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Joseph M. Hilbe (1944–2017)

Dr. Joseph M. Hilbe, a long-standing member of the Stata community, author of
books published by Stata Press, and the founding editor of the Stata Technical Bulletin
(predecessor to the Stata Journal), died at his home on March 12, 2017. He was 72
years old.

Hilbe, who was born in Los Angeles, CA, received his bachelors degree in philosophy
from California State University, Chico in 1968 and his PhD in applied mathematics
(statistics) from UCLA in 1988. He worked at the University of Hawaii, where he ulti-
mately retired in 1990 as an emeritus professor. Not content to remain retired, however,
Hilbe then joined the Department of Sociology at Arizona State University in Tempe
as an adjunct professor of statistics. In 2006, he combined his love for astronomy and
statistics when he was selected as a Solar System Ambassador with NASA’s Jet Propul-
sion Laboratory.

Hilbe was a prolific author of textbooks on statistical modeling. Among his influ-
ential books include two editions of Generalized Estimating Equations, two editions
of Negative Binomial Regression, and three editions of Generalized Linear Models and
Extensions. His additional books include Modeling Count Data, Logistic Regression
Models, and its companion book, Practical Guide for Logistic Regression. Finally, he
coauthored Quasi-Least Squares Regression and Methods of Statistical Model Estima-
tion. A fourth edition of Generalized Linear Models and Extensions was completed and
is forthcoming this year from Stata Press.

c© 2017 StataCorp LLC gn0073
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Joe Hilbe never seemed to stop. After writing his first textbook, he embraced the
process. Suddenly, he was publishing a book a year and consistently had several projects
in development. It was the same with his involvement with astrostatistics. He recognized
the connection of the modeling needs of this new area of research with the modeling
expertise he developed in his texts. First, his books were in demand around the world,
and then Hilbe himself was in demand around the world when he became an ambassador
for astrostatistics.

Among other career and lifetime achievements, Hilbe was elected as a member of the
International Statistical Institute (ISI), a fellow of the American Statistical Association,
a fellow of the Royal Statistical Society, and a full member of the American Astronomical
Society. He founded the Astrostatistics Interest Group within the ISI and then later
served as the founding president of the International Astrostatistics Association. In yet
another service to the community, Hilbe served as editor in chief of the Springer Series
in Astrostatistics, which began in 2011.

Joe Hilbe is survived by his wife, Cheryl, of Chandler, Arizona; his daughter,
Heather; and his sons, Michael and Mitchell.

James Hardin
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Estimating inverse-probability weights for
longitudinal data with dropout or truncation:

The xtrccipw command

Eric J. Daza
Stanford Prevention Research Center

Stanford University
Stanford, CA

ericjdaza@stanford.edu

Michael G. Hudgens
Department of Biostatistics

University of North Carolina at Chapel Hill
Chapel Hill, NC

Amy H. Herring
Department of Biostatistics and Carolina Population Center
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Chapel Hill, NC

Abstract. Individuals may drop out of a longitudinal study, rendering their out-
comes unobserved but still well defined. However, they may also undergo trunca-
tion (for example, death), beyond which their outcomes are no longer meaningful.
Kurland and Heagerty (2005, Biostatistics 6: 241–258) developed a method to con-
duct regression conditioning on nontruncation, that is, regression conditioning on
continuation (RCC), for longitudinal outcomes that are monotonically missing at
random (for example, because of dropout). This method first estimates the prob-
ability of dropout among continuing individuals to construct inverse-probability
weights (IPWs), then fits generalized estimating equations (GEE) with these IPWs.
In this article, we present the xtrccipw command, which can both estimate the
IPWs required by RCC and then use these IPWs in a GEE estimator by call-
ing the glm command from within xtrccipw. In the absence of truncation, the
xtrccipw command can also be used to run a weighted GEE analysis. We demon-
strate the xtrccipw command by analyzing an example dataset and the original
Kurland and Heagerty (2005) data. We also use xtrccipw to illustrate some em-
pirical properties of RCC through a simulation study.

Keywords: st0474, xtrccipw, dropout, generalized estimating equations, inverse-
probability weights, longitudinal data, missing at random, truncation, weighted
GEE

1 Introduction

Consider an individual’s outcomes over time, which form an outcome trajectory. Events
such as death can truncate the trajectory, rendering the outcome at and after trun-
cation undefined. Death is a common truncating event in biomedical studies (Rib-
audo, Thompson, and Allen-Mersh 2000; Billingham and Abrams 2002; Pauler, Mc-
Coy, and Moinpour 2003; Dufouil, Brayne, and Clayton 2004; Shardell and Miller 2008;

c© 2017 StataCorp LLC st0474
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Basu and Manning 2010). For example, the Precipitating Events Project (PEP) is
an ongoing longitudinal study of 754 community-living individuals aged 70 or older
who are scheduled to be followed monthly for 2 years (Gill et al. 2001; Gill 2014).
Kurland and Heagerty (2005) considered inference about the probability of activities-of-
daily-living (ADL) disability conditioning on being alive, treating death as a truncating
event in the PEP data. Other events, such as disease relapse and HIV infection, have also
been defined as truncating events. For instance, investigators of the Breastfeeding, An-
tiretrovirals, and Nutrition study (van der Horst et al. 2009) wanted to draw inference
about a target population of infants at high risk of HIV infection but only while they
were alive and uninfected (Flax et al. 2012). In this case, HIV infection and death are
truncating events. In le Cessie et al. (2009), the target population consisted of patients
with advanced breast cancer who had undergone chemotherapy. The authors wanted
to draw inference about patients who were alive and disease free, such that death and
relapse were truncating events.

For all the aforementioned examples of truncated longitudinal data, outcomes were
also missing for some individuals. Dropout events occur when an individual leaves the
study permanently. For study dropout, the corresponding outcomes are unobserved, but
unlike truncation, they are well defined. Three comprehensive types of such missingness
were characterized by Rubin (1976) and Little and Rubin (2002). In their framework,
outcomes are defined to be missing completely at random (MCAR) if missingness is inde-
pendent of any outcomes. If the pattern of missingness is independent of all missing out-
comes conditional only on observed outcomes, then the outcomes are missing at random
(MAR). Finally, if missingness is not MAR or MCAR, the outcomes are said to be not miss-
ing at random, or missing not at random (MNAR). The method of generalized estimating
equations (GEE), which is frequently used to estimate the marginal means of a longitudi-
nal outcome, can accommodate missingness. If outcomes are MCAR, then the GEE esti-
mator is consistent for these marginal means (Liang and Zeger 1986; Diggle et al. 2002).
If outcomes are either MAR or MNAR, inverse-probability weights (IPWs) may be used to
ensure consistency of the GEE estimator provided that the data missingness model is cor-
rectly specified (Robins, Rotnitzky, and Zhao 1995; Scharfstein, Rotnitzky, and Robins
1999). We refer to this approach as the weighted GEE (WEE) method.

Typical approaches to analyzing longitudinal outcomes with missing data include
both WEE and maximum likelihood methods such as mixed-effects models. These ap-
proaches generally do not distinguish truncation from dropout, in essence envisaging
outcomes past the point of truncation. Kurland and Heagerty (2005) described such
approaches that implicitly assume the existence of outcomes after truncation as un-
conditional regression (UR) models, because they estimate the mean outcome averaged
over individuals who have and have not been truncated. Kurland et al. (2009) consider
both standard selection models and conditional submodels of pattern-mixture models
to be UR models. Mean outcomes among continuing trajectories may be estimated
indirectly with these two types of UR models, with additional modeling assumptions
(Kurland et al. 2009). As an alternative to UR models, one can use joint modeling
of longitudinal measurements and time to truncation (Henderson, Diggle, and Dobson
2000; Guo and Carlin 2004; Kurland et al. 2009).
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To estimate mean outcomes directly without joint modeling, Kurland and Heagerty
(2005) developed a method for regression conditioning on continuation (RCC), that is,
not being truncated. The RCC method consistently estimates continuing longitudinal
mean outcomes by first modeling and estimating IPWs at each time point based on
the probability of dropout, but only for subjects with a continuing outcome at that
time point. RCC then applies these IPWs in a WEE framework. In the absence of
truncation, the usual WEE method is therefore a special case of RCC. When there is
truncation, WEE is a UR approach that will generally not produce consistent estimates
for RCC estimands (Kurland and Heagerty 2005). Unfortunately, there is currently no
widely available Stata command for estimating the IPWs used in either RCC or WEE.
The teffects commands aipw (see [TE] teffects aipw), ipw (see [TE] teffects ipw),
and ipwra (see [TE] teffects ipwra) estimate IPWs with the goal of making causal
inferences by estimating average treatment effects. The stteffects ipwra command
(see [TE] stteffects ipwra) estimates IPWs that adjust for outcomes that are missing
because of censoring and uses these IPWs in survival analysis of time-to-event outcomes.
In this article, we introduce the xtrccipw command to allow Stata users to estimate
the IPWs used by RCC in analyzing longitudinal outcomes subject to dropout or trun-
cation. These IPWs can then be used as pweight values in the glm command with
the vce(cluster clustvar) option to perform WEE estimation, which can be executed
within a call to xtrccipw if requested. When there is no truncation, xtrccipw can
also be used to estimate the IPWs used in a WEE analysis. When there is truncation
but no dropout, the xtrccipw command produces IPWs that all equal 1, resulting in
unweighted GEE regression.

The remainder of this article is organized as follows: In section 2, we introduce
some notation and the assumptions behind the RCC method, detail the modeling of
the dropout mechanism, and note some asymptotic properties of the RCC estimator. In
section 3, we explain the xtrccipw command. In section 4, we conduct RCC on a binary
outcome using an example dataset. In section 5, we perform a simulation study based
on the original Kurland and Heagerty (2005) simulations and reanalyze their empirical
data. In section 6, we conclude the article.

2 Background and methods
2.1 Notation and assumptions

Consider a random sample of i = 1, . . . , n individuals, each of whom is scheduled to
be measured at fixed study time points j = 1, . . . ,m. Where it is not ambiguous,
the dependence on i will be suppressed for notational ease. To illustrate the relevant
concepts, we use an example wherein the outcome is individual alanine transaminase
(ALT) measured in international units/liter (IU/L) measured at up to m = 3 study
visits, and individuals may die or drop out of the study. The example data are listed in
table 1, where idvar is the variable that denotes individual identifier, timevar denotes
study visit date, timeidxvar denotes study visit number, outcomevar denotes ALT,
tdindepvar denotes a time-dependent continuous-valued covariate, and tiindepvar

denotes a time-independent binary-valued covariate (for example, a baseline variable).
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We first introduce notation for the outcomes and truncation. Let Yj denote the
primary outcome of interest, for example, ALT, at time point j. Let Cj = 1 if the
truncating event, for example, death, has not occurred by j, and let Cj = 0 otherwise.
Thus the outcome Yj is well defined only if Cj = 1. In general, we define truncation as
an irreversible state transition such that Cj = 0 implies Cj′ = 0 for all j′ > j. Define
S =

∑m
j=1 Cj to be the number of time points before a trajectory is truncated, with

S = m indicating that the trajectory is not truncated. If truncation occurs at j, then
outcomes at j and beyond (that is, Yj , . . . , Ym) are undefined. We use “∗” to denote
all undefined values, which extends the support of the outcome Y . In table 1, where
trtimevar denotes truncation time, individual 4 died between study visits 2 and 3.

The indicator variable for dropout is defined as follows. If truncation has not oc-
curred by time point j, but if that individual dropped out of the study at or before j,
then his or her outcome is still defined at j but is not observed. If Cj = 1, let Rj = 1
if an individual has not dropped out by j; otherwise, let Rj = 0. Assume that there is
no dropout at j = 1 (that is, R1 = 1) and that dropout is monotonic such that Rj = 0
implies Rj′ = 0 for all j′ > j. If Cj = 0, then we adopt the convention that Rj = ∗.
In table 1, individual 2 never died during the study but dropped out by visit 3; missing
values are denoted using “.”. Individual 4, however, dropped out of the study between
visits 1 and 2 and died between the scheduled times for visits 2 and 3.

The assumptions about the dropout mechanism are now defined. For any time-
varying random variable A, let Aj =

(
A1, . . . , Aj

)
so that Aj−1 represents an individ-

ual’s history of A prior to j. In table 1, the full truncation vector of individual 1 is C3 =
(1, 1, 1), while his or her ALT history prior to study visit 3 is Y 2 =

(
Y1, Y2

)
= (13, 14).

Let Y
obs

j denote the vector of observed values of Y j , that is, (Yk : Rk = 1, k ≤ j). In

table 1, Y
obs

1 = (Y1) = (25) and Y
obs

2 = Y
obs

3 = (Y1, Y2) = (25, 23) for individual 3,

while Y
obs

1 = Y
obs

2 = Y
obs

3 = (Y1) = (15) for individual 4. Let πj denote the probability
of not dropping out conditional on all outcomes and the full truncation vector, that is,
πj = Pr

(
Rj = 1

∣∣Y m, Cm

)
, and assume π1 = Pr

(
R1 = 1

∣∣C1

)
. We refer to outcomes

as MAR if πj = Pr
(
Rj = 1

∣∣Y obs

j−1, Cj

)
for all j > 1. We refer to outcomes as MCAR

if πj = Pr
(
Rj = 1

∣∣Cj

)
for all j > 1. Outcomes that are neither MAR nor MCAR are

MNAR. Under MAR, πj =
∏j

k=1 λk, where λk = Pr
(
Rk = 1

∣∣Rk−1 = 1, Y
obs

k−1, Ck

)
for

k > 1 and λ1 = π1. The xtrccipw command lets the user specify a model for λk.

2.2 The full and reduced dropout models

In the presence of dropout, the RCC method requires specification of a dropout model.
The xtrccipw command allows the user to choose between two parametric models. In
particular, let g(·) represent the logit or probit link function. The default dropout-
mechanism model specified by xtrccipw is
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g (λik) = α0k + z′ikα1k + I (k > 1)Y
obs′

i(k−1)α2k (1)

where α0k is the intercept, zik represents the vector of time-dependent and time-
independent covariates with conformable parameter vector α1k, I(a) = 1 if a is true and
I(a) = 0 otherwise, and α2k represents the conformable parameter vector corresponding

to lagged outcome values Y
obs

i(k−1). Equation (1) is referred to as the full dropout model.
Note that α0k, α1k, and α2k depend on time (as indexed by k); that is, the dropout
model is estimated at each time point by default. If dropout is assumed or known to
be completely at random, but truncation is present, the user has the option to specify
an MCAR model instead, which sets α2k = 0.

The user may want to estimate a reduced model with fewer lags, with possible values
lag = 1, . . . ,m− 1. In this case, the dropout mechanism is instead modeled as

g (λik) =

{
α0k + z′ikα1k + L′

ikα2k if k ≤ lag
α0 + z′ikα1 + L′

ikα2 if k > lag
(2)

where Lik = (0) at k = 1 and Lik =
(
Yi{max(1,k−lag)}, . . . , Yi(k−1)

)
at k > 1. Equa-

tion (2) is referred to as the reduced dropout model. This model is time dependent for
time points k ≤ lag but shares the same parameters for time points k > lag. This ap-
proach allows xtrccipw to estimate fewer parameters by assuming a common dropout
model once all the requested lagged outcomes potentially become available for estima-
tion (that is, for time points k > lag). The user has the option to specify a reduced
MCAR model instead, which estimates the model g

(
λik

)
= α0 + z′ikα1.

Note that the full and reduced MAR models are identical when lag = m − 1 is set,
while the full and reduced MCAR models are different. The full MCAR model specifies
a model at each time point, while the reduced MCAR model specifies a common model
across all time points.

2.3 Inference

This section briefly describes inference about longitudinal mean outcome models for
continuing individuals, conditional on covariates. Let μRCC

ij = E
(
Yij

∣∣Cij = 1
)
denote

the mean outcome for individual i whose trajectory is still continuing at time point
j. In the regression setting, we might posit a generalized linear model of the form
h
(
μRCC
ij

)
= x′

ijβ
RCC, where h(·) is a link function, xij is an observed p × 1 vector of

possibly time-dependent covariates that includes a column of ones for the intercept, and
βRCC is the corresponding parameter vector. We refer to this as the outcome model. Let
d′
ij = ∂μRCC

ij

/
∂βRCC denote the Jacobian of partial derivatives of μRCC

ij with respect

to βRCC.

Following Kurland and Heagerty (2005), consider the vector-estimating equation

U
(
βRCC

)
=

n∑
i=1

m∑
j=1

dijCij
Rij

πij

(
Yij − μRCC

ij

)



E. J. Daza, M. G. Hudgens, and A. H. Herring 259

We adopt the convention that if Cij = 0, then the summand for individual i at time
point j equals 0. The IPW probability πij is generally unknown in practice but can be
consistently estimated if the dropout mechanism model is correctly specified. Let π̂ij

represent a consistent estimator of πij , and let β̂ denote the solution to U
(
βRCC

)
= 0

under MAR when π̂ij is substituted for πij . The estimator β̂ is consistent and asymp-

totically multivariate normal for βRCC (Robins, Rotnitzky, and Zhao 1995). The glm

command is ideal for calculating β̂ because by default, it assumes the independence
working correlation structure required by RCC, and it allows the user to specify time-
varying IPWs through the pweight qualifier. The empirical sandwich estimator of the

variance of β̂ is readily available by specifying the glm command option vce(cluster

clustvar), where clustvar is the variable that identifies individuals. When computed as
if the IPWs are known and fixed, the empirical sandwich estimator is expected to be
conservative in general (Robins, Hernán, and Brumback 2000; Robins 2000; Wooldridge
2007). Thus 95% Wald confidence intervals constructed using the empirical sandwich
estimator should in general have a coverage probability for βRCC of at least 95%.

3 The xtrccipw command

3.1 Description

The xtrccipw command estimates time-specific weights equal to the inverse of the
nondropout probability conditioning on continuation. This command uses either the
logit or the probit command to estimate IPWs. The user may then specify that
xtrccipw run glm with the pweight qualifier and the vce(cluster clustvar) option to
calculate RCC estimates of the outcome-model parameters, along with variance estimates
constructed using the empirical sandwich estimator. The xtrccipw command runs
under Stata 14.

The rest of this section is organized as follows. We describe and illustrate input
dataset requirements in an example. We then present the command syntax, along
with definitions of all relevant variables and options. Finally, we describe the displayed
outputs and stored results.

3.2 Input datasets

The xtrccipw command accepts datasets in Stata long format (that is, each row cor-
responds to one observation at one measurement time point). It then creates indicator
variables for truncation and dropout based on the supplied variables for measurement
time, truncation time, and outcome-model outcome.

The dataset must include the following variables: unique individual identifiers, mea-
surement time, measurement time index, outcome, and dropout-model covariates. Each
row must provide values for unique individual identifiers, measurement time, and mea-
surement time index. For each individual, unique individual identifier values must be
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identical on all rows, and rows for all possible measurement times and time indices must
be included to create truncation and dropout indicators, regardless of outcome value
being available or unavailable on any given row (that is, because of dropout or trun-
cation). At the current time index, values for all dropout-model covariates (except for
past outcomes) must be provided if an individual had not dropped out by the previous
time index (that is, if an outcome value was provided at the previous time index) and
had not been truncated by the current time index. The dataset must additionally in-
clude a variable for truncation time if truncation occurred for any individual, in which
case an individual’s truncation time must be identical across all of that individual’s
rows. Truncation time must be left missing on all rows for each individual without a
truncation time.

3.3 Syntax

xtrccipw outcomevar
[
if
]
, idvar(varlist) timevar(varname)

timeidxvar(varname) generate(newvar)
[
timeidxf(#) timeidxl(#)

trtimevar(varname) linkfxn(link) tdindepvars(varlist)

tiindepvars(varlist) mcar lagreduced(#) glmvars(indepvars)

glmfamily(familyname) glmlink(linkname)
]

outcomevar is the outcome-model outcome variable used as a covariate in the dropout
model. If outcomevar is an indicator or categorical factor variable, it must be preceded
with “i.”. The other unary operators “c.” and “o.” are not allowed.

3.4 Options

idvar(varlist) defines variables used to uniquely identify individuals (for example, sub-
jects or panels). This is analogous to panelvar in xtset. If the glmvars() option
is specified, then the call to glm will include the vce(cluster clustvar) option.
idvar() is required.

timevar(varname) defines the variable representing the measurement time (for exam-
ple, visit date). This is analogous to timevar in xtset. timevar() is required.

timeidxvar(varname) defines the variable representing the measurement time index
(for example, visit number). All index values must be integers. timeidxvar() is
required.

generate(newvar) defines the variable name for the estimated IPW. generate() is
required.

timeidxf(#) denotes the first time-index value, which must be an integer, to be used
in the outcome-model analysis. This must be specified along with timeidxl(). The
default is the first nonmissing index value found in the current dataset after if is
applied.
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timeidxl(#) denotes the last time index value, which must be an integer, to be used
in the outcome-model analysis. This must be specified along with timeidxf(). The
default is the last nonmissing index value found in the current dataset after if is
applied.

trtimevar(varname) denotes the truncation time (for example, truncation date). This
must have the same scale as timevar(). The default is no truncation.

linkfxn(link) specifies the dropout-model binary link function and only accepts the
values logit or probit. The default is linkfxn(logit).

tdindepvars(varlist) defines the additional dropout-model time-dependent variables
(that is, distinct from the time-dependent outcome-model outcome variable). Use
spaces to separate multiple variables. Each indicator or categorical factor-variable
argument in tdindepvars()must be preceded with “i.”. The other unary operators
“c.” and “o.” are not allowed, and neither is variable-interaction notation (that is,
“#” or “##”). A variable representing the interaction between two variables must be
created and included as a distinct variable. The varlist syntax is otherwise identical
to the indepvars syntax for the logit or probit command. For example, suppose
we have two time-dependent binary variables, that is, x and y, and the continuous
variable z. If we wish to model dropout dependent on x, y, and z, the interaction
between x and y, and the interaction between x and z, we would first create the
interaction variables, for example, generate xy = x * y and generate xz = x *

z. Then, we would correspondingly type something like tdindepvars(i.x i.y i.xy

z xz). The default is no additional time-dependent variables.

tiindepvars(varlist) defines the dropout-model time-independent variables. The same
description as that for tdindepvars() applies. The default is no additional time-
independent variables.

mcar defines whether to use the full MCAR model. This option cannot be specified with
lagreduced(). The default is the full MAR model.

lagreduced(#) defines whether and how to use the reduced dropout model. The
number of lags, that is, #, can range from 1 to m − 1, where m is the number of
scheduled study time points. However, specifying m−1 lags is identical to specifying
the full MAR model. To specify the reduced MCAR model, type lagreduced(0). This
option cannot be specified with mcar. The default is the full MAR model.

glmvars(indepvars) defines the outcome-model independent variables for glm.

glmfamily(familyname) specifies the distribution of outcomevar for glm. The default
is glmfamily(gaussian).

glmlink(linkname) specifies the link function for glm. The default is the canonical link
for the specified glmfamily().

An example dataset is illustrated in table 1. The variable names correspond to
a unique individual identifier idvar, measurement time timevar, measurement time
index timeidxvar, continuous outcome outcomevar, dropout-model time-dependent
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continuous covariate tdindepvar, dropout-model time-independent binary covariate
tiindepvar, and truncation time trtimevar. The variables Cj , Rj , and S (that is,
the truncation indicator, dropout indicator, and number of time points before trunca-
tion, respectively) are included only to help illustrate the example in section 2.1, but
xtrccipw does not output them.

