
X

m

X
l(T�1)

E[Y ja;m; l; v]
YT�1

t=1
Pfl(t)ja(t);m(t� 1); l(t� 1); v)gP (v)

�
X

l
y
(T�1)

YT

t=1
PfM(t)ja�(t);m(t� 1); ly(t); vgPfly(t)ja�(t);m(t� 1); ly(t� 1); v)gP (v):

Note that in all of the above variations, we have �xed the entire mediatorM to a random
draw from the mediator vector under a particular exposure history. As yet another alterna-
tive, though one we argue is not suitable for mediation analysis, we could have at each time
t, �xed the mediator M(t) for that time t, to a random draw from the mediator distribution
under a particular exposure history up to that point in time t. Said another way, we could
have �xed to mediator to a random draw from the mediator distribution under a speci�c ex-
posure distribution marginally, rather than jointly as in all the variations considered above.
If we had proceeded in this manner the identifying expression would have di¤ered. Doing so,
however, we argue does not adequately allow for the analysis of pathways. To see this, con-
sider the following example: suppose we were interested in assessing the extent to which the
e¤ect of marital status (which may be time-varying) on income is mediated by time-varying
health status. Suppose that di¤erent individuals with di¤erent marital status histories have
di¤erent health trajectories, and that at least some individuals have consistently poor health
over time if and only if in the unmarried state, but that the vast majority are healthy over
time in either marital state. Suppose that it is only a long-term poor health trajectory that
substantially a¤ects income. If we were to randomize the entire mediator vector to a draw
from the health trajectory distribution of those who were unmarried then some of these
trajectories randomly drawn would be consistently low and would adversely a¤ect income.
Using the approaches described above we would see that some of the e¤ect of marital status
on income was mediated by preventing the consistently low health trajectories. However,
if we were instead to randomize the mediator marginally at each time point to a random
draw of the distribution of the unmarried population, the probability of obtaining a health
trajectory that was consistently low over time would be very very small (since at each time
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the majority are in the healthy state and thus to get a consistently low health trajectory
would require low probability events at each of the individual time points). Consequently,
if we were to randomize the mediator marginally at each time point, far fewer individuals
in a setting in which the mediator were randomized marginally at each time according to
the unmarried distribution would have a health trajectory which was consistently low at all
time points than was actually the case with the actual unmarried population and thus there
would be few individual for whom income was substantially adversely a¤ected by health
and we would for the most part miss those pathways by which marital status a¤ects income
through consistently low health trajectories. To assess such pathways we need to randomize
the mediator jointly at all time points to a random draw from the distribution of those with
a particular exposure history, as in the approaches described above.

4. Estimation Using Marginal Structural Models

One possible estimation approach would be to use the identi�cation formula in (1)
and �t parametric models for each of E[Y ja;m; l; v], Pfl(t)ja(t);m(t); l(t � 1); v)g, and
PfM(t)ja(t);m(t � 1); l(t � 1); vg. This estimation approach is sometimes called a g-
computation approach and is described in the setting of time-varying exposures outside
of the context of mediation elsewhere. We will in fact consider one such approach in the
context of MacKinnon�s three wave longitudinal mediation model (MacKinnon, 2008) in the
following section. However, in general such an approach requires �tting many parametric
models and it can sometimes be di¢ cult to specify these models so that they are compatiable
with one another and compatiable with the null hypothesis of no e¤ect; these problems are
discussed in the setting of time-varying exposures outside of the context of mediation else-
where. In this section we will instead develop a more parsimonious approach to estimating
the randomized interventional analogues of natural direct and indirect e¤ects using marginal
structural models and inverse probability of treatment weighting (Robins et al., 2000).
One reasonably straightforward approach entails positing a pair of marginal structural

models (MSMs) for E[Yamjv] and P (Ma� = mjv); which we shall denote E[Yamjv; �y] and
P (Ma� = mjv; �m): These models can in turn be used to evaluate direct and indirect e¤ects
using the following expression previously derived:

E[YaGa�jv jv; �y; �m]

=
X

m
E[Yamjv; �y]P (Ma� = mjv; �m)

Consider a scenario, in which Y is a continuous outcome, and V is empty. We assume the
following simple marginal structural linear regression model for the outcome:

E[Yam; �y] = �y0 + �yacum (a) + �ymcum (m) (2)

where �y =
�
�y0 (t) ; �ym (t) ; �ya (t)