3.5 Displayed outputs

xtrccipw displays two outputs. The first is a list of all arguments for verification by
the user. The second is a tabulation of the observed values of the xtrccipw ec variable
(where ec stands for “error code”), which indicates the number of nonzero observations
at each time point for which dropout regression and subsequent probability prediction
are successful, or for which there are errors. The xtrccipw ec variable is equal to 0
if regression and prediction are successful, 1 if regression fails because there is either
no dropout or all dropout at that time point, 2 if regression fails because all eligible
observations are dropped because of regression collinearities, and 3 if regression succeeds
but prediction fails. In any of the failure cases, the dropout probability is estimated
as the empirical mean of dropout in the risk set (that is, among observations with
Ri(j−1) = 1).

3.6 Stored results

The command attaches five variables to the input dataset. The outcome variable
used in estimating the dropout probability while accounting for truncation is stored
as xtrccipw outcomevar. The value of this variable can differ from that of outcomevar
in the following way: if a truncation event and outcome are both recorded at time point
j, then xtrccipw treats truncation as having occurred before the outcome and sets
xtrccipw outcomevar as undefined (that is, “.” in Stata syntax). The indicators for
truncation (that is, C represented as xtrccipwCi) and dropout (that is, R represented
as xtrccipwRi) are also stored, as are the estimated IPWs (that is, the newvar specified
by generate(newvar)). Finally, the xtrccipw ec variable is also output.

4 Example

Our example data came from the National Longitudinal Survey of Young Women
(NLSYW). We took a subsample of an available Stata dataset for our analysis, gen-
erated truncation, and then analyzed a binary outcome from this analysis sample.

We started with nlswork5.dta, a subsample of 4,711 young women ages 14–26 in
1968 that was originally derived to illustrate how to use the xt commands. These
data are composed of “women in years when employed, not enrolled in school and
evidently having completed their education, and with wages in excess of $1/hour but
less than $700/hour” (see [XT] xt). The longitudinal binary outcome of interest was
union membership union (1 if yes, 0 if no). The covariates we used were age, age;
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ln(wage/gross national product deflator), ln wage; total work experience, ttl exp; birth
year, birth yr; and college graduate indicator, collgrad (1 if yes, 0 if no). The
identifier variables were NLSYW ID (idcode) and interview year (year).

For our analysis, we selected the nlswork5.dta subsample of women with nonmissing
values for any of these outcomes or covariates from years 70 (that is, 1970) through
73, 77, 78, and 80, which gave us 357 individuals. We then generated truncation at
follow-up years; no truncation was generated for baseline year 70. Truncation was
generated with probability 0.2 if union membership in the previous year was missing.
Otherwise, truncation was generated with higher probability if an individual was a union
member in the previous year and with lower probability if she was not a member. The
degree of increase or decrease in truncation probability itself increased over time. In
the Appendix, we show the commands used to create nlswork5-xtrccipw.dta.

The following output characterizes the analysis dataset:

. use nlswork5_xtrccipw
(NLS: Young women 14-26 years of age in 1968. Example dataset for xtrccipw.)

. describe

Contains data from nlswork5_xtrccipw.dta
obs: 2,499 NLS: Young women 14-26 years of

age in 1968. Example dataset for
xtrccipw.

vars: 10 9 Jan 2017 07:45
size: 42,483

storage display value
variable name type format label variable label

idcode int %8.0g NLS ID
year byte %8.0g interview year
yearidx byte %9.0g interview year
truncyear byte %9.0g
union byte %8.0g 1 if union
age byte %8.0g age in current year
ln_wage float %9.0g ln(wage/GNP deflator)
ttl_exp float %9.0g total work experience
birth_yr byte %8.0g birth year
collgrad byte %8.0g 1 if college graduate

Sorted by: idcode yearidx

The following individuals illustrate the three possible truncation and dropout patterns.
Individual 5 experienced dropout but not truncation. Individual 20 experienced neither
dropout nor truncation. Individual 126 experienced both dropout and truncation.
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. list idcode year truncyear union age ln_wage ttl_exp birth_yr collgrad if
> inlist(idcode, 5, 20, 126), sepby(idcode) abbreviate(5)

idc~e year tru~r union age ln_wage ttl_exp bir~r col~d

15. 5 70 . 0 24 1.820858 3.076923 45 0
16. 5 71 . 0 25 1.858522 4.038462 45 0
17. 5 72 . 0 26 1.979301 5.038462 45 0
18. 5 73 . 0 27 1.990412 6.038462 45 0
19. 5 77 . 0 31 1.937521 7.576923 45 0
20. 5 78 . . 32 2.070492 7.846154 45 0
21. 5 80 . . 34 1.830269 9.346154 45 0

43. 20 70 . 0 21 2.01878 .5 48 0
44. 20 71 . 0 22 2.081666 1.5 48 0
45. 20 72 . 0 23 2.117261 2.403846 48 0
46. 20 73 . 1 24 2.099896 3.442308 48 0
47. 20 77 . 0 28 2.10058 5.416667 48 0
48. 20 78 . 0 29 1.990396 6.493589 48 0
49. 20 80 . 0 31 1.958695 8.378204 48 0

64. 126 70 77 0 21 1.657229 2.01282 48 0
65. 126 71 77 0 22 1.676201 2.99359 48 0
66. 126 72 77 0 23 1.943153 3.99359 48 0
67. 126 73 77 1 24 2.159794 4.974359 48 0
68. 126 77 77 . 28 2.087653 8.25 48 0
69. 126 78 77 . 29 2.137434 9.25 48 0
70. 126 80 77 . 31 2.026384 11.33333 48 0

We now analyze the example dataset. We regressed union on age, ln wage, and
birth yr. We modeled dropout on ttl exp and collgrad using a probit link. We also
requested that xtrccipw run the RCC outcome-model regression for union membership.
The IPW variable was generated as ipw full.

* RCC and full dropout model.
. xtrccipw i.union, idvar(idcode) timevar(year) timeidxvar(yearidx)
> generate(ipw_full) trtimevar(truncyear) linkfxn(probit) tdindepvars(ttl_exp)
> tiindepvars(i.collgrad) glmvars(age ln_wage birth_yr) glmfamily(binomial)

The xtrccipw arguments were output to the Stata Results window for verification.
Here timeidxf and timeidxl took on values derived from the dataset because they
were not specified. The dropout-model regression result for each month can also be
quickly scanned for errors using the xtrccipw ec variable.

outcomevar = i.union
idvar = idcode
timevar = year
timeidxvar = yearidx
generate = ipw_full
timeidxf = 1
timeidxl = 7
trtimevar = truncyear
linkfxn = probit
tdindepvars = ttl_exp
tiindepvars = i.collgrad
mcar =



E. J. Daza, M. G. Hudgens, and A. H. Herring 265

lagreduced =
glmvars = age ln_wage birth_yr
glmfamily = binomial
glmlink =

interview xtrccipw_ec
year 0 1 3

1 357
2 159
3 111
4 79 10
5 67
6 54 5
7 42 9

At this point, the IPW ipw full variable has been calculated and attached to the
input dataset. The probability of being a union member was then modeled using a logit
link.

Iteration 0: log pseudolikelihood = -711.82082
Iteration 1: log pseudolikelihood = -704.44499
Iteration 2: log pseudolikelihood = -704.40354
Iteration 3: log pseudolikelihood = -704.40354

Generalized linear models No. of obs = 670
Optimization : ML Residual df = 666

Scale parameter = 1
Deviance = 1408.807085 (1/df) Deviance = 2.115326
Pearson = 1731.432897 (1/df) Pearson = 2.599749

Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 2.114637
Log pseudolikelihood = -704.4035425 BIC = -2925.04

(Std. Err. adjusted for 205 clusters in idcode)

Robust
xtrccipw_union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.1432499 .0453955 -3.16 0.002 -.2322235 -.0542764
ln_wage 1.230599 .3777844 3.26 0.001 .4901551 1.971043

birth_yr -.0347123 .0798514 -0.43 0.664 -.1912182 .1217937
_cons 1.470027 4.487581 0.33 0.743 -7.32547 10.26552

Note that while 893 IPW values were calculated, only 670 were used by glm. This is
because at any given time point with a continuing outcome, xtrccipw estimates an
IPW regardless of whether the outcome at that time point is missing. In contrast, glm
uses only complete cases (that is, nonmissing outcomes), thereby excluding the missing
outcomes from its analysis.

Excluding trtimevar(truncyear) from the xtrccipw call resulted in truncation
being treated like dropout, with the following dropout-model regression error codes and
UR results.
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. use nlswork5_xtrccipw, clear
(NLS: Young women 14-26 years of age in 1968. Example dataset for xtrccipw.)

. xtrccipw i.union, idvar(idcode) timevar(year) timeidxvar(yearidx)
> generate(ipw_full) linkfxn(probit) tdindepvars(ttl_exp)
> tiindepvars(i.collgrad) glmvars(age ln_wage birth_yr) glmfamily(binomial)

(output omitted )

interview xtrccipw_ec
year 0 3

1 357
2 205
3 121
4 105
5 6 65
6 54 13
7 42 11

Iteration 0: log pseudolikelihood = -997.47372
Iteration 1: log pseudolikelihood = -985.96245
Iteration 2: log pseudolikelihood = -985.88336
Iteration 3: log pseudolikelihood = -985.88336

Generalized linear models No. of obs = 670
Optimization : ML Residual df = 666

Scale parameter = 1
Deviance = 1971.766711 (1/df) Deviance = 2.960611
Pearson = 2317.068804 (1/df) Pearson = 3.479082

Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 2.954876
Log pseudolikelihood = -985.8833555 BIC = -2362.08

(Std. Err. adjusted for 205 clusters in idcode)

Robust
xtrccipw_union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.1602152 .0473475 -3.38 0.001 -.2530145 -.0674159
ln_wage 1.377227 .4380323 3.14 0.002 .5186997 2.235755

birth_yr -.0227574 .0991343 -0.23 0.818 -.2170571 .1715423
_cons 1.251279 5.499011 0.23 0.820 -9.526585 12.02914

Compared with their RCC counterparts, the UR parameter estimates kept the same signs
and did not change much in magnitude. Levels of statistical significance also resembled
those under RCC.

The full and reduced MCAR models were also specified to illustrate how they can
produce different results. The following is the output for the corresponding RCC full
MCAR model:
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. use nlswork5_xtrccipw, clear
(NLS: Young women 14-26 years of age in 1968. Example dataset for xtrccipw.)

. xtrccipw i.union, idvar(idcode) timevar(year) timeidxvar(yearidx)
> generate(ipw_mcarfull) trtimevar(truncyear) linkfxn(probit)
> tdindepvars(ttl_exp) tiindepvars(i.collgrad) mcar
> glmvars(age ln_wage birth_yr) glmfamily(binomial)
outcomevar = i.union
idvar = idcode
timevar = year
timeidxvar = yearidx
generate = ipw_mcarfull
timeidxf = 1
timeidxl = 7
trtimevar = truncyear
linkfxn = probit
tdindepvars = ttl_exp
tiindepvars = i.collgrad
mcar = mcar
lagreduced =
glmvars = age ln_wage birth_yr
glmfamily = binomial
glmlink =

interview xtrccipw_ec
year 0 1 3

1 357
2 159
3 111
4 89
5 67
6 59
7 48 3

Iteration 0: log pseudolikelihood = -706.60703
Iteration 1: log pseudolikelihood = -699.40805
Iteration 2: log pseudolikelihood = -699.36553
Iteration 3: log pseudolikelihood = -699.36553

Generalized linear models No. of obs = 670
Optimization : ML Residual df = 666

Scale parameter = 1
Deviance = 1398.731061 (1/df) Deviance = 2.100197
Pearson = 1689.294056 (1/df) Pearson = 2.536478

Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 2.099599
Log pseudolikelihood = -699.3655307 BIC = -2935.116

(Std. Err. adjusted for 205 clusters in idcode)

Robust
xtrccipw_union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.1464272 .0455808 -3.21 0.001 -.2357638 -.0570906
ln_wage 1.26635 .3806582 3.33 0.001 .5202734 2.012426

birth_yr -.03907 .0794123 -0.49 0.623 -.1947152 .1165752
_cons 1.720208 4.46455 0.39 0.700 -7.03015 10.47057
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Here is the output for the corresponding RCC-reduced MCAR model for comparison:

. use nlswork5_xtrccipw, clear
(NLS: Young women 14-26 years of age in 1968. Example dataset for xtrccipw.)

. xtrccipw i.union, idvar(idcode) timevar(year) timeidxvar(yearidx)
> generate(ipw_mcarred) trtimevar(truncyear) linkfxn(probit)
> tdindepvars(ttl_exp) tiindepvars(i.collgrad) lagreduced(0)
> glmvars(age ln_wage birth_yr) glmfamily(binomial)
outcomevar = i.union
idvar = idcode
timevar = year
timeidxvar = yearidx
generate = ipw_mcarred
timeidxf = 1
timeidxl = 7
trtimevar = truncyear
linkfxn = probit
tdindepvars = ttl_exp
tiindepvars = i.collgrad
mcar =
lagreduced = 0
glmvars = age ln_wage birth_yr
glmfamily = binomial
glmlink =

interview xtrccipw_ec
year 0

1 357
2 159
3 111
4 89
5 67
6 59
7 51

Iteration 0: log pseudolikelihood = -768.5719
Iteration 1: log pseudolikelihood = -759.70025
Iteration 2: log pseudolikelihood = -759.6436
Iteration 3: log pseudolikelihood = -759.64359
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Generalized linear models No. of obs = 670
Optimization : ML Residual df = 666

Scale parameter = 1
Deviance = 1519.287182 (1/df) Deviance = 2.281212
Pearson = 1876.698513 (1/df) Pearson = 2.817866

Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 2.279533
Log pseudolikelihood = -759.6435911 BIC = -2814.56

(Std. Err. adjusted for 205 clusters in idcode)

Robust
xtrccipw_union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.1507094 .0461782 -3.26 0.001 -.241217 -.0602017
ln_wage 1.261449 .4020585 3.14 0.002 .473429 2.049469

birth_yr -.0309284 .0848459 -0.36 0.715 -.1972234 .1353666
_cons 1.476253 4.720117 0.31 0.754 -7.775006 10.72751

5 Simulation study and PEP data analysis

In this section, we report results from a simulation study and reanalysis of the PEP

analysis data from Kurland and Heagerty (2005).

5.1 Simulation study

The data-generating specifications used to simulate 1,000 datasets with 1,000 individuals
each were similar to those found in section 5 of Kurland and Heagerty (2005) and are
summarized as follows. The outcome of interest was a binary variable representing ADL

disability, denoted by Yij = 1 if individual i is disabled at time point j = 1, . . . , 5, and
Yij = 0 otherwise. The relevant covariates were sexi = 0 for women (and sexi = 1
otherwise), timeij = ageij − 65 (where ageij = 65, 70, 75, 80, 85 years), and sex-time

interaction. Let βRCC =
(
β0, β1, β2, β3

)′
denote the corresponding vector of coefficients.

The binary outcome RCC model was specified as

logit
{
E
(
Yij

∣∣Cij = 1
)}

= β0 + β1 × sexi + β2 × timeij + β3 × sexi × timeij

with βRCC = (−2.19, 0.5, 0.1,−0.025)′. The binary outcome was defined as Yij =
I
(
Y ∗
ij > 0

)
, where Y ∗

ij was a normally distributed variable with mean μU
ij and standard

deviation σY ∗ = 0.15. The correlation for the vector of outcomes
(
Y ∗
i1, . . . , Y

∗
i5

)
was

order-1 autoregressive (AR1). Nontruncation was defined as Cij = I
(
Si > ageij

)
, where

Si represented time of death, a normally distributed variable with mean 85 for women
and 80 for men and standard deviation σS = 5. The correlation among Y ∗

ij was set as
0.7, and the covariance of Y ∗

ij and Si was set as −0.4 for women and −0.3 for men. By
using the identity
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E
(
Yij

∣∣Cij = 1
)
= Pr

(
Y ∗
ij > 0

∣∣Si > ageij
)
=

Pr
(
Y ∗
ij > 0,Si > ageij

)
Pr
(
Si > ageij

)
values for μU

ij were calculated via bisection with an arbitrary precision tolerance of

0.0001. All μU
ij values were calculated using the pmvnorm() function of the mvtnorm

package in R. Dropout was generated by specifying

logit (λik) = φ0 + φ1

(
Si − ageij

)
where φ0 = −0.5 and φ1 = 0.15. Truncation or dropout was not allowed at the first
time point.

The following three estimators mirror those of Kurland and Heagerty (2005) and
were used to estimate the mean binary outcome. (The marginalized transition model
was not included because its technical specifications were beyond the scope of this article,
and its inclusion was not necessary to demonstrate the simulation-based performance
of RCC.)

1. IEE: GEE with independent working correlation. This is identical to the Kur-
land and Heagerty (2005) independence estimating equations (IEE) model (that
is, model with parameters estimated using IEEE).

2. GEE-AR1: GEE with AR1 working correlation. This is similar to the Kurland and
Heagerty (2005) inverse probability of censoring weighted (IPCW)-GEE model (that
is, model with parameters estimated using IPCW-GEE) but without IPWs. (The
original IPCW GEE model was not reproduced because to date, no Stata commands
allow for GEE estimation with time-varying weights.)

3. RCC: IEE with correctly specified IPWs. This is identical to the Kurland and
Heagerty (2005) IPCW-IEE model (that is, model with parameters estimated using
IPCW-IEEE).

The RCC estimator was the only estimator expected to be consistent for the βRCC

coefficients. For each βp where p = 0, . . . , 3, the empirical relative bias was calculated
by taking the average of the empirical bias over all datasets as a percentage of βp, and
the coverage probability was calculated as the percentage of all confidence intervals that
contained βp.

We generated simulated datasets in Stata 14 using the parameter values above and
analyzed them as follows. RCC IPWs were estimated using the following code:

. xtrccipw i.Yij, idvar(idvarname) timevar(ageij) timeidxvar(timeidx)
> generate(ipw_sims) trtimevar(trunctime) linkfxn(logit) tdindepvars(Siminusageij)
> mcar

i.Yij represents Yij , ageij represents ageij , and Siminusageij represents Si − ageij .
After specifying the individual-identifier and measurement-time variables using xtset
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idvarname timeij, where timeij represents timeij , we implemented the IEE estimator
via the following code:

. xtgee xtrccipw_Yij i.sexi timeij sexitimeij, family(binomial) vce(robust)
> corr(independent)

xtrccipw Yij represents the outcome variable used by xtrccipw, i.sexi represents
sexi, and sexitimeij represents sexi × timeij . The code used to implement the GEE-
AR1 estimator was identical, except that the AR1 working correlation was specified using
corr(ar 1). The RCC estimator was implemented with the following code:

. glm xtrccipw_Yij i.sexi timeij sexitimeij [pweight=ipw_sims], family(binomial)
> vce(cluster idvarname)

The simulation results are listed in table 2. RCC produced the smallest empirical
relative bias and was the only approach that exhibited coverage close to or greater than
the 95% nominal level for all βp. These results qualitatively agree with the corresponding
empirical relative bias findings in table 4 of Kurland and Heagerty (2005).

Table 2. Simulation study results: Empirical relative bias (coverage probability)

Intercept Sex Time Sex× Time
(β0 = −2.19) (β1 = 0.50) (β2 = 0.10) (β3 = −0.025)

IEE 2 (93.7) 3 (100.0) −16 (73.5) −14 (99.1)
GEE-AR1 8 (81.0) −2 (99.6) 2 (94.9) −33 (97.3)
RCC 0 (94.8) 1 (99.7) 0 (95.5) 1 (97.8)

5.2 PEP data analysis

We now reanalyze the Kurland and Heagerty (2005) analysis data from the PEP study.
Few individuals dropped out (n = 17, 2.3%), and only 62 (8.2%) died in the first
two years of the study. Kurland and Heagerty (2005) estimated the association of ADL

disability with ADL-disability risk group (that is, risk levels low, medium, and high),
month, month2, and the interaction between month and risk group. Their dropout
model included all of these covariates in addition to sex, ADL-disability status at the
previous month to reflect the MAR assumption, and a baseline depression indicator.

To analyze the PEP data, we called the xtrccipw command as follows, with the
relevant output displayed. The variables were study ID (studyid), month (month),
month index (monthidx), ADL disability (adldis = 1 if disabled; 0 otherwise), risk
group (rgamed = 0, rgahigh = 0 for low; rgamed = 1, rgahigh = 0 for medium;
and rgamed = 0, rgahigh = 1 for high), month2 (monthsq), medium-risk interac-
tion with month (rgamedmonth = rgamed × month), high-risk interaction with month
(rgahighmonth = rgahigh × month), and ADL disability status at the previous month
(lagreduced = 1). The dropout mechanism was modeled using a logit link.
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. xtrccipw i.adldis, idvar(studyid) timevar(month) timeidxvar(monthidx)
> generate(ipw_pep) trtimevar(deathmo) linkfxn(logit) tdindepvars(month monthsq
> rgamedmonth rgahighmonth) tiindepvars(i.rgamed i.rgahigh i.sex i.depresbl)
> lagreduced(1) glmvars(month monthsq rgamedmonth rgahighmonth i.rgamed i.rgahigh)
> glmfam(binomial)
outcomevar = i.adldis
idvar = studyid
timevar = month
timeidxvar = monthidx
generate = ipw_pep
timeidxf = 1
timeidxl = 24
trtimevar = deathmo
linkfxn = logit
tdindepvars = month monthsq rgamedmonth rgahighmonth
tiindepvars = i.rgamed i.rgahigh i.sex i.depresbl
mcar =
lagreduced = 1
glmvars = month monthsq rgamedmonth rgahighmonth i.rgamed i.rgahigh
glmfamily = binomial
glmlink =

xtrccipw_ec
monthidx 0 1

1 752
2 750
3 748
4 743
5 742
6 740
7 735
8 731
9 730

10 729
11 727
12 721
13 715
14 712
15 710
16 706
17 701
18 700
19 696
20 690
21 686
22 681
23 677
24 674

Iteration 0: log pseudolikelihood = -4805.9074
Iteration 1: log pseudolikelihood = -4456.9226
Iteration 2: log pseudolikelihood = -4448.8392
Iteration 3: log pseudolikelihood = -4448.7424
Iteration 4: log pseudolikelihood = -4448.7424
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Generalized linear models No. of obs = 17,177
Optimization : ML Residual df = 17,170

Scale parameter = 1
Deviance = 8897.484773 (1/df) Deviance = .5181995
Pearson = 17402.11245 (1/df) Pearson = 1.013518

Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = .5188033
Log pseudolikelihood = -4448.742386 BIC = -158532.8

(Std. Err. adjusted for 752 clusters in studyid)

Robust
xtrccipw_adldis Coef. Std. Err. z P>|z| [95% Conf. Interval]

month .042531 .0136743 3.11 0.002 .0157298 .0693322
monthsq -.0023904 .0007797 -3.07 0.002 -.0039185 -.0008622

rgamedmonth .0007953 .0159911 0.05 0.960 -.0305466 .0321372
rgahighmonth .0239548 .0186385 1.29 0.199 -.012576 .0604855

1.rgamed 1.869464 .2275534 8.22 0.000 1.423468 2.31546
1.rgahigh 2.186206 .2463283 8.88 0.000 1.703412 2.669001

_cons -3.532125 .1850643 -19.09 0.000 -3.894844 -3.169405

These estimates were used to produce figure 1. The predicted trajectories match the
fitted curves for the IPCW-IEE estimator in figure 3 of Kurland and Heagerty (2005).
The fitted odds ratio comparing odds of disability in the high-risk group with that of
the low-risk group at the last time point is 8.90, while Kurland and Heagerty (2005)
estimated this odds ratio as 8.95. This minor difference likely results from 752 indi-
viduals in the data we analyzed (provided by Professor Kurland) compared with 754
individuals used by Kurland and Heagerty (2005).
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Figure 1. Predicted trajectories for PEP data by risk group

6 Discussion

In this article, we introduced the xtrccipw command to estimate the IPWs used to con-
duct WEE regression and, in particular, RCC. The assumed dropout-probability mech-
anism could be specified using either a logit or probit link function. We noted asymp-
totic properties of the subsequent glm mean and empirical sandwich variance estimates
and demonstrated xtrccipw using an example with binary outcomes. Finally, we used
xtrccipw to conduct a simulation study similar to that of Kurland and Heagerty (2005)
and to reanalyze their original study findings.

The xtrccipw command does have some limitations. The command can estimate
IPWs only if missingness is monotonic, while many studies suffer from nonmonotonic
(that is, arbitrary or intermittent) missingness. To use xtrccipw, one may construct
an “artificial” dropout indicator that treats the first instance of missingness as dropout,
discarding any subsequent nonmissing outcomes (Robins, Rotnitzky, and Zhao 1995).
One can also impute arbitrarily missing outcomes up to the last nonmissing outcome,
as done in Kurland and Heagerty (2005); however, valid subsequent inferences would
need to account for imputation.

The RCC method is appropriate when one wishes to draw inference about a target
population or real-world population that is itself subject to truncation and when one
is interested only in the subset of continuing outcomes in the target population. For



E. J. Daza, M. G. Hudgens, and A. H. Herring 275

example, the PEP study investigators were interested only in the target population of
living individuals. The xtrccipw command gives the user readily available software to
run a WEE or RCC analysis or to simply calculate the relevant IPWs for longitudinal
outcomes.
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Appendix: NLSYW example creation code

use "http://www.stata-press.com/data/r14/nlswork5.dta"

** Only keep records for subsample women with any survey responses available
** from years 70 through 73, 77, 78, and 80. We start at year 70 because the
** binary outcome of interest (union) is completely missing for years 68 and 69.
keep idcode year
keep if (70 <= year & year <= 80 & year != 75)
generate dummy = 1
reshape wide dummy, i(idcode) j(year)
egen yearsavailable = rowtotal(dummy*)
keep if (yearsavailable == 7)
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keep idcode
merge 1:m idcode using "http://www.stata-press.com/data/r14/nlswork5.dta"
keep if (_merge == 3 & 70 <= year & year <= 80 & year != 75)
keep idcode year age ln_wage ttl_exp birth_yr collgrad union
misstable summarize union

** Identify first and last years of any observations.
sort idcode year
by idcode : egen yearidx = seq()
foreach outcomevar in union {

generate _firstyearRD1`outcomevar´ = (`outcomevar´ < .)
generate firstyearRD1`outcomevar´ = .
replace firstyearRD1`outcomevar´ = _firstyearRD1`outcomevar´ ///

if (yearidx == 1)
replace firstyearRD1`outcomevar´ = ///

_firstyearRD1`outcomevar´ * firstyearRD1`outcomevar´[_n-1] ///
if (yearidx > 1)

drop _firstyearRD1`outcomevar´
rename firstyearRD1`outcomevar´ RD`outcomevar´
replace `outcomevar´ = . if (RD`outcomevar´ == 0)

}
keep idcode yearidx year union birth_yr age collgrad ttl_exp ln_wage RDunion
tempfile nlswork5_sub1
save "`nlswork5_sub1´", replace

** Generate no truncation in year 70 and generate truncation based on union
** status at previous year for all subsequent years.
use "`nlswork5_sub1´", clear
keep idcode yearidx year union
sort idcode yearidx
reshape wide union year, i(idcode) j(yearidx)
generate truncyear = .
generate Ci1 = 1
local yearidx = 1
forvalues yearidx = 2/7 {

local yearidxminus1 = `yearidx´ - 1
set seed 140925
generate lambda`yearidx´ = 0.8
replace lambda`yearidx´ = 0.8 - 0.65 * (`yearidx´ / 7) if ///

(union`yearidxminus1´ == 1)
replace lambda`yearidx´ = 0.8 + 0.05 * (`yearidx´ / 7) if ///

(union`yearidxminus1´ == 0)
generate Ci`yearidx´ = Ci`yearidxminus1´ * rbinomial(1, lambda`yearidx´)
replace truncyear = year`yearidx´ if (Ci`yearidx´ == 0 & Ci`yearidxminus1´ == 1)

}
reshape long union year Ci, i(idcode) j(yearidx)
merge 1:1 idcode yearidx using "`nlswork5_sub1´"
drop _merge
foreach varname in union RDunion {

replace `varname´ = . if (truncyear < . & year >= truncyear)
}
keep idcode year yearidx truncyear union age ln_wage ttl_exp birth_yr collgrad
order idcode year yearidx truncyear union age ln_wage ttl_exp birth_yr collgrad
compress
label data "NLS: Young women 14-26 years of age in 1968. Example dataset for ///

xtrccipw."
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Abstract. Line plots encode a series of slopes from adjoining coordinates and
aim to reveal suggestive patterns in the sequential rates of change. The choice of
aspect ratio imposed on the line plot largely determines the judged prevalence of
patterns in the bivariate series and the degree of steepness in the rates of change.
Choosing an appropriate aspect ratio is key to designing informative line plots.
The optaspect command calculates the optimal aspect ratio in a two-variable line
graph using a number of heuristic criteria.

Keywords: gr0069, optaspect, aspect ratio, line plot, time series, banking to 45◦

1 Introduction

The aspect ratio of a data plot is defined in Stata as the height-to-width ratio of the
plot region.1 Stata’s default aspect ratio is 2.6 : 3.575, which is the same as specifying
the aspectratio(0.7273) option in any graph. This ratio imposes a shorter height
than width and produces images closely in proportion to the dimensions of standard
computer monitors. This is by no means a recommended aspect ratio and certainly not
suitable for all graphs.

Single line plots are constructed for two main reasons: 1) as a visual table-lookup
that assists in determining the ordinate value given an abscissa value and vice versa
and 2) for pattern recognition to judge the rates of change by comparing the different
orientations of the sequential slopes connecting the series of coordinates (Bertin 1983).
The accuracy in addressing the former is invariable to the choice of aspect ratio unless
the aspect ratio is so small or large that it makes information illegible. The accuracy
in addressing the latter is directly determined by the choice of aspect ratio. Indeed,
the optimal aspect ratio is defined as the one that maximizes the accuracy of judgment
when contrasting the many rates of change.

In timeline plots, where the abscissa is represented by time, we often look for trend-
ing, cyclical and seasonal effects, plus possible structural breaks. The judged prevalence
of such effects is also determined by an appropriate aspect ratio. A small aspect ra-
tio would flatten the trend and suppress the peaks and troughs, resulting in a biased

1. Stata defines two broad regions for every image produced by its graphics engine (see help

region options). The plot region holds the plotted data, and its size is controlled by the
aspectratio() option. The graph region holds all other graphical elements that make up the
final image, and the image’s size is controlled by the ysize() and xsize() options.

c© 2017 StataCorp LLC gr0069
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perception of less prevalent cycles or seasons. An excessively large aspect ratio would
exaggerate local deviations, give the impression of much higher variability, and obfuscate
the comparative degree of steepness in slopes.

For a straight line that connects two coordinates on the bivariate plane, the optimal
aspect ratio to convey the rate of change is that line’s slope, unless the slope is large.
In this case, we best perceive its orientation (see section 2). For example, the optimal
aspect ratio for two coordinates characterizing the function y = x is equal to 1. By
applying Stata’s default aspect ratio of 0.7273, the plot would mislead by suggesting
a less steep slope, whereas an aspect ratio of greater than 1 would suggest a steeper
slope. Figure 1 illustrates the problem for the function y = x and the aspect ratios of
0.5, 1, and 2.2 Note that the optimal aspect ratios explored in this article are designed
to address the question of how best to portray the rates of change in a series or, more
precisely, how to maximize the contrast between a collection of rates of change. However,
as discussed in section 2.7, an optimal aspect ratio does not necessarily translate to an
optimal portrayal of significance (it might leave the impression that a trivial effect is
large or vice versa), and sometimes it makes sense to override the statistical method
with judgment.
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Figure 1. Aspect ratio effect on the perceived rate of change of y = x

Optimal aspect ratios address the discrepancy between the actual scale coordinates
and the drawing of physical coordinates by producing a standardized representation of
the line that maximizes the contrast between a collection of rates of change. Cox (2004)
explains that the question of optimal aspect ratio was first addressed by Sir Ronald
Aylmer Fisher (1925, 32) in his legendary Statistical Methods for Research Workers,

2. To reproduce figure 1, execute the command twoway (function y = x, range(1 2))

(scatteri 1 1 2 1 2 2 1 2 1 1, recast(line) msymbol(i)), aspectratio(0.5) legend(off)

plotregion(margin(medium)). Do this similarly for the other aspect ratios.
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who proposed that “the features of such curves are best brought out if the scales of the
two axes are so chosen that the line makes approximately equal angles with the two
axes; with nearly vertical, or nearly horizontal lines, changes in the slope are not so
readily perceived”.

Cleveland, McGill, and McGill (1988) revisit this question more formally and arrive
at the same conclusion as Fisher (1925). That is, for a line plot that involves multiple
line segments with varying slopes, the best way to compare the steepness of the many
slopes is selecting an aspect ratio that would show the typical line slope at 45◦. This
principle has been dubbed by Cleveland (1993a) as banking to 45◦.3 A number of heuris-
tic criteria have since been proposed as optimal solutions to the banking to 45◦ rule,
starting with Cleveland, McGill, and McGill (1988) and then by Cleveland (1993b),
Heer and Agrawala (2006), Talbot, Gerth, and Hanrahan (2011), and Han et al. (2016).
The optaspect command calculates the optimal aspect ratios for a single two-variable
line graph using these methods.

2 Heuristic criteria

Cleveland, McGill, and McGill (1988) explain that the accuracy in decoding rates of
change depends on the resolution of the slope’s orientation. However, for an i =
1, 2, . . . , n+ 1 pair of coordinates (yi, xi) with ordered data on the x axis so xi < xi+1,
there are n number of absolute slopes whose physical appearance is controlled by the
aspect ratio γ > 0:

γsi = γ

∣∣∣∣ yi+1 − yi
xi+1 − xi

∣∣∣∣ (1)

There is no reason to believe the sign of the orientation affects our judgment (hence,
the absolute value), and what matters in perception is the magnitude of the orientation
(Cleveland, McGill, and McGill 1988; Guha and Cleveland 2011). Cleveland (1993b)
explains that when judging rates of changes, we do not perceive slopes but rather the
physical orientation of the absolute slope, which is also determined by the aspect ratio,

θi = arctan (γsi)

where θi ranges from 0 to π/2 radians, or more intuitively, θi180/π ranges from 0◦

to 90◦. Furthermore, our ability to tell the difference between two absolute slopes,
γsi and γsj , depends on their orientation resolution, defined as the acute angle at the
intersection of two line segments:

gi,j = arctan (γsi)− arctan (γsj) (2)

The optimal accuracy in the perceived difference between the two rates of change is
achieved for γ that sets gi,j at its maximum. If γ → 0, then θi → 0 (that is, perceived

3. Cleveland (1993a) explains that the term “banking” is borrowed from the way “banked turns” aid
speedy vehicles to take frictionless turns.
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to be near horizontal at 0◦) and if γ → ∞, then |θi| → π/2 (that is, perceived to
be near vertical at 90◦), then in both cases, gi,j → 0, which makes it impossible to
distinguish between the two orientations. Therefore, the decoding of visual information
fails completely. The obvious compromise for maximizing gi,j is selecting a γ that sets
the typical absolute slope at 45◦. For the case of two slopes, gi,j is at maximum for
the γ that makes the average of the two absolute orientations equal to 45◦, described
in Cleveland, McGill, and McGill (1988) as the midangle of the orientation resolution:

arctan (γsi) + arctan (γsj)

2
=

π

4

In other words, the optimal γ exists when the addition of the two absolute orienta-
tions add to 90◦; that is, arctan (γsi) + arctan (γsj) = π/2.

2.1 Banking on slopes

For a collection of many line segments, Cleveland, McGill, and McGill (1988) propose
that the contrast in their rates of change is maximized by selecting a γ that centers both
positive and negative slopes on their midangle so the median of the absolute slopes is
equal to 1. This is known as the median absolute slope (MAS) criterion. Denote the
absolute median slope as s̃ = median{si}, where si is defined as absolute slopes in (1),
and the ranges Ry = ymax − ymin and Rx = xmax − xmin. The aspect ratio satisfying
the MAS criterion is then

γ =
1

s̃

Ry

Rx
(3)

Heer and Agrawala (2006) suggest comparing the MAS rule with the average absolute
slope (AAS), which applies the same optimization criterion as (3) with the difference of
substituting the median with the average absolute slope, s̄ = 1/n

∑n
i=1 si:

γ =
1

s̄

Ry

Rx
(4)

As explained later, the AAS criterion performs poorly, but it is a useful comparison
benchmark for understanding the performance of other, more appropriate criteria.

2.2 Banking on orientation

Cleveland (1993b) explains how the MAS criterion is also inadequate for practical appli-
cations, because the aspect ratio calculated by (3) relies on the premise that we decode
slopes when perceiving rates of change. Hence, centering slopes to 1 would give an op-
timal display. However, behavioral experiments demonstrate that it is the orientation
of slopes that affects pattern perception, not the slopes. As such, Cleveland (1993b)
proposes optimizing the average discrimination of orientations, which gives the weighted
average absolute orientation (WAAO) criterion,
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argmin
γ∈(0,∞)

⎧⎨⎩
∑n

i=1 wi arctan
(
γsi

Rx

Ry

)
∑n

i=1 wi
− π

4

⎫⎬⎭ (5)

where the length of each line segment, wi =
√
(Δxi/Rx)

2
+ γ2 (Δyi/Ry)

2
, acts as the

weight on the orientation, also a function of γ. There is no closed form solution for (5),
but an iterative numerical result can be quickly reached using the Newton–Raphson
method.

Heer and Agrawala (2006) note a word of caution when applying the WAAO criterion
in line graphs where the x-axis scale is uniformly distributed, which is the case in most
time-series lines. They explain that the above weighting scheme gives more weight to line
segments with larger absolute orientations that are close to being vertical, resulting in
small WAAO values. To gauge the effect of the weight on orientation minimization, they
suggest comparing WAAO with its unweighted version of the average absolute orientation
(AAO):

argmin
γ∈(0,∞)

{
1

n

n∑
i=1

arctan

(
γsi

Rx

Ry

)
− π

4

}

Nonetheless, note that the weighting scheme of WAAO makes the criterion parame-
terization invariant, meaning any changes to the way the overall line is encoded in the
graph should not change the aspect ratio. That is, switching from a smooth line to a
jagged or stairstep connection display should have no effect on whether the x-axis val-
ues are equally spaced. This property is important, and, as discussed later, it classifies
WAAO as one of the most reliable methods for calculating useful optimal aspect ratios
in a wide range of applications.

2.3 Banking on orientation resolution

The MAS criterion centers slopes on 1, and the WAAO criterion centers orientations on
45◦. These are optimal solutions for accurately judging the rate of change between
pairs of line segments, depending on whether you perceive slopes or orientations (but
you probably do the latter). Heer and Agrawala (2006) remain unconvinced on whether
these are optimal solutions for a collection of many line segments. As such, instead of
just banking on the typical orientation, they propose optimizing directly the collective
orientation resolution of all line segments.

For all possible pairs of line segments in the data {i, j}, the global orientation res-
olution (GOR) criterion maximizes the orientation resolution of every pair in the data,
with respect to γ, as follows,

argmax
γ∈(0,∞)

∑
i

∑
j

min{gi,j2, (π − |gi,j |)2}

where gi,j is defined in (2) and the min{·} argument makes it clear that the criterion
maximizes the orientation resolution of the smallest or acute angles. Optimizing the
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GOR criterion requires the most computationally expensive exercise for optaspect. The
calculation is of order O

(
n2
)
, whereas all other criteria are only of order O (n) or lower.

A compromise method for GOR is to maximize the orientation resolution between
successive pairs of slopes, gi,i−1, rather than between all possible pairs of slopes. This
is dubbed the local orientation resolution (LOR), and it is an optimization problem of
order O (n− 1), stated as follows:

argmax
γ∈(0,∞)

∑
i

min{gi,i−1
2, (π − |gi,i−1|)2} (6)

The LOR criterion is weak in its foundation because it focuses on optimizing succes-
sive localities in the data, which makes it vulnerable to trapping in a local maximum,
and it fails to adopt a global view that defines the problem of aspect ratio selection.
Both GOR and LOR have been found to perform poorly in autocorrelated series and
fail spectacularly in preserving symmetry, plus they are sensitive to small changes in
the data (Talbot, Gerth, and Hanrahan 2011). Given the computational price of GOR

and the existence of LOR only as a compromise solution with even more doubtful ben-
efits, optaspect does not calculate these two criteria by default, but they can still be
accessed with the gor and lor options. Moreover, because these two criteria cannot
handle slopes of zero, optaspect requires that you also specify the cullzero option
(see section 2.6).

A claimed improvement to LOR, proposed by Han et al. (2016), is to substitute
the L2 norm in (6) with the L1 norm. The criterion then becomes parameterization
invariant, satisfying a critical property for aspect ratios. The result is an objective
function that maximizes the orientation resolution as a curvature-based line integral—
hence, the label weighted local curvature (WLC):

argmax
γ∈(0,∞)

∑
i

min{|gi,i−1| , (π − |gi,i−1|)}

The WLC criterion is superior to the LOR criterion but still suffers from the same
conceptual drawback of maximizing curvature by focusing on successive local optima
rather than taking a global view of the problem. Han et al. (2016) admit the WLC is
vulnerable to being trapped in local optima. For these reasons, like the LOR, the WLC

is available via the wlc option and is not reported by default.

2.4 Banking on resultant vector

Optimal aspect ratios maximize the difference (the discrimination) between absolute
slope orientations. Connecting the bottom end of the line segment with the smallest
slope to the top end of the line segment with the largest slope gives the resultant vector
(RV). The length of the resultant vector is at maximum when slopes appear with the
same orientation, that is, when γ is close to 0 or ∞. In this respect, Guha and Cleveland
(2011) demonstrate how an optimal aspect ratio exists when the RV line is banked with
slope 1:
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γ =
Ry/

∑n
i=1 |Δyi|

Rx/
∑n

i=1 |Δxi|
(7)

The RV criterion has attracted praise for its parsimony in providing consistent an-
swers with attractive aspect ratios. It also allows us to study the mathematical and
geometric properties of optimal aspect ratios more closely, for example, how in the pres-
ence of a large white noise component, the aspect ratio will converge with probability
to zero (for the proof, see Guha and Cleveland [2011]).

2.5 Banking on arc length

The final criterion examined is by Talbot, Gerth, and Hanrahan (2011), who suggest
the objective of minimizing the arc (ARC) length of the total line under the constraint
that the area of the plot region remains constant. The minimization problem, with
respect to γ, is

argmin
γ∈(0,∞)

n∑
i=1

∣∣∣∣∣∣∣∣Δxi√
γ
,
√
γΔyi

∣∣∣∣∣∣∣∣ (8)

where ||.|| indicates the Euclidean length. There is no closed form solution to this prob-
lem, but it has a unique minimum that can be quickly reached via iterative substitution.
Talbot, Gerth, and Hanrahan (2011) explain how the ARC criterion is consistent with
Cleveland’s banking to 45◦ rule because the solution to (8) is a line banked to 45◦.

They also show how ARC can be written as an improved version of the GOR criterion,
with the main difference that the orientation resolution in ARC is aptly weighted by the
lengths of the line segments. This refinement provides two key advantages to ARC

over GOR. First, ARC is computationally efficient. Second, because ARC is weighted by
line lengths in the same way as the WAAO criterion, it is parameterization invariant,
a key property for optimal aspect ratio selection (see section 2.2). Generally, ARC is
shown to provide a robust approach to choosing aspect ratios for a wide selection of
line patterns by comparison with MAS, AAS, AAO, and especially with GOR and LOR.
This is another key reason why optaspect offers only the calculation of GOR and LOR

as options, whereas ARC is calculated by default.

Another key advantage of the ARC criterion is it preserves symmetry, again in the
same way as the WAAO and the RV criteria. Symmetry is evident when displaying
algebraic forms but is difficult to find in real data that also contain some degree of
random noise. Furthermore, Talbot, Gerth, and Hanrahan (2011) demonstrate that if
we replace the Euclidean distance in (8) with the Manhattan distance, the ARC criterion
reduces to a closed form solution equivalent to the RV criterion of (7):

argmin
γ∈(0,∞)

n∑
i=1

(|Δxi/
√
γ|+ |√γΔyi|) =⇒ γ =

∑n
i=1 |Δyi|∑n
i=1 |Δxi|

(9)

For equally spaced x-values, that is, constant frequency time-series lines, (9) is fur-
ther reduced to simply γ = Ry/(

∑
|Δyi|). In this case, (9) gives an equivalent to the AAS
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criterion of (4), adjusted for Ry/Rx. This equivalence demonstrates the unsuitability of
the AAS criterion, which is only reported by optaspect for completeness, because the
Euclidean distance in ARC is invariant to rotational changes over the two-dimensional
plane, whereas the Manhattan distance is not.

2.6 Culling zero slopes

Stagnating series with Δyi = 0 give zero slopes (horizontal lines), and stagnating series
with Δxi = 0 yield infinite slopes (vertical lines); see (1). optaspect automatically deals
with infinite slopes as missing values and excludes them from computation. optaspect
reports the number of infinite slopes in the data that have been discarded as a note to
the output table. Zero slopes are not discarded unless the user specifies the cullzero

option. This option follows from Heer and Agrawala (2006), who explain that the effect
on judgment on slopes of zero is invariant to the choice of aspect ratio. Therefore, such
line segments should not contribute to the determination of the optimal aspect ratio.

The presence of zero slopes is particularly damaging for the LOR and GOR criteria
(Talbot, Gerth, and Hanrahan 2011). Thus, in the presence of zero slopes, optaspect
requires that the specification of lor or gor always be accompanied by the cullzero

option. Zero slopes are also problematic for the ARC criterion (Han et al. 2016) and,
depending on their frequency, may even fail to converge. optaspect does not require
culling zero slopes for the ARC because it is reported by default together with other
criteria. However, optaspect will issue a note that there are zero slopes and that you
should consider the cullzero option.