	
, and cum (a) =

P
t<T a(t) and cum (m) =

P
t<T m(t)

are the cumulative totals of A and M respectively. This MSM assumes that the joint
e¤ects of M and A is cumulative, with a single parameter �ym encoding the e¤ect of the M
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process through cum (m) =
P

t<T m(t) and �ya encoding the e¤ect of the A process through
cum (a) =

P
t<T a(t): For continuous M or A; the model essentially states that the joint

e¤ects of M and A on Y operate strictly through their respective historical average levels,
and that these two processes do not interact on the additive scale. A more �exible model
could also be speci�ed to account for possibly more complex dose-response relationships
between (a;m) and Yam and interactions between m and a could also be speci�ed. Together
with Model (2), suppose that the following MSM model holds for the mediator process

g�1 fE(Ma(t));�mg = �m0 (t) + �ma (t) avg (a (t� 1)) (3)

where g�1 (�) is a link function, and �m = f�m0 (t) ; �ma (t) : tg and avg (a (t� 1)) =
P

t<T a(t)=T .
It is easy to verify that models (2) and (3) induce the model

E[YaGa�jv jv; �y; �m]

=
X

m
E[Yamjv; �y]P (Ma� = mjv; �m)

= �y0 + �ym

 X
t<T

g (�m0 (t) + �ma (t) avg (a
� (t� 1)))

!
+ �yacum (a)

In the special case where M(t) is continuous, so that g�1 may be taken to be the identity
link, one obtains the following expression for the direct e¤ect:

fE(YaGa� jv)� E(Ya�Ga� )g = �ya fcum (a)� cum (a
�)g ;

and for the indirect e¤ect:

fE(YaGa)� E(YaGa� )g =
X
t<T

�ym�ma (t) favg (a (t� 1))� avg (a� (t� 1))g

Interestingly, the expression in the above display further simpli�es when �ma (t) = �ma is
assumed to be constant, a� (t� 1) = 0 and a (t) = 1 for all t; producing the following simple
expression for the indirect e¤ect:

fE(YaGa)� E(YaGa� )g = �ym�ma

For estimation, standard inverse probability weighting may be used to estimate
�
�y; �m

�
;

however, construction of the weights varies somewhat with the underlying identifying as-
sumptions. Speci�cally, suppose that assumptions (iy)-(iiiy) hold, then a consistent esti-
mate of �y under model (2) can be obtained by weighted least squares regression of Y on�
cum

�
M
�
; cum

�
A
��
with estimated weight equal toYT�1

t=1

bPfA(t);M(t)jA(t� 1);M(t� 1); L(t� 1); V )g�1
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where

bPfA(t);M(t)jA(t� 1);M(t� 1); L(t� 1); V )g
= bPfM(t)jA(t);M(t� 1); L(t� 1); V )g bPfA(t)jA(t� 1);M(t� 1); L(t� 1); V )g

is a maximum likelihood estimate of PfA(t);M(t)jA(t � 1);M(t � 1); L(t � 1); V )g under
a standard parametric model. The parameter �m(t) of the second MSM (3) is likewise
estimated via inverse probability weighted regression with weightYt

s=1

bPfA(t)jA(t� 1);M(t� 1); L(t� 1); V )g�1
It is straightforward to modify the weights for estimation under the alternative identifying
assumptions (iz)-(iiiz). Speci�cally, estimation of �y under model (2) would instead use the
following set of weightshYT�1

t=1

bPfM(t)jA(t);M(t� 1); L(t); V )g bPfA(t)jA(t� 1);M(t� 1); L(t� 1); V )gi�1
while estimation of �m(t) in the second MSM (3) would use the same set of weights as above.
In either situation inference can proceed using the nonparametric bootstrap, to appropriately
account for variation due to estimation of the weights.

5. A Counterfactual Analysis of MacKinnon�s Three-Wave Mediation Model

MacKinnon (2008) considered a three-wave mediation model with linear structural equa-
tions as depicted in Figure 6.