2.7 General advice

The application of the aforementioned heuristic criteria as tools for providing accuracy
in the judgment of rates of changes is not absent of criticism. Even Cleveland, McGill,
and McGill (1988, 296) caution against the automated use of their MAS approach and
advise that “application needs to be tempered with judgment”.

Talbot, Gerth, and Hanrahan (2011, 2012) suggest the resulting optimal ratios pro-
posed by Cleveland, McGill, and McGill (1988) and Cleveland (1993b) are in fact a
product of research design. They find the minimum estimation error in judging slopes
does not occur at 45◦, and people can decode more accurately the rates of changes with
lower aspect ratios than those produced by the MAS and the WAAO criteria. In fact,
predating William Cleveland’s work, Fisher (1974) presents evidence suggesting that
people tend to misjudge the true orientation of a two-variable line by as much as 3◦,
and this bias is indeed most prominent for lines oriented at 45◦.

As we will see in section 4, most criteria do not work well with lengthy series because
they cause γ → 0 or γ → ∞, depending on the nature of variation. For example, in
stationary series with high-frequency oscillating slopes or noisy series with large random
components, as n grows, the aspect ratio γ → 0. In such cases, it is best to split
and stack multiple line plot segments under a common y-axis scale and aspect ratio.
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The optaspect command provides a compromise solution to this problem with the
stackby() option.

By default, optaspect calculates the following criteria: MAS, AAS, WAAO, AAO,
ARC, and RV. For reasons explained above, the GOR, LOR, and WLC criteria are only
available via the gor, lor, and wlc options. Overall, we know that the MAS, AAS, AAO,
GOR, LOR, and WLC criteria do not work well and should be avoided but still may offer
some insights on the behavior of the data.

That leaves the effective contrast between WAAO, ARC, and RV. In fact, Talbot,
Gerth, and Hanrahan (2011) demonstrate equivalence between ARC and RV, and Han
et al. (2016) show that WAAO, ARC, and RV are the only criteria that are parame-
terization invariant and capable of preserving symmetry in display. However, if I was
forced to blindly choose just one criterion for universal application, I would choose the
RV approach. In addition to the two key properties mentioned just above, I find that
this is the most robust criterion to small changes in the data and all sorts of input.

In the end, you should always resort to common sense and consider the possibility
that two diametrically opposed aspect ratios (with inverse height-to-width dimensions)
may reveal equally appealing visual information. Section 4.3 demonstrates such an
application.

3 The optaspect command

optaspect requires specification of two numerical variables intended to be displayed on
a line plot and requires that the dataset be sorted in ascending order on the x variable.
sort is offered as an option.

3.1 Syntax

optaspect yvar xvar
[
if
] [

in
] [

weight
] [

, sort rank cullzero

stackby(varname) y0 gor lor wlc iterate(#) tolerance(#)
]

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

3.2 Options

sort orders the dataset on xvar in ascending order. sort is required for unordered data.

rank replaces xvar with a variable, t, that takes the values t = 1, 2, . . . , n.

cullzero ignores zero slopes in the calculation of the optimal aspect ratios.

stackby(varname) specifies the calculation of average optimal aspect ratios over all
categories of varname, because the line graph will be split and stacked by these
categories.
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y0 specifies that the y axis of the line graph will contain the baseline value of zero and
that the aspect ratio should be adjusted accordingly.

gor calculates the computationally expensive GOR criterion.

lor calculates the LOR criterion.

wlc calculates the WLC criterion.

iterate(#) and tolerance(#) specify the number of iterations and convergence tol-
erance for those criteria that require iterative optimization (AAO, WAAO, LOR, GOR,
ARC). The defaults are iterate(100) and tolerance(1e-6). These options are
rarely used.

3.3 Output and stored results

optaspect prints a two-column table with a list of methods for calculating the optimal
aspect ratio, accompanied by their respective values that could then be entered in the
graph option aspectratio(). It also prints a note to this table with relation to the
culling of infinite and zero slopes. Infinite slopes are culled by default. If the cullzero
option is not specified, but there is at least one zero slope in the series, the note will
prompt the user to consider the cullzero option. If there are no zero or infinite slopes,
no note is printed. If the cullzero option is specified, the note will report on the
number of zero slopes that have been culled. optaspect stores the following in r():

Scalars
r(mas) MAS aspect ratio
r(aas) AAS aspect ratio
r(waao) WAAO aspect ratio
r(aao) AAO aspect ratio
r(gor) GOR aspect ratio
r(lor) LOR aspect ratio
r(arc) ARC aspect ratio
r(wlc) WLC aspect ratio
r(rv) RV aspect ratio
r(n) number of slopes in the data
r(cull) number of zero slopes culled

Following execution, enter one of the above aspect ratios in the graph option
aspectratio(), for example,

. twoway (line yvar xvar), aspectratio(`r(waao)´)

3.4 Practical considerations

The stackby(varname) option requires that varname be a categorical variable, either
numerical or string, and varname be the variable with which you plan to split and stack
the long series. optaspect refrains from also automating the segmentation of the series,
because this is an inherently personal question, given the profound impact on the aspect
ratio. However, optaspect is fast, so you can experiment with different configurations.
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You should not need to change the default of iterate(100) and tolerance(1e-6).
If an optimal aspect ratio is not found within a few iterations, it is unlikely to be found
beyond 100. Setting iterations low ensures the optimization exits when struggling to find
a solution—typically a problem related to GOR, LOR, and possibly ARC. Similarly, there
is not much to gain by converging beyond the 1e–6 precision. However, in excessively
lengthy series, the GOR criterion will take a long time to converge, so you may specify an
even lower number of iterations and lower degree of tolerance to see a preliminary result
prior to letting Stata work overtime. Convergence will also be affected by the presence
of many consecutive zero slopes, so you should also specify the cullzero option.

3.5 Default settings impacting physical orientation resolution

Stata’s factory settings and general default behavior in creating line graphs are not
attuned to addressing the perceptual problem of accurately judging rates of change. Two
key problematic features in default behavior affect the way we perceive the orientation
of slopes.

First, as explained in section 1 and demonstrated in figure 1, the default aspect
ratio of 2.6 : 3.575 is an ad hoc näıve solution that always warrants a more careful
consideration, such as the optaspect command. Second, the way Stata determines the
default axes labels never ceases to surprise me. It is imperative to take full control of
labels in both axes. Otherwise, it is likely they may go beyond the actual range of data
and extend the scale, artificially skewing the effective aspect ratio.

You also must be aware of the plot region’s margins, which can affect the physical
aspect ratio. The default margins are set to an equal amount of space on all sides of
the plot region and therefore do not alter the balance of height to width. Adjusting
the margins in all sides at once also does not affect the aspect ratio, for example, by
specifying plotregion(margin(large)). However, adjusting the margins in only some
sides would change the physical aspect ratio, for example, plotregion(margin(top=10
bottom=10)) or plotregion(margin(right=0 top=0)).

4 Applications

In this section, I demonstrate optaspect using several datasets, also showcasing the
usefulness of the various options available.

4.1 Sunspot activity

In the opening pages of Cleveland (1993b), the timeline chart of yearly sunspots from
1749 to 1924 is displayed using two aspect ratios: the näıve 1 : 1 aspect ratio and the
optimal aspect ratio calculated by the WAAO criterion at 1 : 0.055. The yearly sunspot
dataset is available at the Stata Press website. Obtain all optimal aspect ratios for the
same time period as in Cleveland (1993b):
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. use http://www.stata-press.com/data/r14/sunspot
(TIMESLAB: Wolfer sunspot data)

. optaspect spot time if inrange(time,1749,1924), lor gor wlc

Aspect ratio criterion aspect(#)

Median Absolute Slope 0.0654
Compare to Average Absolute Slope 0.0541

Weighted Average Absolute Orientation 0.0545
Compare to Average Absolute Orientation 0.0767

Arc Length based 0.0598
Global Orientation Resolution 0.1183
Local Orientation Resolution 0.1453
Weighted Local Curvature 0.1128
Resultant Vector 0.0541

. scalar waao = r(waao)

optaspect gives a report with the calculation of aspect ratios on the basis of all
heuristic criteria presented in section 2. The WAAO result exactly reproduces the
Cleveland (1993b) aspect ratio, which is stored in a scalar for subsequent use. As
expected, WAAO is closely related to RV and ARC, which share the same properties. For
this first application, we also specify the calculation of GOR, LOR, and WLC criteria,
but we will refrain from doing so in most subsequent applications because, as discussed
above, they have been shown to be unreliable and effectively superseded by the ARC

and RV criteria. Figure 2 graphs the sunspot series using the default aspect ratio at
0.7273 : 1 and the optimal WAAO aspect ratio, following execution of the following graph
commands:

. local labels ylab(0(50)150, labsize(*.7) angle(0)) xlabel(1749(25)1924,
> labsize(*.7))

. twoway (line spot time) if inrange(time,1749,1924), `labels´
> title("Default aspect ratio", size(*.75) margin(small))
> ytitle("Number of sunspots", size(*.8)) xtitle("")
> fysize(`=2.6*100/3.575´) fxsize(100) name(default,replace)

. twoway (line spot time) if inrange(time,1749,1924), `labels´
> title("Optimal WAAO aspect ratio", size(*.75) margin(small))
> ytitle("Number of" "sunspots", size(*.8)) xtitle("")
> fysize(30) name(waao,replace) aspect(`=waao´)

The fysize() and fxsize() options force graph combine to preserve the relative
graph region of the individual graphs. The first graph preserves the default graph size by
100% in the x axis and 2.6× 100/3.575 percent in the y axis. The values 2.6 and 3.575
are the default y : x dimensions of the image produced by Stata.4 The fysize(30)

option in the second line plot asks to use only 30% of the horizontal space of that graph
when combined.

4. To learn more, see help graph combine and help region options.
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Figure 2. International sunspot number, 1749–1924

The plot with the default aspect ratio in figure 2 draws all attention to the cyclical
variation in sunspot activity, spanning about 11 years in length, but makes it difficult
to compare the steepness in the rates of change. The WAAO aspect ratio immediately
clarifies the sunspot series and enables useful comparison; it reveals an important feature
of the data that was hidden before. Sunspot activity is now seen to rise more sharply
at the beginning of its cycle and decline more slowly at the end of the cycle. Also,
the taller the peak, the more evident the asymmetric behavior becomes, but it is not
present in flatter cycles.

The WAAO aspect ratio of 0.0545 is close to the limit of its vertical resolution. If
we were to apply an even lower aspect ratio, it would be nearly impossible to decode
any useful aspects of the data. The sunspot data have a strong cyclical component,
with a series of steep positive slopes followed by a series of steep negative slopes. This
causes the optimal aspect ratio γ → 0 as n → ∞ (Cleveland, McGill, and McGill 1988;
Cleveland 1993b). For example, calculating the optimal aspect ratio for an even more
lengthy sunspot series, during 1700–2015, would force γ even further toward zero:5

5. The data are sourced from the Solar Influences Data Analysis Center (SIDC), Royal Observatory
of Belgium; see http://www.sidc.be/.
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. use sunspot_1700_2015.dta, clear
(Source: http://www.sidc.be/)

. optaspect spot time

Aspect ratio criterion aspect(#)

Median Absolute Slope 0.0370
Compare to Average Absolute Slope 0.0295

Weighted Average Absolute Orientation 0.0298
Compare to Average Absolute Orientation 0.0417

Arc Length based 0.0337
Resultant Vector 0.0295

Note: There are 1 zero slopes; consider option cull

If we were to impose the suggested WAAO aspect ratio at 0.0298, it would be im-
possible to discern any useful features of the data—the series would look close to a flat
line. As we will see later, this effect is even stronger with seasonal series, where the
alternation of positive with negative slopes is even more frequent. In this case, it is best
to split and stack the data and calculate the average optimal aspect ratio. This can be
done via the stackby() option. However, stackby() requires access to a categorical
variable that will be used to split the series.

Figure 3 reproduces the superbly crafted split-and-stack line plot on sunspot activ-
ity offered by the SIDC at the Royal Observatory of Belgium.6 This is a beautifully
informative data plot for four reasons: 1) It heeds the advice of William Cleveland in
choosing a relatively small aspect ratio to bring out the asymmetric behavior at the
beginning and the end of each cycle. 2) It uses two different colors for highlighting the
presence of two measurement scales (yearly and 13-month smoothed). 3) It repeats the
last 10 years of each panel to the immediately next panel to emphasize the continuity
in the series. 4) The bottom panel is purposefully shown as incomplete because this is
a “plot in-progress” filled up with new information as it arrives. Be sure to specify the
cullzero option in optaspect to ignore that one zero slope in the calculation of the
aspect ratios:

. recode time (1700/1799=0) (1800/1899=1) (1900/1999=2) (2000/2015=3),
> generate(panels)
(316 differences between time and panels)

. generate copies = 1

. replace copies = 2 if (inrange(time,1800,1809) | inrange(time,1900,1909) |
> inrange(time,2000,2009))
(30 real changes made)

. expand copies
(30 observations created)

. by time, sort: replace copies = _n
(30 real changes made)

. replace panels = panels + copies if copies==1
(316 real changes made)

6. See http://www.sidc.be/silso/yearlyssnplot.
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. optaspect spot time if copies==1, stackby(panels) cullzero

Aspect ratio criterion aspect(#)

Median Absolute Slope 0.1498
Compare to Average Absolute Slope 0.1262

Weighted Average Absolute Orientation 0.1272
Compare to Average Absolute Orientation 0.1796

Arc Length based 0.1439
Resultant Vector 0.1262

Note: 1 zero slopes have been culled

. scalar waao = r(waao)

. local o1 ytitle("") ylabel(0(100)200 269, grid angle(0) labsize(*.85))

. local o2 aspect(`=waao´) xtitle("") plotregion(margin(zero))

. twoway (area spot time if panels==1)
> (area spot time if time<=1749), `o1´ `o2´ legend(off)
> xlabel(1700(20)1800, grid labsize(*.85)) name(g1,replace)

. twoway (area spot time if panels==2), `o1´ `o2´
> xlabel(1800(20)1900, grid labsize(*.85)) name(g2,replace)

. twoway (area spot time if panels==3), `o1´ `o2´
> xlabel(1900(20)2000, grid labsize(*.85)) name(g3,replace)

. twoway (area spot time if panels==4), `o1´ `o2´ xscale(range(2000 2110))
> xlabel(2000(20)2100, grid labsize(*.85)) name(g4,replace)

. graph combine g1 g2 g3 g4, col(1) imargin(zero) ysize(5) xsize(6)
> l1title("Sunspot number", margin(zero) size(*.75))
> b1title("Time (years)", margin(t=0 b=2) size(*.75))
> note("Source: SIDC; http://www.sidc.be/silso/yearlyssnplot/."
> "Yearly mean sunspot number (light gray) up to 1749 and monthly
> 13-month smoothed sunspot number (in dark gray) from 1750-2015.",
> size(*.65)) graphregion(margin(1=10 r=10))



294 optaspect: Optimal aspect ratio

0

100

200

269

1700 1720 1740 1760 1780 1800

0

100

200

269

1800 1820 1840 1860 1880 1900

0

100

200

269

1900 1920 1940 1960 1980 2000

0

100

200

269

2000 2020 2040 2060 2080 2100

S
un

sp
ot

 n
um

be
r

Time (years)

Source: SIDC; http://www.sidc.be/silso/yearlyssnplot/.
Yearly mean sunspot number (light gray) up to 1749 and monthly 13−month smoothed sunspot number (in dark gray) from 1750−2015.

Figure 3. International sunspot number, 1700–2015

4.2 Airline passengers

The Stata Press dataset air2.dta holds observations on U.S. domestic airline passengers
during 1949–1960. The top graph of figure 4 gives the line plot under Stata’s default
aspect ratio, which emphasizes how demand for air travel has a strong upward trend
with a seasonal component that peaks during July–August. Another important feature
of the data is the increased seasonal variation over the years, which appears to be
increasing at an exponential rate. Calculate the optimal aspect ratios for this series:
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. use http://www.stata-press.com/data/r14/air2, clear
(TIMESLAB: Airline passengers)

. optaspect air time, wlc

Aspect ratio criterion aspect(#)

Median Absolute Slope 0.1907
Compare to Average Absolute Slope 0.1400

Weighted Average Absolute Orientation 0.1411
Compare to Average Absolute Orientation 0.2017

Arc Length based 0.0031
Weighted Local Curvature 0.0058
Resultant Vector 0.1401

Note: There are 4 zero slopes; consider option cull

The aspect ratios produced by WAAO and RV are reasonable, but the ARC result is
disappointingly small, possibly because of ARC’s sensitivity to zero slopes (Han et al.
2016). The WLC is also forbiddingly small because it is also sensitive to how the x-axis
values are measured. In these data, time is measured in terms of fractional years, so
January 1949 takes the value 1949, but February 1949 takes the value 1949.083, where
0.083 ≡ 1/12, March 1949 is 1949.167, and so on. There is no reason to work with such a
scale, and it would make more sense to apply a continuous time scale for t = 1, 2, . . . , n.
This is achieved by specifying rank and also by specifying cullzero to remove all zero
slopes:

. optaspect air time, wlc cullzero rank

Aspect ratio criterion aspect(#)

Median Absolute Slope 0.1725
Compare to Average Absolute Slope 0.1362

Weighted Average Absolute Orientation 0.1370
Compare to Average Absolute Orientation 0.1900

Arc Length based 0.0369
Weighted Local Curvature 0.0608
Resultant Vector 0.1362

Note: 4 zero slopes have been culled

. scalar rv = r(rv)

The WAAO and RV criteria remain similar to before because they are parameteriza-
tion invariant but still somewhat affected by the absence of zero slopes. The ARC and
the WLC criteria are now more reasonable but still too low to produce a meaningful plot
for these data.

The bottom graph of figure 4 gives the resulting line plot with the RV aspect ratio,
where the shaded area highlights the yearly range in airline passengers (min to max).
The RV aspect ratio elucidates the description of seasonal variation and reveals sev-
eral important features. First, the seasonal demand for air travel rises gradually from
January to June. Second, it peaks in July and remains at about the same level in
August. Third, the accelerated growth from June to July is of the same steepness as
the accelerated decline from August to September. Fourth, with the help of the shaded
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area that highlights the range of variation, we can see a dramatic increase in variation
over the years, specifically the peak demand in July and August increasing much faster
than the off-peak demand in January and November. Hence, there is a suggestion of an
exponential growth of change. The following code produces figure 4:

. generate year = floor(time)

. by year, sort: egen air_max = max(air)

. by year, sort: egen air_min = min(air)

. twoway (line air time, lwidth(*1.5)), `yl´ `xl´
> title("Default aspect ratio", size(*.75) margin(small))
> ylabel(minmax 200(100)500, labsize(*.7) angle(0))
> xlabel(#12, grid format(%4.0f) labsize(*.7))
> ytitle("Airline passengers", size(*.8)) xtitle("")
> plotregion(margin(zero))
> fysize(`=2.6*100/3.575´) fxsize(100) name(default,replace)

. twoway (rarea air_max air_min time, connect(stair) fcolor(gs14) lcolor(gs14))
> (line air time, lpattern(solid) lcolor(gs0) lwidth(*1.5)), `yl´ `xl´
> ylabel(minmax 200(100)500, labsize(*.7) angle(0))
> xlabel(#12, grid format(%4.0f) labsize(*.7))
> title("Optimal WAAO aspect ratio", size(*.75) margin(small))
> ytitle("Airline passengers", size(*.8)) xtitle("")
> note("Note: the shaded area captures the yearly range (min to max).")
> plotregion(margin(zero))
> legend(off) fysize(30) name(waao,replace) aspect(`=waao´)

. graph combine default waao, col(1)
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Figure 4. U.S. airline passengers (1949–1960)
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The optimal aspect ratios proposed by the WAAO, ARC, and RV criteria are a weighted
function of the length of each line segment, which enables them to satisfy the important
parameterization invariance property. The dominant characteristic in these data is
the equally steep rates of change from June to July and August to September, which
generate the longest line segments in every year, particularly in the latest years. These
long lines will carry a stronger influence in computation so the contrast of the steep rates
of change is optimized the most. However, this also means that the contrast of the more
gradual rates of change with the shorter lines bears lower weight in the calculation of the
optimal aspect ratio. Thus WAAO, ARC, and RV suppress the contrast of an important
feature of the data—the midseason drop in air travel demand from January to February
and the even less noticeable drop from March to April.

To see a clearer contrast in the smaller rates of change and still maintain the useful
contrast in the steeper slopes, apply the aspect ratio from the unweighted optimization
criterion for the average orientation. Figure 5 applies the AAO aspect ratio, using the
same graph code as above. This gives a clearly superior outcome:

. quietly optaspect air time, cull rank

. scalar aao = r(aao)

. twoway (rarea air_max air_min time, connect(stair) fcolor(gs14) lcolor(gs14))
> (line air time, lpattern(solid) lcolor(gs0) lwidth(*2)), `yl´ `xl´
> ylabel(minmax 200(100)500, labsize(*.9) angle(0))
> xlabel(#12, grid format(%4.0f) labsize(*.9))
> title("Optimal AAO aspect ratio", margin(small))
> ytitle("Airline passengers", ) xtitle("")
> plotregion(margin(zero))
> note("Note: the shaded area captures the yearly range (min to max).",
> size(*1.25)) legend(off) ysize(1) xsize(3) name(waao,replace)
> aspect(`=aao´)
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4.3 Carbon dioxide concentration

The Keeling curve plots the atmospheric carbon dioxide (CO2) concentrations using
measurements obtained from the Mauna Loa Observatory in Hawaii since 1958, origi-
nally set by Charles David Keeling. These data are among the first clear evidence of
increased greenhouse gas in the atmosphere. Import co2.dta, which holds monthly
averages of CO2 concentrations, and execute optaspect:7

. use co2, clear

. optaspect co2 date, cullzero

Aspect ratio criterion aspect(#)

Median Absolute Slope 0.1219
Compare to Average Absolute Slope 0.1232

Weighted Average Absolute Orientation 0.1239
Compare to Average Absolute Orientation 0.1433

Arc Length based 0.8870
Resultant Vector 0.1232

Note: 2 zero slopes have been culled

The output suggests two diametrically opposed, but equally plausible aspect ratios.
This may be because of dominant features appearing in different time frequencies. In-
deed, the Keeling curve is famous for two reasons. First, it is famous for documenting
the strong seasonality in CO2 concentrations with gradual increase at the beginning of
the season followed by a steep decrease. Second, it is famous for uncovering the expo-
nential upward trend in CO2 concentrations during the 20th century. The seasonal effect
is in the higher frequency, and the trending quadratic effect is in the lower frequency.
We should look at both displays, so store both the ARC and the RV aspect ratios in
scalars:

. scalar rv = r(rv)

. scalar arc = r(arc)

7. The data are sourced from the Scripps Institution of Oceanography, University of California San
Diego; see http://scrippsco2.ucsd.edu/. The co2 variable holds the Scripps Institution of Oceanog-
raphy’s interpolated measurements in place of missing values (only a few instances).
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First, plot the co2 series using the RV aspect ratio to look at the higher-frequency
seasonal variation:

. twoway (line co2 date, lwidth(*2)),
> ytitle("C0{sub:2} (ppm)", size(*1.25)) xtitle("")
> ylabel(310(20)410, grid angle(0))
> xlabel(-22 674, format(%tmm-CY) labsize(*1.25))
> graphregion(margin(r+5))
> aspect(`=rv´) ysize(1) xsize(4)
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Figure 6. Monthly CO2 atmospheric concentration

Figure 6 shows the recurring pattern in seasonality, beginning with a gradual increase
and followed by a steep decay in CO2 concentrations every year. There is no need to
split and stack the series because there is no evident individual yearly variation, and
the seasonality pattern appears to repeat itself consistently. This is why I chose not
to label more years in the x axis and show only the beginning and end of the time
period. However, figure 6 fails to clearly identify the exponential growth. To shift
the focus to the trend component in the lower frequency, we need to employ a much
larger aspect ratio, for example, the ARC aspect ratio of 0.8870. Simply substitute for
aspectratio(‘=arc’) in the graph code above.

Alternatively, a more guaranteed approach sure to capture the lower-frequency pat-
tern is to estimate a locally weighted regression using the lowess command, then bank
the smoothed line to 45◦ (Cleveland 1993a):

. lowess co2 date, gen(co2_sm)

. optaspect co2_sm date, sort nogor

Aspect ratio criterion aspect(#)

Median Absolute Slope 0.9959
Compare to Average Absolute Slope 1.0000

Weighted Average Absolute Orientation 1.0002
Compare to Average Absolute Orientation 1.0321

Arc Length based 7.9391
Resultant Vector 1.0000

. scalar waao = r(waao)

The WAAO and RV criteria suggest the typical orientation of the smoothed line is
about 45◦, and the AAO criterion explains there is a strong balance in line lengths,
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which means there is no single dominant rate of change, as in a structural shift. Thus,
as shown in figure 7, which applies the WAAO aspect ratio, the inflection in the curvature
documented by the Keeling curve follows by an upward shift in seasons. In other words,
the CO2 concentrations have uniformly increased in all months over the years. Plot the
series using the WAAO aspect ratio, and superimpose a linear fit to enable the contrast
with the quadratic trend in the data:

. twoway (lfit co2 date, lcolor(gs0) lwidth(*1.25))
> (line co2 date, lcolor(gs8) lpattern(solid)),
> ytitle("C0{sub:2} (ppm)") xtitle("")
> ylabel(310(20)410, grid angle(0) labsize(*.85))
> xlabel(-22 674, format(%tmm-CY) labsize(*.85))
> graphregion(margin(r+5)) plotregion(margin(zero))
> legend(ring(0) position(5) col(1) symxsize(*.4) bmargin(medium)
> order(2 1) label(1 "Linear fit") label(2 "Observed")
> size(*.8) region(fcolor(none) lcolor(none)))
> aspect(`=waao´) ysize(1) xsize(1)
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Figure 7. Monthly CO2 atmospheric concentration

Given the regular pattern of seasonality, it suffices to show only the last year’s data
to get a closer view of how the series moves within a year. Focusing on the year 2015
will also showcase how CO2 concentrations have broken the threshold of 400 parts per
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million for the first time in recorded history.8 Figure 8 emphasizes the significance of
this event by applying the RV aspect ratio, adding a reference line at 400 parts per
million and using the connected line plot to assist the identification of each month:

. optaspect co2 date if year(dofm(date))==2015, sort

Aspect ratio criterion aspect(#)

Median Absolute Slope 0.4800
Compare to Average Absolute Slope 0.4417

Weighted Average Absolute Orientation 0.4425
Compare to Average Absolute Orientation 0.4865

Arc Length based 0.7324
Resultant Vector 0.4417

. scalar rv = r(rv)

. local month_list

. local c 0

. foreach i in `c(Mons)´ {
2. local ++c
3. local month_list `month_list´ `c´ "`i´"
4. }

. twoway (connected co2 date if year(dofm(date))==2015),
> yline(400, lpattern(dash) lcolor(gs0))
> ytitle("C0{sub:2} concentration (ppm)") xtitle("")
> ylabel(minmax 399/403, format(%5.1f) grid angle(0) labsize(*.85))
> xlabel(#12, format(%tmMon) labsize(*.85))
> aspect(`=rv´) ysize(3) xsize(5)
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Figure 8. Monthly CO2 atmospheric concentration during 2015

8. See http://climate.nasa.gov/400ppmquotes/ for some frightening quotes on what this means.
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4.4 S&P 500 daily return

Line charts are a staple of financial time-series analysis, typically displaying the evolu-
tion in price or change in price (the return) against some time frequency. When time
is measured in terms of days or some intraday frequency (for example, minutes, hours),
Stata translates the frequency values as the days or minutes or hours that have lapsed
since the 1st of January 1960.9 The system dataset sp500.dta holds the S&P 500 daily
price movement for 2001. Because U.S. capital markets operate about 255 days per year,
there will be a seeming discontinuity between Friday afternoon and Monday morning
plus gaps due to public holidays. The effect of interrupted calendar date and time is ex-
acerbated in this dataset because of the 9/11 attack on the World Trade Center, which
shut down Wall Street for a week.

optaspect ignores the calendar date and time gaps and calculates Δyi and Δxi

without any missing values. However, because of Stata’s translation of days into lapsed
days, Δxi will be overestimated during weekends and public holidays, for example,
Δxi = 3 for a regular weekend. This has a material effect on the calculation of the
optimal aspect ratio. optaspect has a provision for dealing with this issue via the rank
option. By specifying this option, you instruct optaspect to ignore calendar date and
time discontinuities and replace the x-axis variable with a new variable that takes the
values t = 1, 2, . . . , n, thus effectively setting

∑n
i=1 Δxi = n.

Execute optaspect on the abnormal market return, that is, the daily return above
the yearly market average, and remember to specify the rank option:

. sysuse sp500, clear
(S&P 500)

. generate ret = change[_n]/close[_n-1]
(1 missing value generated)

. quietly summarize ret

. generate abn_ret = ret - r(mean)
(1 missing value generated)

. generate t = 0

. optaspect abn_ret t, rank

Aspect ratio criterion aspect(#)

Median Absolute Slope 0.0321
Compare to Average Absolute Slope 0.0280

Weighted Average Absolute Orientation 0.0282
Compare to Average Absolute Orientation 0.0380

Arc Length based 67.9707
Resultant Vector 0.0280

The ARC aspect ratio fails to produce a meaningful result, and the WAAO and RV

criteria suggest aspect ratios that are too low. This is because the abnormal return
in efficient markets oscillates wildly about zero with a large random noise component.

9. That is, unless you change Stata’s datum using business calendars; see help datetime business

calendars.
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Guha and Cleveland (2011) demonstrate that in the presence of such white noise, if
n → ∞, then γ → 0 with probability. The only remedy in this case is to split and
stack the series in smaller periods and apply an average aspect ratio across the stacked
panels, which can be calculated via the stackby() option. This option requires access
to a categorical variable that will be used to display the split-line plot. For instance,
consider presenting the yearly series by calendar quarter:

. generate quarter = quarter(date)

. optaspect abn_ret t, rank stackby(quarter)

Aspect ratio criterion aspect(#)

Median Absolute Slope 0.1328
Compare to Average Absolute Slope 0.1133

Weighted Average Absolute Orientation 0.1142
Compare to Average Absolute Orientation 0.1520

Arc Length based 274.5240
Resultant Vector 0.1133

. scalar rv = r(rv)

The aspect ratios are now more reasonable, and we can proceed with presenting the
split-and-stack time series accordingly, as shown in figure 9:

. levelsof quarter, local(qlevels)
1 2 3 4

. foreach i of local qlevels {
2. twoway (area abn_ret date if quarter==`i´), aspect(`=rv´)

> ytitle("") ylabel(-0.05 0 0.05, grid angle(0) labsize(*.85))
> xtitle("") xlabel(, labsize(*.85) format(%tddd/nn/CCYY))
> fxsize(100) name(g`i´,replace)

3. }

. graph combine g1 g2 g3 g4, col(1) graphregion(margin(l=15 r=10))
> l1title("Abnormal market return in 2001", margin(zero) size(*.85))
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Figure 9. S&P 500 daily return during 2001

4.5 Excess rainfall in Brisbane

Brisbane has been in the news in recent years for supposedly extraordinarily high levels
of rainfall, resulting in catastrophic floods around the Brisbane river basin. To inves-
tigate this claim, I calculate the excessive monthly rainfall in Brisbane and then the
optimal aspect ratio for plotting excess rainfall since 1974 (the year when Brisbane city
was hit by the largest flood in the 20th century). Use rain.dta, which holds monthly
rainfall levels in the Sydney central business district and Brisbane central business dis-
trict from 1915 to 2014:10

. use rain, clear
(Monthly rainfall in Brisbane)

. egen month_year = concat(month year), punct("/")

. generate date = monthly(month_year,"MY")

. format %tmn/CY date

. drop month_year

. by month, sort: egen bri_exc = median(brisbane)

10. The data are sourced from the Australian Government Bureau of Meteorology; see
http://www.bom.gov.au/climate/data/.
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. replace bri_exc = brisbane - bri_exc
(1,199 real changes made, 1 to missing)

. optaspect bri_exc date if year>=1973, sort

Aspect ratio criterion aspect(#)

Median Absolute Slope 0.0396
Compare to Average Absolute Slope 0.0228

Weighted Average Absolute Orientation 0.0229
Compare to Average Absolute Orientation 0.0434

Arc Length based 0.0128
Resultant Vector 0.0228

The aspect ratios are low because of the long oscillating series about zero. The
research question at hand is the frequency of excessive rainfall. Given that particularly
heavy rainfall is a highly seasonal phenomenon, it would be more appropriate to calcu-
late the aspect ratios for the maximum rainfall per year, which should appear only in
one month per year and no more than two months—if the rain falls at the end of the
calendar month:

. by year, sort: egen max_bri_exc = max(bri_exc)

. egen tag = tag(year)

. optaspect max_bri_exc year if year>=1973 & tag, sort

Aspect ratio criterion aspect(#)

Median Absolute Slope 0.2659
Compare to Average Absolute Slope 0.1295

Weighted Average Absolute Orientation 0.1302
Compare to Average Absolute Orientation 0.2279

Arc Length based 0.0070
Resultant Vector 0.1295

. scalar waao = r(waao)

Apply the WAAO aspect ratio in an area plot, which behaves exactly in the same
way as a line plot with the difference that it fills the area within with color (the default
is to fill in the area to the baseline of zero):

. twoway (area bri_exc date if year>=1974, lcolor(gs0) fcolor(gs12)),
> xtitle("") ytitle("Excess monthly rainfall")
> ylabel(-125 0(200)600 750, angle(0))
> xlabel(168(12)648, format(%tmCY) angle(90))
> plotregion(margin(b=0 t=00))
> aspect(`=waao´) ysize(1) xsize(3.5)

In figure 10, the WAAO aspect ratio of 0.1302 stretches out the line plot without losing
any detail. It is evident that the cycle of heavy rains experienced during 2009–2013 is
no worse than the cycles of 1980–1984 and 1988–1992 followed by the massive downpour
in 1996. What is indeed abnormal are the suppressed rain levels during 2000–2007 with
damaging drought effects. Thus the heavy rains and resulting floods, especially of 2011,
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should not be surprising at all. What has been surprising is the mismanagement of
information and lack of preparation.
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Figure 10. Excess monthly rainfall in Brisbane

5 Life expectancy

In the manual entry on graph twoway line, StataCorp offers some ill-fated advice on
how to specify “an informative and visually pleasing graph” (StataCorp 2015, 281).
Figure 11 reproduces the graph on offer, recasted here in scheme(sj) with some minor
adjustments in line colors. The graph code extends about half a page in the manual,
yet it fails to control for perhaps the most important option in a line chart—the aspect
ratio. The visual is also plagued with excessive textual detail in the graph region, which
reduces the effective space from the all-important plot region to a mere 30% of the
overall image.11 Specifically, we have a large grand title spanning over two lines, double
x axes with labels in large font, a redundant x-axis title, a four-row legend at three
o’clock, and a two-line note. When the user fails to control for the aspect ratio, the
presence of all of these graph region options poorly determines the effective aspect ratio.
The most important pitfall of this visual is the attempt to display multiple line plots
that are measured at different scales. Thus the aspect ratio is further skewed and makes
the most important line in the graph, that is, the difference in life expectancy, appear
uninterestingly flat.

11. Just take a ruler and measure the physical dimensions of the plot region over the graph region.
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Figure 11. Poor line plot example in Stata 14 [G-2] graph twoway line manual

The best way to graph this information is in two separate graphs: one for the
two series measured in years of life expectancy and another for the difference in life
expectancy. Each graph should have its own aspect ratio, and we should limit the
interference from nondata-related graph elements. Also, to make the analysis more
relevant here, I update the dataset with the latest observations from the 2013 National
Vital Statistics Reports (Xu et al. 2016).12

12. The additional data are sourced from http://www.cdc.gov/nchs/data/nvsr/nvsr64/nvsr64 02.pdf.
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. use http://www.stata-press.com/data/r14/uslifeexp, clear
(U.S. life expectancy, 1900-1999)

. input

year le le_male le_female le_w le_wmale
> le_wfem~e le_b le _bmale le_bfem~e
101. 2000 76.8 74.1 79.3 77.3 74.7 79.9 71.8 68.2 75.1
102. 2001 77.0 74.3 79.5 77.5 74.9 80.0 72.0 68.5 75.3
103. 2002 77.0 74.4 79.6 77.5 74.9 80.1 72.2 68.7 75.4
104. 2003 77.2 74.5 79.7 77.7 75.1 80.2 72.4 68.9 75.7
105. 2004 77.6 75.0 80.1 78.1 75.5 80.5 72.9 69.4 76.1
106. 2005 77.6 75.0 80.1 78.0 75.5 80.5 73.0 69.5 76.2
107. 2006 77.8 75.2 80.3 78.3 75.8 80.7 73.4 69.9 76.7
108. 2007 78.1 75.5 80.6 78.5 76.0 80.9 73.8 70.3 77.0
109. 2008 78.2 75.6 80.6 78.5 76.1 80.9 74.3 70.9 77.3
110. 2009 78.5 76.0 80.9 78.8 76.4 81.2 74.7 71.4 77.7
111. 2010 78.7 76.2 81.0 78.9 76.5 81.3 75.1 71.8 78.0
112. 2011 78.7 76.3 81.1 79.0 76.6 81.3 75.3 72.2 78.2
113. 2012 78.8 76.4 81.2 79.1 76.7 81.4 75.5 72.3 78.4
114. 2013 78.8 76.4 81.2 79.1 76.7 81.4 75.5 72.3 78.4
115. end

. optaspect le year, sort cullzero

Aspect ratio criterion aspect(#)

Median Absolute Slope 0.8783
Compare to Average Absolute Slope 0.2925

Weighted Average Absolute Orientation 0.2931
Compare to Average Absolute Orientation 0.6870

Arc Length based 0.8271
Resultant Vector 0.2925

Note: 12 zero slopes have been culled

. scalar rv = r(rv)

. twoway (line le_wmale year, lwidth(*1.5))
> (line le_bmale year, lwidth(*1.5)),
> ytitle("Life expectancy") xtitle("")
> ylabel(minmax 35(5)70, labsize(*.85) angle(0))
> xlabel(1900(10)2000 2013)
> legend(ring(0) position(5) col(1) symxsize(*.6) bmargin(medlarge)
> label(1 "White males") label(2 "Black males")
> region(fcolor(none) lcolor(none)))
> aspect(`=rv´) ysize(1) xsize(2.5) name(g1,replace)
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Figure 12. Life expectancy of white and black males in the United States

Figure 12 describes a steadily increasing trend in the life expectancy of males and
gives the impression of an enduring constant gap between the life expectancy of white
males and black males. It is well known that we are exceptionally bad at perceiving
differences between two trending lines, and we form biased judgments in measuring
difference as the closest distance between the two lines (for example, Cleveland [1993a]).
Figure 12 is not instructive at all, even misleading, in describing the difference between
life expectancies. For example, in figure 12, we are fooled to believe that the difference
in life expectancy in 2013 is at the same level as it was in 1955.

To accurately judge the difference, we need a separate plot that would account for
the much smaller scale differences in years and bank that series to 45◦. Moreover,
the benchmark of zero is a key piece of information when plotting differences in life
expectancy, but including zero in the y axis elongates the plot region upward. optaspect
has a provision to allow for the inclusion of y = 0 via the y0 option and adjusts the
calculation of the optimal aspect ratio accordingly:

. generate diff = le_wmale - le_bmale

. lowess diff year, generate(diff_sm)

. optaspect diff_sm year, y0

Aspect ratio criterion aspect(#)

Median Absolute Slope 1.6959
Compare to Average Absolute Slope 1.4203

Weighted Average Absolute Orientation 1.4295
Compare to Average Absolute Orientation 1.8345

Arc Length based 9.1979
Resultant Vector 1.4203

. scalar rv = r(rv)
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. twoway (line diff year, lcolor(gs0) lwidth(*1.5))
> (line diff_sm year, lcolor(gs8) lwidth(*1.5) lpattern(solid)),
> ytitle("Difference in life expectancy (number of years)") xtitle("")
> ylabel(0(2)18, grid labsize(*.65) angle(0))
> xlabel(1900(20)2000 2013, grid labsize(*.75))
> legend(off) plotregion(margin(b=0 l=0 r=0 t=2))
> aspect(`=rv´) ysize(6) xsize(5) name(g2,replace)

Figure 13 gives a clearer picture of the evolution of difference in life expectancy
between white males and black males. Setting aside the 1918 shock from the Spanish
influenza pandemic, the difference in life expectancy has been steadily decreasing from
the beginning of the 20th century to the start of the Second World War, at which point
it seems to settle to a range of about six to eight years difference until 2000 before
following a sharp decline to four years’ difference. The gap appears to be closing, but
there is still more work that needs to be done.
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Figure 13. Difference in life expectancy between white and black males in the United
States

6 Scatterplots and unordered data

optaspect can also be used to calculate the optimal aspect ratio for a scatterplot of
two unordered variables. The only additional step in doing so is first obtaining a locally
weighted regression estimate with the lowess command, then banking the smoothed
line to 45◦. For example, consider the system auto.dta and the scatterplot of the log
of price of cars versus their log of mileage:
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. sysuse auto, clear
(1978 Automobile Data)

. generate ln_p = ln(price)

. generate ln_m = ln(mpg)

. lowess ln_p ln_m, generate(ln_p_sm)

. optaspect ln_p_sm ln_m, sort

Aspect ratio criterion aspect(#)

Median Absolute Slope 1.8003
Compare to Average Absolute Slope 1.1526

Weighted Average Absolute Orientation 1.0324
Compare to Average Absolute Orientation 1.8344

Arc Length based 1.1082
Resultant Vector 1.0207

. scalar rv = r(rv)

. twoway (scatter ln_p ln_m) (line ln_p_sm ln_m, sort(ln_m)), aspect(`=rv´)

(output omitted )

7 Fixed aspect ratios

There are cases when the choice of aspect ratio is independent of the data. For example,
diagnostic plots that contrast two same-scale distributions or cumulative distributions
should always preserve an aspect ratio of 1. These include the quantile–quantile plot
(qqplot), the quantile normal plot (qnorm), the standardized normal probability plot
(pnorm), the quantile chi-squared plot (qchi), and the chi-squared probability plot
(pchi). In these cases, aspectratio(1) effectively sets the diagonal line at 45◦ and
acts as a reference line for enabling immediate and accurate comparison across the two
distributions. However, this works only if both axes maintain the same scale range.

Similarly for when displaying functional forms with twoway function or construct-
ing immediate graphs with twoway scatteri, twoway pcarrowi, or twoway pci, theo-
retical forms have well-predefined geometric shapes whose direction across the 2D plane
should determine the aspect ratio. For example, a circle or the quarter of a circle
should be displayed with aspectratio(1), but a semicircle should be displayed with
aspectratio(0.5) or aspectratio(2) depending on its orientation. When graphing
the line of an algebraic formula, take two coordinates from that line and bank its ab-
solute orientation arctan{|(y2 − y1)/(x2 − x1)|} to 45◦. When graphing an algebraic
curve, you may calculate the aspect ratio by banking its resultant vector to 1.
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8 Summary

optaspect calculates the optimal aspect ratio for a two-variable line graph, using a
number of heuristic criteria based on the principle of maximizing the contrast between
the many rates of change. I demonstrated optaspect using a variety of datasets, with
emphasis on the importance of exercising judgment when selecting aspect ratios regard-
less of the science underpinning the heuristic criteria.
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Abstract. In this article, we describe the xtregcluster command, which imple-
ments the panel regression clustering approach developed by Sarafidis and Weber
(2015, Oxford Bulletin of Economics and Statistics 77: 274–296). The method clas-
sifies individuals into clusters, so that within each cluster, the slope parameters
are homogeneous and all intracluster heterogeneity is due to the standard two-way
error-components structure. Because the clusters are heterogeneous, they do not
share common parameters. The number of clusters and the optimal partition are
determined by the clustering solution, which minimizes the total residual sum of
squares of the model subject to a penalty function that strictly increases in the
number of clusters. The method is available for linear short panel-data models
and useful for exploring heterogeneity in the slope parameters when there is no
a priori knowledge about parameter structures. It is also useful for empirically
evaluating whether any normative classifications are justifiable from a statistical
point of view.

Keywords: st0475, xtregcluster, panel data, parameter heterogeneity

1 Introduction

Standard panel-data analysis imposes the restriction that all individuals share the same
slope coefficients, and any unobserved heterogeneity across individuals is attributed
solely to the presence of individual-specific, time-invariant effects (that is, differential
intercepts). This restriction can be difficult to justify, both theoretically and empirically
(for example, Burnside [1996], Baltagi and Griffin [1997], Pesaran, Shin, and Smith
[1999]).

The xtregcluster command implements the regression clustering approach devel-
oped by Sarafidis and Weber (2015), which groups individuals into distinct clusters.
Within each cluster, the slope coefficients are homogeneous, and all intracluster hetero-
geneity is attributed to the two-way error-components structure. The clusters them-
selves are heterogeneous; that is, the slope coefficients are different across clusters.

Both the number of clusters and the optimal partition are treated as unknown and
are determined from the data based on minimizing a model information criterion that
is strongly consistent. That is, it estimates the true number of clusters with probability
one as N grows for any T fixed. Therefore, the method is valid for panel datasets
characterized by a large number of individuals and a short time-series length.

c© 2017 StataCorp LLC st0475
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xtregcluster is useful for exploring slope parameter heterogeneity in the absence
of a priori information regarding parameter structures. The algorithm can also confirm
whether the restriction of slope parameter homogeneity is supported by the data. More-
over, it is useful for examining whether a priori classification of individual entities is
optimal from a statistical point of view, such as industrial classifications (for example,
North American Industry Classification System codes), risk classifications (for example,
credit ratings), or arbitrarily imposed classification schemes (for example, univariate
quantile classes).

2 A partially heterogeneous panel-data model

Consider the linear panel-data model

yiωt = β′
ωxiωt + εiωt (1)

where yiωt denotes the observation of the dependent variable for the ith individual in
cluster ω at time period t, xiωt is a K× 1 vector of covariates, and βω is a K× 1 vector
of fixed parameters that are common within clusters but vary across clusters. The
default error term of the model is composite and subject to a one-way error-component
structure:

εiωt = ηiω + eiωt (2)

The regressors are assumed to be exogenous with respect to the idiosyncratic error
component, eiωt, but they can be endogenous with respect to ηiω . The vector, xiωt, can
include dynamic terms if they are exogenous. A two-way error-components structure
can be easily implemented by specifying the factorial notation i.timevar. Hence, the
error term structure becomes εiωt = ηiω + τt + eiωt.