A(0)

C M(0)

Y(0)

A(1)

M(1)

Y(1)

A(2)

M(2)

Y(2)

We relabel indices somewhat to correspond to the notation of this chapter, and also add a
set of baseline covariates C, but otherwise the model considered here is MacKinnon�s model
(MacKinnon, 2008, pp. 204-206, Autoregressive Model III). We let A(0), M(0) and Y (0)
denote baseline values of A, M and Y that could be included in the baseline covariates C
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but are given here to make clearer the relation with MacKinnon (2008). Consider then the
following regression models:

E[M(1)jm(0); y(0); a(1); c] = �10 + �11a(0) + �12a(1) + �13m(0) + �14y(0) + �
0
15c

E[M(2)jm(1); y(1); a(2); c] = �20 + �21a(1) + �22a(2) + �23m(1) + �24y(1) + �
0
25c

E[Y (1)jm(1); y(0); a(1); c] = �10 + �11a(0) + �12a(1) + �13m(0) + �14m(1) + �15y(0) + �
0
16c

E[Y (2)jm(2); y(1); a(2); c] = �20 + �21a(1) + �22a(2) + �23m(1) + �24m(2) + �25y(1) + �
0
26c:

Note that in these models, the mediator and the outcome depend only on the two most
recent past exposure values. The mediator model depends only on the most recent past
mediator value and the most recent past outcome value. The outcome model depends on
the two most recent mediator values and the most recent outcome value.
We show that under assumptions (iy)-(iiiy) with V = (C;A(0), M(0); Y (0)) and L(1) =

Y (1), with two intervention periods, A(1) and A(2), the randomized interventional analogues
of the natural direct and indirect e¤ects are given by:

E(YaGa�jv jv)� E(Ya�Ga�jv jv) = (�21 + �12�25)[a(1)� a�(1)] + �22[a(2)� a�(2)]
fE(YaGajv jv)� E(YaGa�jv jv)g = f�23�12 + �25�14�12 + �21�24 + �24�12�24g[a(1)� a�(1)]

+�22�24[a(2)� a�(2)]:

The �rst expression is the randomized interventional analogue of the natural direct e¤ect
with time-varying exposure and mediator and the second expression is the randomized inter-
ventional analogue of the natural indirect e¤ect with time-varying exposure and mediator.
A proof of this is given in the Appendix.
There is arguably a two-fold advantage of using data like that in Figure 5 and using

a modeling approach like that described above, over simply applying the standard meth-
ods for mediation to one point in time e.g. using the variables A(1);M(1); Y (1). First,
by having multiple waves of data, we can control for baseline levels of the exposure, me-
diator and outcome, i.e. for A(0), M(0); Y (0). This is potentially important because such
baseline values of the exposure, mediator and outcome may serve as the most important
confounders for the e¤ects of subsequent values of exposure and mediator on the outcome.
By including such baseline values of the exposure, mediator and outcome, in our covariate
set, our confounding assumptions required for a causal interpretation of our estimates are
rendered much more plausible. Second, by using multiple waves of subsequent exposure and
mediator and outcome data (i.e. by using A(1);M(1); Y (1); A(2);M(2); Y (2) rather than
just A(1);M(1); Y (1)) we may be able to more fully capture the dynamics of mediation over
time. For example we can pick up, in our indirect e¤ect estimates, mediated e¤ects of A(1)
through M(1) to Y (2) directly and also those from A(1) through M(1) to Y (1) to Y (2) or
from A(1) to M(2) to Y (2), etc.
Here we have given a counterfactual analysis of one speci�c mediational model with

three waves of data on the exposure, mediator and outcome (MacKinnon, 2008). A similar
approach could in principle be used for other complex longitudinal models often used in the
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social sciences to provide counterfactual-based interpretations of direct and indirect e¤ect
estimates.

6. Discussion

In this paper we have considered methods for time-varying exposures and mediators.
One of the challenges here was mediator-outcome confounder a¤ected by the exposure. This
can lead to lack of non-parametric identi�cation of longitudinal analogues of natural direct
and indirect e¤ects. However we were able to show in this paper that it is still possible
estimate randomized interventional analogues of natural direct and indirect e¤ects and these
can in fact be used for e¤ect decomposition. These randomized interventional analogues
do reduce to the natural direct and indirect e¤ects where there is no mediator-outcome
confounder a¤ected by exposure (e.g. when there are no time-varying confounders) but the
randomized interventional analogues can be estimated in a broader range of settings even
when natural direct and indirect e¤ects are not identi�ed with the data. The methods in
this paper thereby extend those in previous chapters to settings with longitudinal data and
exposures and mediators that vary over time. Such rich longitudinal data can potentially
increase power in the analysis of direct and mediated e¤ects and help better ensure that
questions of temporality in thinking about causal e¤ects are clearer.
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Appendix

Alternative derivation of the mediational g-formula

We have that:

E[YaGa�jv jv]

=
X

m(1)
E[Yam(1)Ga�jv(2)

jGa�jv(1) = m(1); v]PfGa�jv(1) = m(1)jvg

=
X

m(1)
E[Yam(1)Ga�jv(2)

jGa�jv(1) = m(1); a(1);m(1); v]PfMa�(1) = m(1)ja�(1); vg

=
X

m(1)
E[Yam(1)Ga�jv(2)

jGa�jv(1) = m(1); a(1);m(1); v]Pfm(1)ja�(1); vg

=
X

m(2)
E[Yam(2)Ga�jv(3)

jGa�jv(2) = m(2); a(1);m(1); v]

� PfGa�jv(2) = m(2)jGa�jv(1) = m(1); a(1);m(1); vgPfm(1)ja(1); vg

=
X

m(2)
E[Yam(2)Ga�jv(3)

jGa�jv(2) = m(2); a(1);m(1); v]

� PfGa�jv(2) = m(2)jGa�jv(1) = m(1); a�(1);m(1); vgPfm(1)ja(1); vg

=
X

m(2)

X
l(1)
E[Yam(2)Ga�jv(3)

jGa�jv(2) = m(2); a(1);m(1); l(1); v]Pfl(1)jGa�jv(2) = m(2); a(1);m(1); vg

� PfMa�(2) = m(2)ja�(1);m(1); vgPfm(1)ja(1); vg
=

X
m(2)

X
l(1)
E[Yam(2)Ga�jv(3)

jGa�jv(2) = m(2); a(2);m(2); l(1); v]Pfl(1)ja(1);m(1); vg

�
X

l
y
(1)
PfMa�(2) = m(2)ja�(1);m(1); ly(1); vgP (ly(1)ja�(1);m(1); vgPfm(1)ja(1); vg

=
X

m(2)

X
l(1)
E[Yam(2)Ga�jv(3)

jGa�jv(2) = m(2); a(2);m(2); l(1); v]Pfl(1)ja(1);m(1); vg

�
X

l
y
(1)
PfMa�(2) = m(2)ja�(2);m(1); ly(1); vgP (ly(1)ja�(1);m(1); vgPfm(1)ja(1); vg

=
X

m(2)

X
l(1)
E[Yam(2)Ga�jv(3)

jGa�jv(2) = m(2); a(2);m(2); l(1); v]Pfl(1)ja(1);m(1); vg

�
X

l
y
(1)
Pfm(2)ja�(2);m(1); ly(1); vgP (ly(1)ja�(1);m(1); vgPfm(1)ja(1); vg

Note that in the expectation in the second and subsequent equalities we cannot remove
Ga�jv(1) from the conditioning set as it will be associated with Ga�jv(2). In the �fth in-
equality we can make the substition PfGa�jv(2) = m(2)jGa�jv(1) = m(1); a(1);m(1); vg =
PfGa�jv(2) = m(2)jGa�jv(1) = m(1); a�(1);m(1); vg because the �rst expression is equal to
PfGa�jv(2)=m(2);Ga�jv(1)=m(1)ja(1);m(1);vg

PfGa�jv(1)=m(1)ja(1);m(1);vg
and the second to

PfGa�jv(2)=m(2);Ga�jv(1)=m(1)ja�(1);m(1);vg
PfGa�jv(1)=m(1)ja�(1);m(1);vg

and these latter expressions are equal to each other since (Ga�jv(2); Ga�jv(1)), being random

16

http://biostats.bepress.com/harvardbiostat/paper168



draws, will be independent of any actual observed variables. Likewise in the seventh equal-
ity, we can remove Ga�jv(2) is the conditioning set in Pfl(1)jGa�jv(2) = m(2); a(1);m(1); vg
because Ga�jv(2) will be independent of all actual observed variables. If we carry on with
this argument iteratively we obtain:

=
X

m

X
l(T�1)

E[YamjGa�jv = m; a;m; l; v]
YT�1

t=1
Pfl(t)ja(t);m(t); l(t� 1); v)g

�
X

l
y
(T�1)

YT

t=1
PfM(t)ja(t);m(t� 1); ly(t� 1); vgPfly(t� 1)ja(t� 1);m(t� 1); ly(t� 2); v)g

=
X

m

X
l(T�1)

E[Yamja;m; l; v]
YT�1

t=1
Pfl(t)ja(t);m(t); l(t� 1); v)g

�
X

l
y
(T�1)

YT

t=1
PfM(t)ja(t);m(t� 1); ly(t� 1); vgPfly(t� 1)ja(t� 1);m(t� 1); ly(t� 2); v)g

=
X

m

X
l(T�1)

E[Y ja;m; l; v]
YT�1

t=1
Pfl(t)ja(t);m(t); l(t� 1); v)g

�
X

l
y
(T�1)

YT

t=1
PfM(t)ja�(t);m(t� 1); ly(t� 1); vgPfly(t� 1)ja�(t� 1);m(t� 1); ly(t� 2); v)g:

This completes the proof.