In Stata, the estimation of the model described by (1) and (2) corresponds to the
xtreg, fe command, except each cluster has its own regression structure such that
ω = 1, 2, . . . ,Ω0 with iω = 1, 2, . . . , Nω0

and t = 1, 2, . . . , T . The total number of

individuals across clusters is N =
∑Ω0

ω=1 Nω, and the total sample size is N × T .

Note that the whole time series of a given individual entity belongs to a cluster, not
a subset of observations of individuals. That is, an individual can be classified only in
one cluster. The focus is the analysis of “short panels”, where N 	 T with N → ∞
and T fixed (for unbalanced panels, the average T is fixed).

The key estimation problem is how to obtain estimates of the model’s slope coeffi-
cients when the value of the true number of clusters, Ω0, and membership of individ-
uals to clusters are both unknown. Sarafidis and Weber (2015) develop a partitional
clustering approach for estimating the true number of clusters, as well as the corre-
sponding partition (see also Kaufman and Rousseeuw [2005] and Everitt et al. [2011]).
Sarafidis and Weber (2015) show through analytical work and simulations that their

proposed solution yields a strongly consistent estimate of Ω0; that is, Ω̂ → Ω0 with
prob → 1 as N → ∞, for any fixed T .
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3 Estimation algorithm

The optimal value of Ω—denoted as Ω̂—and the corresponding partition are determined
based on the following algorithm:

1. Specify some value for Ω, where Ω ≤ ξ ≤ Ω0, with ξ > 1 and ξ ∈ Z
+.

2. Randomize the panel identifiers.

3. Obtain an initial partition using one of the following three ways: i) a random clas-
sification based on the standard uniform distribution; ii) an a priori classification;
and iii) a classification based on certain observed variables (characteristics) and
obtained using the official Stata command cluster kmeans.

4. Reallocate the first individual to all remaining clusters, each time saving the value
of the residual sum of squares (RSS) that arises for each cluster, RSSω. Assign the
individual into the cluster that corresponds to the smallest value of the total RSS

across all ω; that is, RSS =
∑Ω

ω=1 RSSω.

5. Repeat step 4 for every other individual in the sample.

6. Repeat steps 3 and 4 until RSS cannot be reduced any further with some tolerance
criterion.

7. Repeat steps 1 to 6 for different values of Ω. Ω̂ is the value of Ω that minimizes
the following model information criterion (MIC),

MIC = N ln

(
RSS

NT

)
+ΩθN (3)

where T = 1/N
∑N

i=1 Ti denotes the average time-series length for unbalanced
panels. For panels with equal-length time series, labeled by Stata as strongly or
weakly balanced panels, T = T . The term ΩθN is a required penalty because the
minimum RSS is monotone decreasing in the number of clusters and will tend to
overparameterize the model by allowing for more clusters than may actually exist.
Essentially, the penalty provides a filter to ensure that the preferred clustering
outcome partitions between clusters rather than within clusters. θN can take any
value, provided limN→∞N−1θN = 0 and limN→∞[log{log(N)}]−1θN = ∞. The
theoretical properties of the algorithm are discussed in Sarafidis and Weber (2015,
sec. 4).

The rationale behind step 2 is to make sure the results are not dependent on the
original ordering of the individuals. This is important because, in real data, numerical
panel identifiers with a smaller value are often associated with early “entrants”, whereas
larger values can be associated with late “entrants” in the dataset (for example, panel
identifiers may be associated with the age of a company). To the extent that this
feature implies dependencies among individuals, one should randomize the order within
our algorithm according to which individuals are reallocated to different clusters.
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The total number of possible partitions is exponential in N . Therefore, it becomes
infeasible to search over all possible partitions, even for relatively small values of N and
Ω. Thus one should use different initial partitions (that is, iterate steps 3–7) before Ω̂
is determined to avoid local minimums; we provide examples in section 5.

4 The xtregcluster command

As with all xt commands, xtregcluster requires that the data be xtset. It begins by
obtaining an initial partition through a random uniform classification, a predetermined
classification, or a classification based on certain observed variables. Then, it reclassifies
individuals to clusters so that total RSS is minimized.

4.1 Syntax

xtregcluster depvar indepvars
[
if
] [

in
] [

weight
]
,

{random | preclass(varname) | prevars(varlist | X | b)} omega(numlist)[
prevarsopt(kmeansopt) theta(#) seed(#) name(varname) iterate(#)

tolerance(#) nolog graph table
]

4.2 Options

random obtains the initial partition using random selection from the standard uniform
distribution. random, preclass(), or prevars() is required.

preclass(varname) obtains the initial partition based on a predetermined classifica-
tion, using a categorical variable. omega() is not allowed with preclass(varname),
because the preclassification determines the size of Ω. random, preclass(), or
prevars() is required.

prevars(varlist | X | b) obtains the initial partition based on observed variables, using
the official Stata command cluster kmeans. The observed variables can be part of
the explanatory variables but not necessarily so. prevars(X) includes the whole set
of regressors and is equivalent to specifying prevars(indepvars). You may also com-
bine prevars(X varlist). prevars(b) uses the individual-specific estimated slopes
of all indepvars. random, preclass(), or prevars() is required.

omega(numlist) specifies the numerical range of Ω > 1. omega() is required with random

and prevars() but is not allowed with preclass(). omega() takes integer values.

prevarsopt(kmeansopt) can be specified only with prevars(varlist). kmeansopt takes
all options from cluster kmeans with the exceptions of name(), generate(), and
k(), which are already specified by the omega() option above.
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theta(#) specifies the value of θN in the penalty function of (3) for overfitting Ω. The
default is theta(1/3 ln(N)+2/3

√
N), which is found to perform well by Sarafidis and

Weber (2015) in their simulation study. theta() can take any other real argument.
Other common values for θN are ln(N) and

√
N .

seed(#) sets the random-number seed for the entire program. The seed is relevant for
randomizing the numerical panel identifiers. The seed is also relevant for the random
method of obtaining the initial partition. The default is seed(123).

name(varname) specifies the name prefix for the newly generated variables that identify
the levels in the optimized partitions for each Ω. The default is name(omega#),
where # is a positive integer as specified in omega().

iterate(#) specifies the maximum number of iterations for minimizing the total RSS,
given omega(). The default is iterate(100).

tolerance(#) specifies the tolerance for the convergence of total RSS, given omega().
The default is tolerance(1e-6).

nolog suppresses the RSS iteration log.

graph gives a visual diagnostic with cluster-specific scatterplots of the observed depen-
dent variables against the linear predictor together with superimposed linear fits for
each ω corresponding to Ω̂.

table prints a table of estimates of the slope coefficients for each ω corresponding to Ω̂.
That is, it reports results using cluster-specific fixed-effects (FE) regressions based on

Ω̂, for example, xtreg if omega4==1, fe for ω = 1 and similarly for the remaining
clusters, that is, ω = 2, . . . , Ω̂.

4.3 Output and stored results

xtregcluster prints the method used to obtain the initial partition and its associated
total RSS, labeled as Iteration 0 Total RSS. This RSS varies according to the size of
Ω and how the initial partition was obtained. Next, the output prints the RSS at the end
of every iteration up to convergence, followed by a report on the MIC for the specified
value of Ω, contrasted with the MIC corresponding to Ω = 1. The total RSS reported for
Ω = 1 is obtained from the pooled FE regression, and it is the same regardless of the
choice of the initial partition or the value of Ω. The report ends with a recommendation
of whether to proceed either with the pooled FE regression, xtreg, fe, or with cluster-
specific FE regressions.
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xtregcluster stores the following in e():

Scalars
e(N) N panels in estimation
e(T) balanced T or average T i

e(NT) NT or NT i

e(rss pool) pooled RSS
e(mic pool) pooled MIC

e(omega opt) optimal ̂Ω given specified range
e(theta) specified θN
e(rss totΩ) total RSSΩ for every Ω
e(mic totΩ) MICΩ for every Ω

Macros
e(cmdline) estimator
e(name opt) optimal partition variable

Matrices
e(rssΩ) total RSSΩ at every iteration for every Ω

xtregcluster generates indicator variables with common name prefixes, as provided
in name(), for every Ω specified in omega(). For instance, the name(om) and omega(2/3)

options will generate three indicator variables with names om2 and om3. The stored
result, e(name opt), takes the name of one of these variables corresponding to the
smallest MICΩ, with the optimal value of Ω̂ stored in e(omega opt). The command also
returns all total RSSΩ and MICΩ for every Ω specified in omega(), plus the iteration logs
in matrix form, for example, e(rss tot2), e(mic tot2), e(rss2) and e(rss tot3),
e(mic tot3), e(rss3).

Stored results can be used for subsequent analysis. For example, alternative penalties
θN for the calculation of the MIC may be specified either through the theta() option or
manually calculated using stored results. The latter approach is recommended, given
the computational cost in running xtregcluster again. For example, one may wish
to check the sensitivity of the suggested optimal partition using the less severe penalty,
ln(N), or the stricter penalty,

√
N :

. display e(N) * ln(e(rss_tot)/e(NT)) + e(omega_opt) * ln(e(N))

. display e(N) * ln(e(rss_tot)/e(NT)) + e(omega_opt) * sqrt(e(N))

Asymptotically, that is, for large N , the choice of θN is immaterial, although in
small samples it can possibly give substantially different results.

The table option contrasts estimation results of the heterogeneous slopes for each
ω = 1, 2, . . . , Ω̂. This table does not report standard errors, because clustering of indi-
viduals based on minimizing RSS implies that the usual formula for obtaining standard
errors is no longer valid. However, the next section explains how to reproduce this table
and obtain bootstrapped standard errors that are valid for inference. We refrain from
making bootstrapping a default treatment, because it is computationally intensive and
requires a large number of repetitions to produce reliable estimates for standard errors.

The graph option produces a single graph with overlaid scatterplots and linear fits of
all heterogeneous slopes across the clustered individuals for every ω = 1, 2, . . . , Ω̂. The
graph applies a colored scheme to readily assist the visual distinction among the clusters.
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Section 5 demonstrates how to reproduce this graph in monochrome for publication
purposes and also how to plot each cluster in a separate graph against the pooled slope,
which is useful for large Ω̂.

4.4 Practical considerations

xtregcluster is computationally intensive for large N and large Ω. Therefore, one
should reduce the dimension of the data to the required minimum before executing
xtregcluster, both in terms of columns (variables) and rows (observations). For ex-
ample, if the model contains the variables y, x1, and x2, and the dataset in memory
contains many more variables, then you should reduce as follows:

. preserve

. keep id date y x1 x2

. keep if !missing(panelvar,timevar,y,x1,x2)

. xtregcluster y x1 x2, random

. restore

xtregcluster is relevant for short panel data where individuals have at least two
observations, that is, Ti > 1. If an individual has only Ti = 1, it cannot be classified
meaningfully into a cluster using an FE regression. If your dataset contains such cases,
xtregcluster will issue a warning that individuals with Ti = 1 are excluded from
estimation.

The initial partition can be obtained using estimates of the individual-specific slope
coefficients using prevars(b). This method is feasible only for panel datasets where
all individuals have a sufficient number of observations for estimating the individual-
specific slopes; that is, Ti ≥ k + 1. If there is even a single individual with Ti < k + 1,
xtregcluster will issue the following error:

. xtregcluster y x1 x2, prevars(b)
Some panels have Ti < k+1. Choose an alternative initial partition,
or qualify the sample to panels with enough observations.
insufficient observations
r(2001);

If the user insists on using prevars(b) for obtaining the initial partition, the entire
analysis must be restricted to individuals with enough observations:

. bysort id: generate Ti = _N

. xtregcluster y x1 x2 x3 x4 if Ti>=5, prevars(b)

This approach is not recommended for models with a large number of explanatory
variables, because many individual units may be dropped—resulting in a great loss of
degrees of freedom.

Because the clustering algorithm used by xtregcluster aims to minimize the within-
cluster RSS, the properties of the estimated standard errors obtained using standard
formulas are no longer known. Therefore, once Ω̂ and the corresponding partition
have been determined, we recommend computing standard errors using the method
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of bootstrapping, which provides estimates of the distribution one would get if one
were able to draw repeated samples of N points from the unknown true distribution
(Sarafidis and Weber 2015). Following the execution of xtregcluster, one can produce
bootstrapped standard errors as follows:

. local optomega = e(omega_opt)

. local optname = e(name_opt)

. quietly forvalues i = 1/`optomega´ {
2. xtreg y x1 x2 if `optname´==`i´, vce(bootstrap, reps(1000) nodots)
3. estimates store omega`i´
4. }
. estimates table omega*, se stats(N_g Tbar N r2_w rho corr)

We recommend the minimum of 1,000 repetitions, preferably even more, to obtain
reliably precise estimates. The statistics in stats() report key diagnostics for xtreg,
fe and are described in [XT] xtreg.

5 Application

To demonstrate the application of xtregcluster, we estimate a translog production
function for Spanish dairy farms. help xtregcluster provides another application
using Stata’s productivity.dta on U.S. public capital productivity.

5.1 Dairy farm production

Consider a translog functional form for modeling Spanish dairy farm production output.
dairy.csv is obtained from William Greene’s webpage on panel-data econometrics and
contains observations on output (cow milk) and several inputs, such as the number
of cows used, size of land, labor, and feed.1 The panel structure is balanced with all
N = 247 farms observed over the same period of 1993–1998:

. import delimited dairy.csv
(28 vars, 1,482 obs)

. xtset farm year
panel variable: farm (strongly balanced)
time variable: year, 93 to 98

delta: 1 unit

Note that the xtregcluster command is also useful for hierarchical datasets with
repeated observations over higher-level cross-sectional units, absent of a time variable.
For example, if this dataset contained repeated observations for many farms within
counties, then it would suffice to xtset using only the lower-level panel identifier:

. xtset farm
panel variable: farm (balanced)

1. We thank William Greene for giving us permission to use the data, which are available online at
http://people.stern.nyu.edu/wgreene/Econometrics/PanelDataSets.htm.
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The variable yit denotes the log of the demeaned farm output, while variables xk
and xk� are the regressors used in the translog function, where xk for k = 1, . . . ,K
denotes the log of the kth input, that is, the demeaned number of cows, land size, labor,
and feed, whereas xk� = xkx�.

We start by obtaining the initial partition based on a uniform random classification
for Ω = 2, 3:

. xtregcluster yit x1-x34, random omega(2/3)

Initial partition via randomized classification and seed 123

Omega = 2
Iteration 0: Total RSS = 7.654268
Iteration 1: Total RSS = 6.492979
Iteration 2: Total RSS = 6.353171
Iteration 3: Total RSS = 6.316846
Iteration 4: Total RSS = 6.316779
Iteration 5: Total RSS = 6.316779

Omega = 3
Iteration 0: Total RSS = 7.579115
Iteration 1: Total RSS = 5.759485
Iteration 2: Total RSS = 5.603187
Iteration 3: Total RSS = 5.543064
Iteration 4: Total RSS = 5.502915
Iteration 5: Total RSS = 5.469064
Iteration 6: Total RSS = 5.461379
Iteration 7: Total RSS = 5.461363
Iteration 8: Total RSS = 5.461215
Iteration 9: Total RSS = 5.461215

Omega Total RSS MIC

1 7.887 -1280.962
2 6.317 -1323.483
3 5.461 -1347.117

Proceed with xtreg if omega3==`i´,fe where `i´=1,2,3

The output suggests that there exist at least three distinct clusters for these data,
given the model. Notice how two new variables have been created to indicate cluster
membership of all individuals for the two values of Ω, with names omega2 and omega3.
The name omega is the default prefix indicating the size of Ω as specified in omega().

Because the value of Ω corresponding to the minimum value of MIC equals the max-
imum value specified in omega(), it is necessary to explore larger values, for example,
omega(2/10). To conserve space, we suppress the iteration logs by specifying the nolog
option. We may also specify a new name prefix:2

2. Because this may take awhile, the user may actually wish to see the iteration log working in action.
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. xtregcluster yit x1-x34, random omega(2/10) name(om) nolog

Initial partition via randomized classification and seed 123

Omega Total RSS MIC

1 7.887 -1280.962
2 6.317 -1323.483
3 5.461 -1347.117
4 4.999 -1356.638
5 4.626 -1363.494
6 4.483 -1358.955
7 4.001 -1374.719
8 3.820 -1373.825
9 3.781 -1364.030
10 3.580 -1365.253

Proceed with xtreg if om7==`i´,fe where `i´=1,2,3,4,5,6,7

The output suggests the optimal value of Ω is 7. However, because the results are
based on a particular initial partition—uniform random selection with seed 123—we
recommend trying alternative initial partitions. As an example, the initial partition can
be determined based on the regressors, X, using the prevars(X) option:

. xtregcluster yit x1-x34, prevars(X) omega(2/10) name(omX) nolog

Initial partition via the variation in x1 x2 x3 x4 x11 x22 x33 x44 x12
> x13 x14 x23 x24 x34 and seed 123

Omega Total RSS MIC

1 7.887 -1280.962
2 6.155 -1329.891
3 5.658 -1338.374
4 4.976 -1357.779
5 4.684 -1360.402
6 4.374 -1364.992
7 4.132 -1366.781
8 3.863 -1371.059
9 3.805 -1362.498
10 3.574 -1365.671

Proceed with xtreg if omX8==`i´,fe where `i´=1,2,3,4,5,6,7,8

The results now indicate that the optimal value of Ω is 8. Because the value of
MIC8 under prevars(X) is larger (−1371.059) than the value of MIC7 under random

initial partition (−1374.719), we set Ω̂ = 7. This example shows how important it is to
experiment between different initial partitions. It is also wise to try different random
seed numbers, using the seed() option.
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To see how many individuals are assigned in each cluster, tabulate the variable
that holds the optimal partition, as estimated above using the random initial partition
with Ω̂ = 7. Remember to qualify the sample only to one observation per individual:

. egen tag = tag(farm)

. tabulate `e(name_opt)´ if tag

omX8 Freq. Percent Cum.

1 33 13.36 13.36
2 29 11.74 25.10
3 18 7.29 32.39
4 28 11.34 43.72
5 28 11.34 55.06
6 24 9.72 64.78
7 35 14.17 78.95
8 52 21.05 100.00

Total 247 100.00

The table and graph options provide additional information about the final model.
These options can be entered from the outset when specifying the numerical list in
omega(). Then, a table of estimates and a graph of scatterplots with linear fits are
displayed for ω = 1, 2, . . . , Ω̂. If the user forgets to enter these options, one can repeat
xtregcluster only for Ω̂:

. drop om7

. xtregcluster yit x1-x34, random omega(7) name(om) nolog table graph

Initial partition via randomized classification and seed 123

Omega Total RSS MIC

1 7.887 -1280.962
7 4.001 -1374.719

Proceed with xtreg if om7==`i´,fe where `i´=1,2,3,4,5,6,7

Table: Panel data fixed effects estimates by omega
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Variable om7_1 om7_2 om7_3 om7_4 om7_5

x1 0.681 0.652 1.452 0.835 0.666
x2 -0.130 0.117 -0.173 0.251 0.413
x3 -0.416 -0.057 0.071 0.025 0.745
x4 0.359 0.219 0.197 0.096 0.397

x11 -0.406 -0.082 2.267 -2.360 -1.960
x22 -0.909 0.052 1.190 -0.328 0.050
x33 4.581 -0.924 -0.680 0.386 1.531
x44 0.038 0.014 -0.050 -1.233 0.319
x12 1.153 -0.220 -1.059 0.083 0.549
x13 -1.369 0.951 -0.575 -0.901 -0.476
x14 0.197 0.181 -0.159 1.450 0.104
x23 -0.590 0.571 0.707 -0.281 -1.388
x24 -0.093 0.193 -0.040 -0.222 -0.102
x34 -0.081 -0.761 0.247 0.727 0.304

_cons 11.493 11.515 11.500 11.642 11.497

N_g 31.00 50.00 24.00 24.00 32.00
Tbar 6.00 6.00 6.00 6.00 6.00

N 186 300 144 144 192
r2_w 0.92 0.89 0.90 0.90 0.91
rho 0.97 0.94 0.90 0.92 0.98

corr 0.07 0.22 -0.35 0.09 -0.81

Variable om7_6 om7_7 Pooled

x1 0.550 0.507 0.669
x2 -0.103 0.228 0.035
x3 -0.186 0.090 0.013
x4 0.559 0.478 0.378

x11 0.912 -0.403 0.220
x22 0.320 0.311 -0.054
x33 2.722 -0.257 -0.213
x44 -0.130 0.309 0.105
x12 -0.279 1.069 0.008
x13 -0.487 0.377 0.023
x14 -0.325 -0.037 -0.093
x23 -0.327 -0.014 0.031
x24 0.119 -0.644 -0.018
x34 0.853 -0.193 0.021

_cons 11.398 11.468 11.565

N_g 43.00 43.00 247.00
Tbar 6.00 6.00 6.00

N 258 258 1482
r2_w 0.94 0.94 0.84
rho 0.94 0.94 0.70

corr -0.29 -0.40 0.15

Note: For a description of model diagnostics see stored results in xtreg,fe.

The graph option produces a graph of the heterogeneous slopes across the clustered
individuals, but applies a colored scheme to readily assist the visual distinction among
the clusters, and also overlays all plots into one graph. Given Ω̂ = 7, graph will overlay
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seven scatterplots plus seven linear fits in a multicolor visual. Hence, the clusters may
not be entirely discernible. To manually reproduce a similar graph, but in monochrome
scheme for printing, while keeping each plot in a separate graph, execute the following
routine:

. * Pooled fitted values

. quietly xtreg yit x1-x34, fe

. predict xb, xb

. * Fitted values by cluster

. forvalues i = 1/7 {
2. quietly xtreg yit x1-x34 if om7==`i´, fe
3. estimates store om`i´
4. quietly predict xb`i´ if om7==`i´, xb
5. twoway (lfit yit xb, lwidth(*3) lpattern(solid) lcolor(gs8))

> (scatter yit xb`i´ if om7==`i´, msymbol(oh) mlwidth(*.3) mcolor(gs0))
> (lfit yit xb`i´ if om7==`i´, lwidth(*2.25) lpattern(dash) lcolor(gs0)),
> aspect(1) ysize(1) xsize(1) scheme(sj) legend(off)
> ytitle("Log of milk production (output)")
> title("{&omega} = `i´", ring(0) pos(11) margin(medium))
> name(g`i´, replace)

6. }

. graph combine g1 g2 g3 g4 g5 g6 g7, row(2)
> ysize(2) xsize(4) imargin(small) scheme(sj)
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Figure 1. Heterogeneous dairy production functions

The gray solid line in figure 1 gives the pooled FE linear fit, which is the same
across all plots. The dashed lines provide the linear fit for each ω. The linear fit for
individuals classified in ω = 2 has a slightly steeper slope, whereas the linear fit for
individuals classified in ω = 3, 5, 6, 7 has less steep slopes than the pooled FE model.
The individuals in ω = 1, 4 have virtually identical slopes as the pooled FE, but this
does not necessarily mean that the estimated slope coefficients for ω = 1, 4 are close
to those of the pooled FE model. The fitted value, ŷit, is a linear combination of all
explanatory variables times their estimated slopes (that is, the linear predictor). Hence,
it is still possible to have similar values of ŷit but weighted differently by the cluster-
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specific slope coefficients. Indeed, as shown in the output from the table option above,
the cluster-specific coefficients for ω = 1, 4 are considerably different from each other
and, by comparison, from the pooled FE model.