Natural Direct and Indirect E¤ects with a Time-Varying Exposure and Mediator but no Time-
Varying Confounding

Consider the causal diagram in Figure 5 in which A(t) and M(t) are not time-varying
and suppose this were a non-parametric structural equation model (Shpitser and Pearl, 2008;
Pearl, 2009). The following assumptions would then hold: (i�) Yam ?? A(t)jA(t� 1);M(t�
1); V and (ii�) Yam ?? M(t)jA(t);M(t � 1); V and (iii�) Ma(t) ?? A(t)jA(t � 1);M(t �
1); V , and (iv�) Yam ?? Ma�(t)jV . It can be shown that assumption (iv�) follows from the
non-parametric structural equation model using a twin network diagram (� ). Note also
assumptions (i�)-(iv�) would also hold if there were a variable UA in Figure 5 with edges
into A(t) for any or all t (but no edges into any M(t)) and/or if if there were a variable
UM in Figure 5 with edges into M(t) for any or all t (but no edges into any A(t)). The
natural direct e¤ect can then be de�ned as YaMa� � Ya�Ma� and the natural indirect e¤ect as
YaMa

�YaMa� . We assume composition that Ya = YaMa
. We have the decomposition of a total

e¤ect into natural direct and indirect e¤ects Ya � Ya� = (YaMa
� YaMa� ) + (YaMa� � Ya�Ma� ).

Under assumptions (i�)-(iv�), average natural direct and indirect e¤ects conditional on
V = v are identi�ed since

E[YaMa� jv]
=

X
m
E[YamjMa� = m; v]P (Ma� = mjv)

=
X

m
E[Yamjv]P (Ma� = mjv)

=
X

m
E[Y ja;m; v]

YT

t=1
PfM(t)ja�(t);m(t� 1); vg

where the �nal equality follows by application of Robin�s g-formula (Robins, 1986). The
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average natural direct e¤ect conditional on V = v is thus given by E[YaMa� jv]�E[Ya�Ma� jv] =X
m
fE[Y ja;m; v]� E[Y ja�;m; v]g

YT

t=1
PfM(t)ja�(t);m(t� 1); vg:

The average natural indirect e¤ect conditional on V = v is given by E[YaMa
jv]�E[YaMa� jv] =X

m
E[Y ja;m; v]

YT

t=1
[PfM(t)ja(t);m(t� 1); vg � PfM(t)ja�(t);m(t� 1); vg]:

This �nal expression is a generalization of Pearl�s mediation formula (Pearl, 2012) for time-
varying exposures and mediators.

Proposition. Consider then the following regression models:

E[M(1)jm(0); y(0); a(1); c] = �10 + �11a(0) + �12a(1) + �13m(0) + �14y(0) + �
0
15c

E[M(2)jm(1); y(1); a(2); c] = �20 + �21a(1) + �22a(2) + �23m(1) + �24y(1) + �
0
25c

E[Y (1)jm(1); y(0); a(1); c] = �10 + �11a(0) + �12a(1) + �13m(0) + �14m(1) + �15y(0) + �
0
16c

E[Y (2)jm(2); y(1); a(2); c] = �20 + �21a(1) + �22a(2) + �23m(1) + �24m(2) + �25y(1) + �
0
26c:

Under assumptions (iy)-(iiiy) with V = (C;A(0), M(0); Y (0)) and L(1) = Y (1), with two
intervention periods, A(1) and A(2), the randomized interventional analgues of the natural
direct and indirect e¤ects are given by:

E(YaGa�jv jv)� E(Ya�Ga�jv jv) = (�21 + �12�25)[a(1)� a�(1)] + �22[a(2)� a�(2)]
fE(YaGajv jv)� E(YaGa�jv jv)g = f�23�12 + �25�14�12 + �21�24 + �24�12�24g[a(1)� a�(1)]