To enhance interpretation in such cases, one may want to obtain cluster-specific
plots for a given explanatory variable, rather than the linear combination of all of
them. To achieve this, for every cluster, we can project the residuals obtained from a
regression of the dependent variable on all other remaining independent variables onto
the residuals obtained from a regression of the independent variable of interest to all
other independent variables. A regression of the two predicted residuals gives the same
slope coefficient as reported by the table option.3 As a demonstration, we examine
the slope heterogeneity in x2 (the production input of land). From the table output
above, the pooled FE slope coefficient is shown to be close to zero, yet there seems to be
substantial variation in the slopes for ω = 1, 2, . . . , 7. We can visualize the differential
slopes as follows:

. * First project x2 for the pooled sample

. xtreg yit x1 x3-x34, fe

(output omitted )

. predict e1_x2_pool, e

. xtreg x2 x1 x3-x34, fe

(output omitted )

. predict e2_x2_pool, e

. * Then project x2 for each omega

. quietly forvalues i = 1/7 {
2. xtreg yit x1 x3-x34 if om7==`i´, fe
3. predict e1_x2_`i´ if om7==`i´, e
4. xtreg x2 x1 x3-x34 if om7==`i´, fe
5. predict e2_x2_`i´ if om7==`i´, e
6. twoway (lfit e1_x2_pool e2_x2_pool, range(-.4 .4) lw(*2) lp(solid) lc(gs8))

> (scatter e1_x2_`i´ e2_x2_`i´ if om7==`i´, ms(oh) mlw(*.3) mc(gs2))
> (lfit e1_x2_`i´ e2_x2_`i´ if om7==`i´, lw(*1.5) lp(dash) lc(gs0)),
> title("{&omega} = `i´", ring(0) pos(11) margin(medium) size(*1.25))
> ytitle("yit projection") xtitle("x2 projection")
> legend(off) scheme(sj) name(x2_`i´,replace)

7. }

(output omitted )

. graph combine x2_1 x2_2 x2_3 x2_4 x2_5 x2_6 x2_7, row(2) imargin(small)
> ysize(2) xsize(5) scheme(sj)

It is clear from figure 2 that there is considerable heterogeneity in the cluster-specific
coefficients of x2, even though the pooled FE slope is quite flat. The user may repeat
the same process for every other variable of interest.

3. This result follows from the Frisch–Waugh–Lovell theorem.
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Figure 2. Heterogeneous slope coefficient for x2 (production input of land)

Note that for dairy.csv, we cannot obtain the initial partition based on estimates
of the individual-specific slopes using the prevars(b) option, because the number of
degrees of freedom required to estimate an individual-specific regression exceeds the
available observations; that is, k + 1 = 16 > T = 6. This is a balanced dataset and all
individuals have T = 6. If one tries to estimate this model, an error message prompts
the user to take a different course of action:

. xtregcluster y x1-x34, prevars(b) omega(2/10) name(omb)
Some panels have Ti < k+1. Choose an alternative initial partition,
or qualify the sample to panels with enough observations
insufficient observations
r(2001);

Lastly, one may also wish to explore a two-way error structure including time-specific
FE. This can be easily implemented by specifying i.year as part of indepvars and
repeating the entire analysis above.

6 Conclusions

xtregcluster is useful for discovering potential heterogeneous clusters in linear short
panel-data models with FE, similar to an exploratory data analysis approach. It can also
be used to assess the validity of the assumption of slope homogeneity or of normatively
imposed preclassifications.
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Abstract. In this article, we present StataStan, an interface that allows simula-
tion-based Bayesian inference in Stata via calls to Stan, the flexible, open-source
Bayesian inference engine. Stan is written in C++, and Stata users can use the
commands stan and windowsmonitor to run Stan programs from within Stata. We
provide a brief overview of Bayesian algorithms, details of the commands available
from Statistical Software Components, considerations for users who are new to
Stan, and a simple example. Stan uses a different algorithm than bayesmh, BUGS,
JAGS, SAS, and MLwiN. This algorithm provides considerable improvements in
efficiency and speed. In a companion article, we give an extended comparison of
StataStan and bayesmh in the context of item response theory models.

Keywords: st0476, stan, windowsmonitor, StataStan, Bayesian, bayesmh, inter-
face, shell commands, Stan

1 Introduction

Stata users have long been able to seamlessly access other software specializing in
Bayesian analysis, thanks to Stata users’ abilities to write arbitrary information to
ASCII text files and send commands to the operating system. This allowed for com-
mands such as runmlwin (Leckie and Charlton 2013) and wb (Thompson 2017) to send
data and code to MLwiN and WinBUGS, respectively, then collect the results and dis-
play them inside Stata for further calculation and graphing. Since 2015, when Stata 14
was released, Stata users have been able to use a native implementation of Bayesian
simulation algorithms by using the bayesmh command. However, bayesmh is limited to
regressionlike models where a dependent variable has a specified likelihood conditional
on some function of independent variables, and can allow only certain prior distribu-
tions. It cannot, for example, fit structural equation models, Gaussian processes, or
spatial correlation models.

c© 2017 StataCorp LLC st0476
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The day after Stata 14’s release, StataStan was published online (Stan Development
Team 2016b). StataStan is an umbrella term for all commands and programs neces-
sary to interface with Stan from Stata. It can be installed from Statistical Software
Components by typing

ssc install stan

and Windows users should also install windowsmonitor by typing

ssc install windowsmonitor

Stan is an open-source, collaboratively built software project that implements an
algorithm (Hamiltonian Monte Carlo) for Bayesian modeling that is faster and more
stable than the algorithms (random walk Metropolis–Hastings and the Gibbs sampler)
implemented in BUGS, JAGS, SAS, MLwiN, and bayesmh. Stan has been applied to a wide
range of complex statistical models, including time series, imputation, mixture models,
meta-analysis, cluster analysis, Gaussian processes, and item response theory. These
extend beyond the current (Stata 14.2) capability of bayesmh, which is explicitly for
regression. In our companion article (Grant et al. 2017), we describe the functionality
of Stan and advantages of its algorithm. In this article, we give a brief overview of
Hamiltonian Monte Carlo in intuitive terms, set out the syntax of the commands, and
present a worked example.

2 Hamiltonian Monte Carlo

All Bayesian methods make estimates and inference by evaluating posterior distribu-
tions, combinations of likelihood based on data, and a model with prior distributions
representing uncertainty about parameters of the model before the data were known.
Different practitioners take the prior to mean different concepts, in the same way that
“uncertainty” and “probability” are not rigorously defined concepts despite decades of
hard work by statisticians and philosophers of science. Regardless of the interpretation,
Bayesian methods differ from frequentist methods in that they allow probability state-
ments to be made about any unknown value, not just those that represent eternally
replicable random sampling.

Textbook examples often start with algebraically tractable posterior distributions,
but in practice, this is generally either infeasible or too time consuming and prone to
human error to be worthwhile. Instead, software allows the analyst to run one or more
Markov chains of pseudorandom values that converge to a stationary distribution equiv-
alent to draws from the joint posterior distribution of all parameters of interest. From a
large enough number of these draws, estimation and inference can be done empirically.
The older algorithms, random walk Metropolis–Hastings, and the Gibbs sampler take
random steps through parameter space and accept or reject the new location based on
its posterior probability.

This can work well under some circumstances but under others can require large
numbers of draws before they accurately represent the posterior distribution (conver-
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gence). Problems like this commonly arise when parameters are correlated (like, for
example, how the intercept and slope of a bivariate linear regression are correlated with
only a small amount of data); when priors are not ideal matches for the likelihood
(a subtle topic beyond the scope of this article but discussed in Bayesian textbooks
[Gelman et al. 2013]); or when initial values are poor guesses. Hamiltonian Monte Carlo
addresses these issues by using Hamilton’s equations of motion with periodic random
impulses (Neal 2011). Exploration of the posterior probability is then analogous to a
particle moving in a force field (picture a beachball rolling in the hollow between sand
dunes, with occasional random kicks—gravity is the force providing the Hamiltonian
motion); as the joint posterior distribution guides movement to the region of highest pos-
terior probability, the problems of sampling using random steps disappear. Even chains
with poor initial values can still reveal the whole posterior distribution relatively quickly
(Neal 2011). A computer requires computationally expensive numerical integration and
differentiation to perform this imitation of life, but the lifting of the problems associated
with random walk Metropolis–Hastings and Gibbs more than compensates for this. The
no-U-turn sampler is the algorithm implemented in Stan (Hoffman and Gelman 2014),
which automatically tunes the parameters of Hamiltonian Monte Carlo, achieving nearly
optimal integration time in recent tests using CmdStan (Betancourt 2016).

In the companion article, we present a comparison of the efficiency of StataStan
alongside bayesmh for an item response model (Grant et al. 2017).

3 The stan and windowsmonitor commands

3.1 Objectives and development

Building on the history of linking Stata to WinBUGS (Thompson 2017), we sought
to provide one command that would dispatch a specified Stan model code along with
data. Because Stata can easily issue operating system commands, we use this to run
the command-line implementation of Stan (CmdStan) and display summary results
inside Stata. This is the approach also taken by the Stan interfaces from MATLAB

and Julia. CmdStan has to be installed before using StataStan, but this is relatively
straightforward with instructions on the Stan website, http://mc-stan.org.

We believe that Stata users who are becoming familiar with Bayesian techniques will
find StataStan a flexible, stable, and fast tool. Also, people who already use Stata and
Stan separately will find it helpful to keep everything in one workflow, because most
people find it easier to work with one piece of software than to switch among them (and
find it easier to maintain quality control). This allows data processing, simple analysis,
complex modeling, graphics, and report writing all in one place.

One unexpected problem we encountered was that Windows does not make its stan-
dard output on the command line available in such a way that Stata can display it in the
results window until the external program has finished execution. In the case of complex
Bayesian models that can take hours to run, this would be unacceptable. Therefore, we
wrote a small companion program called windowsmonitor that displays command-line
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output close to real time. windowsmonitor may provide a useful alternative to shell

and winexec in other settings too.

3.2 The stan command for Stata

stan specifies what data are to be sent to CmdStan, with options controlling its settings
and additional requirements such as sampling diagnostics or posterior modes. Data are
passed to CmdStan in a text file, and outputs are returned similarly. These files are
temporarily created in the CmdStan directory, then moved to the working directory.
There is an option to retain all files. Otherwise, unnecessary files are deleted afterward.
Users should be mindful that any existing files in these locations with these names may
be overwritten. A model has to be stored in its own file with extension .stan, and we
discuss different ways to achieve this below.

Syntax of stan

stan varlist
[
if
] [

in
] [

, datafile(filename) modelfile(filename) inline

thisfile(filename) rerun initsfile(filename) load diagnose

outputfile(filename) chainfile(filename) mode modesfile(filename)

winlogfile(filename) seed(integer) warmup(integer) iter(integer)

thin(integer) chains(integer) skipmissing matrices(string) globals(string)

keepfiles stepsize(integer) stepsizejitter(integer)
]

Options

datafile(filename) specifies the name (and path if desired) of a text file where stan

will write the data on its way to Stan. This is done in the format used by R/S-Plus
and BUGS. For example, with the sample 1978 Automobile dataset,

stan mpg, ...

would write

mpg=c(...)

The default is datafile(statastan data.R).

modelfile(filename) specifies the name (and path if desired) of a text file containing
the Stan model. The file must have the extension .stan. If this file already exists,
the model is read from there, or the model can be written into the file using one
of the methods detailed below under Specifying the Stan model. The default is
modelfile(statastan model.stan).
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inline instructs Stata to read the .stan model from a comment block inside the do-file
(see below under Specifying the Stan model for further discussion of modelfile(),
inline, and thisfile()).

thisfile(filename) specifies the name (and path if required) of the current do-file; this
is an option if inline has been specified (see below under Specifying the Stan model
for further discussion of modelfile(), inline, and thisfile()).

rerun uses the existing executable file with the same name as modelfile() (in Windows,
it will have the extension .exe). This should exist in the working directory. Be aware
it will be copied into cmdstandir (see below), deleting any existing file of that name.

initsfile(filename) specifies the name of a text file in R/S-Plus format containing
initial values. Because Stan is far less sensitive to initial values than software using
older algorithms, we do not presently provide any mechanism like the datafile()

option to write this file from inside Stata.

load instructs Stata to read in the resulting draws as its current dataset.

diagnose runs Stan’s diagnostics and displays them after sampling to examine whether
the algorithm has run successfully.

outputfile(filename) provides the name (and path if required) for the text file into
which CmdStan will write its outputs. The default is outputfile(output.csv).

chainfile(filename) provides the name for a comma-separated values format file that
will contain the draws from CmdStan; this is the same as outputfile(), but extra
information is removed so it can be read into Stata using import delimited. The
default is chainfile(statastan chains.csv).

mode runs Stan’s optimization to find posterior modes and displays the results after
sampling; it will also write the output into modesfile() (see below).

modesfile(filename) provides the name of a text file to hold output from CmdStan’s
estimation of modes. The default is modesfile(modes.csv).

winlogfile(filename) provides the name of a temporary file to hold Windows output
(see windowsmonitor); windowsmonitor will display the output in Stata’s Results
window, so there is no need to change the name of the temporary file from the
default, which is winlog.txt.

seed(integer) provides an integer pseudorandom-number generator seed for Stan.

warmup(integer) specifies the number of warmup draws, which are discarded from the
output and summaries. The default is warmup(1000).

iter(integer) specifies the number of iterations (draws) to retain after warmup(). The
default is iter(1000).

thin(integer) specifies how much Stan thins draws; if thin() is set to n, Stan will retain
one out of every n draws in output files and use the thinned draws for summaries.
The default is thin(1) (no thinning).
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chains(integer) determines how many chains to run, in parallel if possible (regardless
of the Stata flavor installed).

skipmissing removes missing data observations (on a cell-by-cell basis inside each col-
umn) before sending data to Stan. This is relevant if you want to send a series
of vectors of different sizes by making these appear as “variables” in your Stata
data. This could be useful in the context of multilevel models with smaller vectors
of cluster-level data. It is not a natural way to think of Stata data, so it should be
used with caution because it will apply to all the variables in varlist.

matrices(string) provides a list of matrices to send to Stan or if set to all, it will send
all current matrices. These are written into datafile() as two-dimensional arrays.

globals(string) provides a list of global macros to send to Stan, or all to send all
current global macros. These are written into datafile() as scalars. The user
should not write a string value, because this will probably cause an error from
CmdStan.

keepfiles instructs stan to keep all files produced along the way; otherwise, the model
file, C++ file, executable file, chains file, and (if produced) modes file will be retained
in the working directory.

stepsize(integer) sets the stepsize for Hamiltonian Monte Carlo. The default is
stepsize(1) (see the Stan manual [Stan Development Team 2016b] for more de-
tails).

stepsizejitter(integer) sets the stepsize jitter for Hamiltonian Monte Carlo. The
default is stepsizejitter(0) (see the Stan manual [Stan Development Team 2016b]
for more details).

4 Specifying the Stan model

You can specify the Stan model in at least three ways. First, you can write a .stan file
externally, for example, in a text editor, then name it with the modelfile() option.
This has the disadvantage that updating the analysis may require synchronized changes
in the do-file and model file. However, we recommend this method as the starting point
for new StataStan users because it avoids any bugs in writing and reading text files and
allows you to begin immediately using examples from the Stan manual and website.
Second, you can include the code inside a comment block in the do-file. If you use the
inline and thisfile() options, Stata will read the text contents of thisfile() and
identify the comment block that begins (on the line following the /* symbol) with the
word data, as seen below:
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/*
data {

int<lower=0> N;
int<lower=0,upper=1> y[N];

}
parameters {

real<lower=0,upper=1> theta;
}
model {

theta ~ beta(1,1);
y ~ bernoulli(theta);

}
*/

Stata will then write the contents of the block to the .stan file specified in modelfile().

Third, you can include the model code in the do-file as a series of strings in a foreach
loop, which writes each line to the modelfile(). This has the advantage that all Stata
and Stan code is in one file, but does not rely on naming or finding the do-file.

At present, the inline approach (option two above) does not accommodate multiple
blocks of code, but we intend to add this capability.

4.1 The windowsmonitor program

windowsmonitor is a wrapper extending the ability of shell. It will be called by stan

under Windows only; it will return an error message if it is used in Mac or Linux
computers. It intercepts the stdout stream (text displayed on the screen for command
line programs) and prints it inside Stata. It does this by diverting stdout to a text file,
checking that file every two seconds for new content, and displaying that in Stata if it
finds any. This continues until it receives a message that it is finished (in the form of a
final line of output, Finished!), which is added automatically. The user should avoid
using windowsmonitor to carry out any task that could write one Finished! line for
any reason, because this will terminate the display inside Stata prematurely. However,
if this is unavoidable, it is relatively simple to amend the signal word Finished! in
the source code. windowsmonitor creates a file called wmbatch.bat. If this survives
execution, it can safely be deleted later.

Syntax of windowsmonitor

windowsmonitor, command(string)
[
waitsecs(integer) winlogfile(filename)

]
Options

command(string) contains the Windows command-line code to be sent for execution.
command() is required.

waitsecs(integer) specifies the number of seconds to wait for output to appear before
giving up. The default is waitsecs(20).
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winlogfile(filename) specifies the file (and path if desired) to store the output in;
by default, a Stata tempfile will be used, so there is nothing to be gained from
specifying a tempfile macro here. The default is winlogfile(winlog.txt).

5 Considerations for newcomers to Stan

Newcomers are strongly advised to work through some of the examples in the Stan
manual before attempting serious applications. The Stan user must specify the type
(such as integer or real number) as data or parameters. This allows Stan to make
efficient calculations and helps with checking for inadvertent errors at compile time.
Stan will translate the model to C++, which is itself a “typed” language. For the most
part, the Stata user need not be concerned with this other than with the obvious choice
when writing the Stan code. However, one potential pitfall may arise when reading in
data from nonnative file formats into Stata and sending it with stan. Floating-point
precision means that what the person reads may not match what the computer stores,
and this may lead to a “type mismatch” error message from CmdStan.

The statistics reported by CmdStan and hence displayed by stan are the mean of
draws from the posterior; the Monte Carlo standard error representing the uncertainty
in the results arising from a finite number of draws; the standard deviation; the 5th,
50th, and 95th centiles of the draws; the number of effective independent samples (N Eff,
which accounts for autocorrelation in the chains) and number of effective independent
samples obtained per second (N Eff/s); and a measure of convergence (R hat). The
calculation of these measures is set out in Gelman et al. (2013). N Eff and R hat are
best assessed across multiple chains, so we advise users run at least four chains as a
general rule. stan can run parallel chains on multicore computers, even if Stata/MP
is not installed, so most modern laptops can run four chains simultaneously. In the
authors’ experience, this runs in about half the time of serial chains.

Beyond these reported statistics, the value of loading the draws from the posterior
distributions is that custom-derived values can be calculated and summarized by the
user inside Stata to provide decision-theoretic outputs. To give an example from health
economics, we can load a meta-analysis from Stan providing inference on the effective-
ness of alternative drugs into Stata and combine it with constant costs to derive a new
cost-effectiveness variable, which allows probability statements about whether the cost
effectiveness exceeds a willingness-to-pay threshold. Another important benefit of work-
ing with the posterior draws is that the covariance structure among the parameters is
preserved, while the tabulated summaries provide only marginal inferences.

Another consideration is that the number of available CPU cores needs to be specified
when installing CmdStan itself, and the StataStan chains() option can parallelize only
up to this number (Stan Development Team 2016a).
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Stan model code allows for vectorized statements such as

y ~ bernoulli(theta);

instead of

for (n in 1:N) { y[n] ~ bernoulli(theta); }

Both can be used in Stan, but the vectorized version is generally faster in execution.

6 Example

All the models set out in the Stan manual and website can be fit directly using StataStan,
including many models that are not possible in bayesmh. We can use StataStan for a
simple example to estimate the probability of success θ in a Bernoulli process,

Pr(yi) = θ, 1 ≤ i ≤ 10, i ∈ N

when we have 10 outcomes: 8 failures and 2 successes. We will apply a flat prior distri-
bution over [0, 1], either by explicitly specifying it or by omitting it because Stan uses
uniform priors as default, provided that bounds on the parameter have been specified.
The corresponding bayesmh command is

bayesmh y, likelihood(dbernoulli({theta})) prior({theta},beta(1, 1))

The Stan code for this example is contained in the examples folder inside CmdStan.

data {
int<lower=0> N;
int<lower=0,upper=1> y[N];

}
parameters {

real<lower=0,upper=1> theta;
}
model {

theta ~ beta(1,1);
y ~ bernoulli(theta);

}

The code is arranged in blocks of data, parameters, and model. Other block types
can also be included, described fully in the Stan manual. Each object in the model,
whether data or parameter, must be declared with its type and constraints before it
can be used. Like BUGS and JAGS, the assignment operator < − is used to calculate a
value and store it in the object named on the left-hand side, while the ~ operator has
two functions. In the line

theta ~ beta(1,1);

we are specifying a prior distribution (because theta is already declared as a parameter),
and in the line

y[i] ~ bernoulli(theta);
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we are incrementing the log probability by the likelihood contribution of one observation
according to the Bernoulli probability given the current estimate of theta.

Having specified this model, we can make the data,

clear
set obs 10
generate y=0
replace y=1 in 2
replace y=1 in 10

and then call stan:

quietly count
global N=r(N)
global cmdstandir "/path_to/CmdStan"
stan y, modelfile("bernoulli.stan") cmd("$cmdstandir") globals("N")

StataStan first displays its own version number and then the CmdStan version in-
stalled in cmdstandir. The first output to be displayed concerns translating the model
to C++, then compiling the resulting code. Compiling can be time consuming but
does not have to be done again unless the model changes. If StataStan finds CmdStan
successfully, and CmdStan is properly installed, this line will appear followed by some
output that users can ignore:

--- Translating Stan model to C++ code ---

Next, a block of code will appear, starting with this line and comprising the command
to the g++ compiler program (which is installed as part of CmdStan):

--- Linking C++ model ---

After compilation, we will see some settings for CmdStan, including the number of
samples to retain and the number to use as warm-up:

method = sample (Default)
sample

num_samples = 1000 (Default)
num_warmup = 1000 (Default)

We then see the iterations appear, followed by a total time to do the sampling:

Iteration: 1800 / 2000 [ 90%] (Sampling)
Iteration: 1900 / 2000 [ 95%] (Sampling)
Iteration: 2000 / 2000 [100%] (Sampling)

Elapsed Time: 0.017155 seconds (Warm-up)
0.024054 seconds (Sampling)
0.041209 seconds (Total)

Inference for Stan model: bernoulli_model
4 chains: each with iter=(1000,1000,1000,1000);

warmup=(0,0,0,0); thin=(1,1,1,1);
4000 iterations saved.
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Warmup took (0.017, 0.017, 0.017, 0.016) seconds,
0.067 seconds total

Sampling took (0.024, 0.032, 0.031, 0.031) seconds,
0.12 seconds total

This is followed by a summary of the parameters:

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
theta 0.25 2.3e-03 1.2e-01 0.076 0.24 0.46 2784 23545 1.0e+00

Samples were drawn using hmc with nuts.
For each parameter, N_Eff is a crude measure of effective

sample size, and R_hat is the potential scale reduction
factor on split chains (at convergence, R_hat=1).