+�22�24[a(2)� a�(2)]:

Proof. By the mediational g-formula we have, E[YaGa�jcjc] =Z
m

Z
l(T�1)

E[Y ja;m; l; c]
YT�1

t=1
Pfl(t)ja(t);m(t); l(t� 1); c)g

�
Z
l
y
(T�1)

YT

t=1
PfM(t)ja�(t);m(t� 1); ly(t� 1); cgPfly(t� 1)ja�(t� 1);m(t� 1); ly(t� 2); c)g:
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We have thatZ
l(T�1)

E[Y ja;m; l; c]
YT�1

t=1
Pfl(t)ja(t);m(t); l(t� 1); c)g

=

Z
y(1)

E[Y (2)jm(2); y(1); a(2); c]Pfy(1)jm(1); y(0); a(1); cg

= �20 + �21a(1) + �22a(2) + �23m(1) + �24m(2) + �25E[Y (1)jm(1); y(0); a(1); x] + �026c
= �20 + �21a(1) + �22a(2) + �23m(1) + �24m(2)

+�25f�10 + �11a(0) + �12a(1) + �13m(0) + �14m(1) + �15y(0) + �016cg+ �026c:

Thus,Z
m

Z
l(T�1)

E[Y ja;m; l; c]
YT�1

t=1
Pfl(t)ja(t);m(t); l(t� 1); c)g

�
Z
l
y
(T�1)

YT

t=1
PfM(t)ja�(t);m(t� 1); ly(t� 1); cgPfly(t� 1)ja�(t� 1);m(t� 1); ly(t� 2); c)g

= �20 + �21a(1) + �22a(2) + �25f�10 + �11a(0) + �12a(1) + �13m(0) + �15y(0) + �016cg+ �026c

+

Z
m

f�23m(1) + �24m(2) + �25�14m(1)g

�
Z
l
y
(T�1)

YT

t=1
PfM(t)ja�(t);m(t� 1); ly(t� 1); cgPfly(t� 1)ja�(t� 1);m(t� 1); ly(t� 2); c)g:

= �20 + �21a(1) + �22a(2) + �25f�10 + �11a(0) + �12a(1) + �13m(0) + �15y(0) + �016cg+ �026c
+f�23 + �25�14gE[M(1)jm(0); y(0); a�(1); c]

+�24

Z
y(1)

E[M(2)jm(1); y(1); a�(2); c]Pfy(1)jm(1); y(0); a�(1); cg

= �20 + �21a(1) + �22a(2) + �25f�10 + �11a(0) + �12a(1) + �13m(0) + �15y(0) + �016cg+ �026c
+f�23 + �25�14gf�10 + �11a(0) + �12a�(1) + �13m(0) + �14y(0) + �015cg

+�24

Z
y(1)

f�20 + �21a�(1) + �22a�(2) + �23m(1) + �24y(1) + �025cgPfy(1)jm(1); y(0); a�(1); cg

= �20 + �21a(1) + �22a(2) + �25f�10 + �11a(0) + �12a(1) + �13m(0) + �15y(0) + �016cg+ �026c
+f�23 + �25�14gf�10 + �11a(0) + �12a�(1) + �13m(0) + �14y(0) + �015cg
+�24f�20 + �21a�(1) + �22a�(2) + �23m(1) + �24E[Y (1)jm(1); y(0); a�(1); c] + �025cg

= �20 + �21a(1) + �22a(2) + �25f�10 + �11a(0) + �12a(1) + �13m(0) + �15y(0) + �016cg+ �026c
+f�23 + �25�14gf�10 + �11a(0) + �12a�(1) + �13m(0) + �14y(0) + �015cg
+�24[�20 + �21a

�(1) + �22a
�(2) + �23m(1)

+ �24f�10 + �11a(0) + �12a�(1) + �13m(0) + �14m(1) + �15y(0) + �016cg+ �025c]
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Thus the randomized interventional analogue of the natural direct e¤ect is given by:

E(YaGa�jv jv)� E(Ya�Ga�jv jv) = (�21 + �12�25)[a(1)� a
�(1)] + �22[a(2)� a�(2)]

and the randomized interventional analogue of the natural direct e¤ect is given by:

fE(YaGajv jv)� E(YaGa�jv jv)g = f�23�12 + �25�14�12 + �21�24 + �24�12�24g[a(1)� a�(1)]
+�22�24[a(2)� a�(2)]:
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