This shows us that we ran 4 chains and retained 1,000 samples from each, but because of
autocorrelation, this was equivalent to 2,784 independent samples (23,545 independent
samples per second). The posterior mean for θ was 0.25 (pulled upward from the max-
imum likelihood estimate by the flat prior and the small dataset). If mode is specified,
we will then see the posterior mode,

Log-probability at maximum: -5.004020214080811

Posterior
Parameter Mode

theta .200004

which is directly comparable (with a flat prior) with the maximum likelihood estimate,
0.2.

If we specify diagnose, we will see corresponding output; see the Stan manual for
details on this.

TEST GRADIENT MODE

Log probability=-7.10591

param idx value model finite diff error
0 -0.557247 -1.37022 -1.37022 -1.66588e-010

Finally, if we specify load, we will see a Stata-generated summary, including the
95% credible interval:

variable N mean sd se(mean)

theta 1000 .2485084 .1121162 .0035454

variable min p1 p5 p25

theta .019246 .0477189 .0814933 .1628



R. L. Grant, B. Carpenter, D. C. Furr, and A. Gelman 341

variable p50 p75 p95 p99

theta .244064 .3222845 .4458295 .5513045

95% CI for theta: .0656607497483492 to .4934002541005615

This is similar to the approximate confidence interval:

. cii proportions 10 2, wilson

Wilson
Variable Obs Proportion Std. Err. [95% Conf. Interval]

10 .2 .1264911 .0566822 .5098375

We see the data replaced with variables called theta (which contains draws for the
parameter of that name), lp , accept stat , stepsize , treedepth , n leapfrog ,
and n divergent , all of which are created by CmdStan to track progress of the algo-
rithm and can be safely deleted unless needed for methodological investigations. The
theta variable, containing the draws from the posterior, can then be used for graphics
or further inference.

7 Conclusion

Stan continues to develop rapidly, with one major project being the inclusion of Riemann
manifold Hamiltonian Monte Carlo, which will provide further significant improvements
in speed and stability (Girolami and Calderhead 2011). StataStan can readily track this
by adding new options that are passed to future versions of CmdStan.

Stan and all its interfaces have been made possible by enthusiastic contributions from
developers around the world, coordinated by a core team. We encourage all interested
Stata users to visit http://mc-stan.org and become involved there through reporting
issues and suggesting improvements (Stan Development Team 2016b).
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Abstract. Stata users have access to two easy-to-use implementations of Bayesian
inference: Stata’s native bayesmh command and StataStan, which calls the general
Bayesian engine, Stan. We compare these implementations on two important
models for education research: the Rasch model and the hierarchical Rasch model.
StataStan fits a more general range of models than can be fit by bayesmh and uses
a superior sampling algorithm, that is, Hamiltonian Monte Carlo using the no-U-
turn sampler. Furthermore, StataStan can run in parallel on multiple CPU cores,
regardless of the flavor of Stata. Given these advantages and given that Stan is
open source and can be run directly from Stata do-files, we recommend that Stata
users interested in Bayesian methods consider using StataStan.

Keywords: st0477, stan, windowsmonitor, StataStan, bayesmh, Bayesian

1 Introduction

Stata is widely used in the social sciences, economics, and biostatistics. In 2015, it
became possible to routinely fit Bayesian models in Stata by using 1) Bayesian mod-
eling commands introduced in Stata 14, which use the Metropolis–Hastings algorithm
and Gibbs sampler, and 2) StataStan, an interface to the open-source Bayesian soft-
ware, Stan (Grant 2015; Stan Development Team 2016). Previously, Bayesian methods
were available in Stata only through user-written commands to interface with external
software such as BUGS, JAGS, or MLwiN.

At the time of writing, the native Bayes implementation in Stata, bayesmh, allows
a choice among 10 likelihood functions and 18 prior distributions. bayesmh is explic-
itly focused around regression models, although extensions to hierarchical (multilevel)
models are possible with the inclusion of hyperpriors. Additionally, the user may write
customized likelihood functions or customized posterior distributions.

Built for Bayesian inference, Stan is an open-source, collaboratively built software
project that allows general continuous-parameter models, including all the models that
can be fit in Stata’s bayesmh and many others. Stan has been applied to a wide range
of complex statistical models, including time series, imputation, mixture models, meta-

c© 2017 StataCorp LLC st0477
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analysis, cluster analysis, Gaussian processes, and item response theory. These extend
beyond the current (Stata 14.2) capability of bayesmh. Stan can run from various data
analysis environments such as Stata, R, Python, and Julia and also has a command-
line interface (CmdStan). Stan uses Hamiltonian Monte Carlo (HMC) and the no-U-turn
sampler (Hoffman and Gelman 2014) with the additional options of variational inference
(Kucukelbir et al. 2015) and the L-BFGS optimization algorithm (Nocedal and Wright
2006). The advantages of HMC and the no-U-turn sampler in speed, stability with re-
gard to starting values, and efficiency over Metropolis–Hastings and Gibbs have been
described elsewhere (Neal 2011; Hoffman and Gelman 2014). As a result of the Hamilto-
nian dynamics, HMC is rotation invariant, which makes it well suited to highly correlated
parameters. It is also not slowed down by nonconjugate models.

The languages used by these packages are notably different. In Stan, models are
specified in a series of probability statements specifying prior distributions and likeli-
hoods. bayesmh follows standard Stata syntax to give a compact specification of the
most common regression and related models. Stan works by translating the user’s model
code into C++, then compiling and running the resulting executable file. Stan can run
in parallel on multicore computers if the number of available cores was specified when
installing CmdStan itself.

In this article, we compare bayesmh and StataStan on some item response models.
These logistic regression (or Rasch) models are popular in education research and in
political science, where they are called ideal-point models (Rasch 1960).

2 Models

We fit the models using data simulated as specified below. We checked that the bayesmh
and StataStan implementations gave the same answer (modulo the inevitable Monte
Carlo error of these stochastic algorithms), then compared the programs on speed and
efficiency in terms of time per the number of effective independent samples.

The Rasch model can be written as

Pr(yip = 1|θp, δi) = logit−1(θp − δi)

θp ∼ N(0, σ2)

where yip = 1 if person p responded to item i correctly and 0 otherwise, and i, p ∈ N;
1 ≤ i ≤ I; 1 ≤ p ≤ P . The parameter θp represents the latent “ability” of person
p, and δi is a parameter for item i. We considered a simple version of the model in
which the abilities are modeled as exchangeable draws from a normal distribution with
scale σ. We assigned a N(0, 10) prior distribution to δi and took two approaches to
priors for σ. First, we matched the Rasch model example in the Stata 14 manual
(see [BAYES] bayesmh), which uses an inverse-gamma prior for σ2, which we do not
recommend (Gelman 2006). Second, we used a preferred approach of uniform priors for
σ, which is the Stan default if a prior is not specified. It is easy in StataStan to add a
line of code to the model to include a different prior on σ or σ2.
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A natural hierarchical extension of the Rasch model adds a hyperprior for δi so that

Pr(yip = 1|θp, δi) = logit−1(θp − δi)

θp ∼ N(0, σ2)

δi ∼ N(μ, τ2)

where μ is the model intercept. Persons and items are regarded as two sets of exchange-
able draws.

3 Methods

We simulated data from the above model with 500 persons each answering 20 items.
For true values of δi, we assigned equally spaced values from −1.5 to 1.5, and we set
the true σ to 1.

We set up the Rasch and hierarchical Rasch models similarly, running four chains
in series in Stan version 2.11 and Stata 14.1. We drew initial values for the chains from
independent uniform distributions −1 to 1 on the location parameters μ(0), δ(0), and
θ(0) and drew uniform distributions from 0 to 2 on the scale parameters σ(0) and τ (0).
We assigned all δi’s identical starting values for each chain and did the same for the θp’s.
The reason for this (admittedly unusual) choice is that this approach is much easier to
use with bayesmh. We used the same starting values for both StataStan and bayesmh

(and in the comparison described below, for JAGS). These item response models were
not sensitive to starting values.

We ran 10 chains for 2,500 discarded warm-up iterations and 2,500 posterior draws
each. For timing purposes, we ran all chains in serial, thus eliminating one of Stan’s
advantages—that it can automatically run multiple chains in parallel on a multicore ma-
chine regardless of the flavor of Stata. However, we made one comparison using parallel
computation, which is described below. We provide the Stan programs and commands
in the appendix. The options specified for bayesmh are nearly identical to those in the
example provided in the Stata manual (see [BAYES] bayesmh). There is a difference
in how the δ and θ parameters are sampled, which plays to the strengths of the differ-
ent algorithms; Hamiltonian Monte Carlo is more efficient with distributions centered
on or close to zero, regardless of correlation, while random walk Metropolis–Hastings
in bayesmh is improved by using the random-effects option (see [BAYES] bayesmh).
This feature, added in Stata 14.1, markedly improves effective sample size for models
amenable to a random-effects parameterization. Other model forms will not benefit
from it, so for comparison, we ran bayesmh both with and without random effects.

We monitored convergence for each parameter using the R̂ statistic, which is a rough
estimate of the square root of the ratio of overall (across chains) posterior variance

to within-chain posterior variance (Gelman et al. 2013). Values of R̂ near 1 indicate
convergence, while greater values indicate nonconvergence. Values less than 1.1 are
generally considered acceptable. The efficiency of the estimations is evaluated by the
seconds per estimated effective sample size, s/n̂eff (Gelman et al. 2013). This reflects the
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fact that more highly autocorrelated chains of draws from the posterior distributions
give less precise inference, equivalent to a smaller number of effectively independent
samples that neff estimates. We used two versions of timings: an all-in time using the
Stata command timer from the lines of the do-file above and below the bayesmh or
stan command, as well as a simulation-only time obtained from the CmdStan output
and from the value returned to e(simtime) by bayesmh (an undocumented return
value). StataStan’s all-in time includes compiling the model, and bayesmh’s all-in time
includes internal model building before simulation can begin. To run multiple chains
in StataStan, compilation is required only once, and if the data change but a model
does not, a previously compiled executable file can be reused. The total time and
simulation-only times represent opposite ends of a spectrum of performance. In real-
life implementation, if there are many retained iterations compared with the warm-up
iterations, and if compilation (in the case of StataStan) and model building (in the case
of bayesmh) are not needed in every chain, total time will approach the simulation-only
time.

To further investigate the efficiency of the software as models become more demand-
ing, we carried out the same analyses on simulated data with 20 items and 100, 500,
1,000, 5,000, and 10,000 people. We compared StataStan 1.2.1 (calling CmdStan 2.11)
with Stata 14.1’s bayesmh command as above and also with the open-source software
JAGS 4.0.0 (Plummer 2007) with the rjags package in R 3.2.3 and ran four chains in
each instance. We compared s/n̂eff for the hyperparameters σ2, μ, and τ2 and for the
worst parameter (lowest n̂eff , reflecting the frequent need to run the software until all
parameters are adequately estimated) in each model. We ran bayesmh both with and
without the exclude() option on the θ’s to examine the effect of reducing memory
requirements. We also ran StataStan again with parallel chains for 20 items and 1,000
people to examine the increase in speed achieved with 4 CPU cores. All simulations were
conducted on an “early 2015” MacBook Pro laptop running OS X 10.11.6 (El Capitan)
with a 2.7 GHz Intel Core i5 4-core processor and 8 GB of 1867 MHz DDR3 RAM, with
all networking turned off.

4 Results

For the Rasch model, we ran StataStan for 10 chains (in series) of 5,000 iterations (first

half as warm-up) in 16.6 minutes; at that point, R̂ was less than 1.01 for all parameters.

We ran bayesmh for 10 chains of the same length in 15.9 minutes; R̂ was less than
1.01 for all parameters. Convergence appears satisfactory for both. In figure 1, we
compare values of time per effective independent sample for all the parameters in box
plots between StataStan and bayesmh. Table 1 provides the same all-in timing statistics
for the hyperparameters.
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Table 1. Efficiency statistics for the hyperparameters in the two models

Model Parameter Stata 14.1 bayesmh StataStan
neff/sec neff/sec

Rasch σ2 1.44 8.99
Hierarchical Rasch μ 3.80 1.22
Hierarchical Rasch σ2 1.63 5.62
Hierarchical Rasch τ2 3.28 2.66

Results for the hierarchical Rasch model parallel those for the Rasch model. Estima-
tion with StataStan required 24.1 minutes for the same number of chains and iterations,
and R̂ was less than 1.01 for all parameters. bayesmh ran for 16.6 minutes and yielded
values of R̂ less than 1.01 for all parameters. Both estimations appear to have converged.

Figure 1. Box plots of seconds per effective independent sample for parameters in the
Rasch model (top row of plots) and hierarchical Rasch model (bottom row), in each case
fit to simulated data on 500 persons each answering 20 items. Left column shows total
timing, including compilation and simulation; right column shows simulation time only.
When a model is being fit multiple times, simulation-only timing is a more relevant
comparison because the model needs to be compiled only once.
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In terms of the total time from issuing the command to its completion, StataStan
was more efficient for all parameters in the Rasch model; in the hierarchical Rasch
model, it was more efficient for all θ’s and σ2, similar for the δ’s, slightly less efficient
for τ2, and less efficient for μ. When we compared simulation-only time (not counting
compilation, model building, or warm-up), StataStan’s efficiency was improved, making
all Rasch parameters even more favorable, and all hierarchical Rasch parameters except
μ favor StataStan over bayesmh.

When we ran the models with the preferred StataStan priors and with sampling
standard deviations rather than variances, results did not change much. Total compu-
tation time was somewhat faster at 11.1 minutes for the Rasch model and 22.6 minutes
for the hierarchical Rasch model, but times per neff were very similar at 0.08 seconds
for Rasch σ, 0.16 seconds for hierarchical Rasch σ, and 0.29 seconds for τ . However,
the efficiency of μ improved to 0.49 seconds per neff .

Table 2. Efficiency statistics for hyperparameters in increasingly large models

Total time Simulation-only time
bayesmh StataStan bayesmh StataStan

Model Parameter P sec/neff sec/neff sec/neff sec/neff

Rasch σ2 100 0.143 0.069 0.137 0.007
500 0.536 0.105 0.502 0.025
1,000 1.460 0.230 1.319 0.062
5,000 9.333 1.649 6.404 0.576
10,000 350.164 4.539 334.916 1.487

H. Rasch μ 100 0.212 0.168 0.204 0.023
500 0.211 0.760 0.197 0.287
1,000 0.457 1.131 0.413 0.571
5,000 2.682 22.025 1.847 11.331
10,000 49.533 67.812 46.660 37.400

H. Rasch σ2 100 0.146 0.061 0.140 0.008
500 0.595 0.177 0.558 0.067
1,000 1.809 0.340 1.634 0.172
5,000 11.941 4.508 8.225 2.319
10,000 186.637 13.236 175.813 7.300

H. Rasch τ2 100 0.094 0.095 0.090 0.013
500 0.350 0.385 0.328 0.145
1,000 0.904 0.608 0.817 0.307
5,000 5.145 8.237 3.544 4.237
10,000 76.556 26.884 72.116 14.827
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Figure 2. Total time per effective independent sample (worst efficiency across all pa-
rameters) in increasingly large Rasch and hierarchical Rasch models
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Figure 3. Simulation time per effective independent sample (worst efficiency across all
parameters) in increasingly large Rasch and hierarchical Rasch models
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In testing with increasingly large models, all three packages showed similar total
execution times. StataStan had faster simulation-only time in all Rasch models (from
3% to 61% of the bayesmh times) and mixed results in hierarchical Rasch models (from
26% to 235%). The charts show the efficiency for the parameter with the lowest neff

in each case, for total time (figure 2) and simulation-only time (figure 3). In these line
charts, the form of bayesmh that uses the exclude option is denoted by bayesmh-ex;
we found this had similar speed and efficiency to bayesmh without exclude and so did
not assess it further in the most time-consuming models (P = 10000) or in terms of
simulation-only time. JAGS does not provide simulation-only timings. In total time per
neff , no one software option dominated, though from this limited simulation, it appeared
that StataStan was more efficient in the smallest models and bayesmh was more efficient
in the largest (figure 2). In simulation-only time per neff , StataStan was more efficient
than bayesmh, up to 10 times more so in most models and sizes of P . However, in some
cases, they were similar, with bayesmh being slightly better (figure 3).

StataStan consistently had the better efficiency (s/neff) for σ2 in both Rasch and
hierarchical Rasch models but mixed results for τ2, although four out of five models
favored StataStan in simulation-only time (table 2). In the Rasch model, StataStan
was 2.1 to 77.1 times faster than bayesmh to achieve the same neff for σ2 in total
time and 11.1 to 225.2 times faster in simulation-only time. In the hierarchical Rasch
model, StataStan was 2.4 to 14.1 times faster for σ2 in total time and 3.5 to 24.1 times
faster in simulation-only time. StataStan was 0.6 to 2.8 times faster for τ2 in total
time and 0.8 to 6.9 times faster in simulation-only time. The μ hyperparameter in the
hierarchical Rasch models was more efficiently sampled by bayesmh at most values of
P , with StataStan being 0.1 to 1.3 times faster in total time and 0.2 to 8.9 times faster
in simulation-only time (table 2). All models, with all software, could be fit with the
same laptop computer without running out of memory.

The random-effects option in bayesmh provided a considerable improvement in both
effective sample size and speed. When we ran the I = 20, P = 100 models without
random effects, total time was 206 seconds for Rasch and 211 seconds for hierarchical
Rasch, while simulation-only times were 200 and 204 seconds, respectively, which is
about 2.5 times slower than the same model with random effects. The time per effective
independent sample was considerably increased. In the Rasch model, it rose from 0.143
to 69 seconds for σ2. In the hierarchical Rasch model, it rose from 0.146 to 30 seconds
for σ2, from 0.212 to 53 seconds for μ, and from 0.094 to 23 seconds for τ2.

A further consideration is the speed-up obtained by running StataStan chains in
parallel even without Stata/MP. We found that the Rasch model with I = 20 and
P = 1000 had total time 383 seconds running in parallel compared with 734 seconds
running in series and simulation-only time of 78 seconds compared with 198 seconds.
The hierarchical Rasch model of the same size had total time 850 seconds compared
with 1,520 seconds and simulation-only time of 303 seconds compared with 768 seconds.
This would make parallel StataStan on a quad-core computer roughly twice as efficient
as serial StataStan, while bayesmh will not run parallel chains without Stata/MP.
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5 Discussion

We found that most of the Rasch models we compared were more efficiently sampled by
StataStan than bayesmh and that this was more favorable to StataStan because the fixed
overhead of compiling the model into an executable file was outgrown by the simulation.
This suggests that longer chains of draws from the posterior distribution, precompiled
models, and parallel chains will all favor StataStan, and the total time comparisons here
represent a worst-case scenario for StataStan. We would expect the results we found
to apply to generalized linear mixed models, given that these include the Rasch models
as a special case (Rijmen et al. 2003; Zheng and Rabe-Hesketh 2007). In practice, the
adaptive Markov chain Monte Carlo algorithm featured in bayesmh (Stata 14.1) also
has a number of features that improve its performance notably over JAGS or Stata 14.0.
We found that the same models without the reffects option took 200 to 500 times
longer to achieve the same effective sample size on bayesmh, which users should keep in
mind when considering models outside the Rasch family and without random effects.

StataStan provides a simple interface, operating by writing specified variables (as
vectors), matrices, and scalars from Stata to a text file and calling the command-line
implementation of Stan. The user can specify a wide variety of priors, and the algorithm
is less sensitive to the prior than that used in bayesmh. In these Rasch models, we found
it simple and more intuitive to sample the hyperparameters as standard deviations
rather than variances or precisions, and we used uniform priors as the Stan default
without any impact on efficiency. We give the alternative programs in the appendix.
Progress is displayed inside Stata (even under Windows), and there is the option to
write the Stan model inside a comment block in the Stata do-file. Results can then
be read back into Stata for diagnostics, generating other values of interest, or saving
in .dta format. StataStan can be installed from Statistical Software Components by
typing

ssc install stan

Windows users should also type

ssc install windowsmonitor

In conclusion, we find StataStan to be generally faster than bayesmh, which is no surprise
given Stan’s advanced algorithms and efficient autodifferentiation code. Given that Stan
is open source, offers a wider range of models than bayesmh, and can be run directly from
Stata using StataStan, we recommend that Stata users interested in Bayesian methods
consider StataStan for Bayesian modeling, especially for more complicated models.
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Appendix

Here is the code for the models, starting with the Rasch Stan program, which matches
bayesmh:

data {
int<lower=1> N; // number of observations in the dataset
int<lower=1> I; // number of items
int<lower=1> P; // number of people
int<lower=1, upper=I> ii[N]; // variable indexing the items
int<lower=1, upper=P> pp[N]; // variable indexing the people
int<lower=0, upper=1> y[N]; // binary outcome variable

}
parameters {

real<lower=0> sigma_sq; // variance of the thetas (random intercepts for people)
vector[I] delta_unit; // normalized deltas
vector[P] theta_unit; // normalized thetas

}
transformed parameters {

real<lower=0> sigma;
sigma = sqrt(sigma_sq); // SD of the theta random intercepts

}
model {

vector[I] delta;
vector[P] theta;
theta_unit ~ normal(0, 1); // prior for normalized thetas
delta_unit ~ normal(0, 1); // prior for normalized deltas
sigma_sq ~ inv_gamma(1, 1); // prior for variance of thetas
theta = theta_unit * sigma; // convert normalized thetas to thetas (mean 0)
delta = delta_unit * sqrt(10); // convert normalized deltas to deltas (mean 0)
y ~ bernoulli_logit(theta[pp] - delta[ii]); // likelihood

}
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This is our preferred Stan program:

data {
int<lower=1> N; // number of observations in the dataset
int<lower=1> I; // number of items
int<lower=1> P; // number of people
int<lower=1, upper=I> ii[N]; // variable indexing the items
int<lower=1, upper=P> pp[N]; // variable indexing the people
int<lower=0, upper=1> y[N]; // binary outcome variable

}
parameters {

real<lower=0> sigma; // SD of the thetas (random intercepts for people)
vector[I] delta_unit; // normalized deltas
vector[P] theta_unit; // normalized thetas

}
model {

vector[I] delta;
vector[P] theta;
theta_unit ~ normal(0, 1); // prior for normalized thetas
delta_unit ~ normal(0, 1); // prior for normalized deltas
theta = theta_unit * sigma; // convert normalized thetas to thetas (mean 0)
delta = delta_unit * sqrt(10); // convert normalized deltas to deltas (mean 0)
y ~ bernoulli_logit(theta[pp] - delta[ii]); // likelihood

}

Here is the Stata call for the Rasch model:

bayesmh y=({theta:}-{delta:}), likelihood(logit) ///
redefine(delta:i.item) redefine(theta:i.person) ///
prior({theta:i.person}, normal(0, {sigmasq})) ///
prior({delta:i.item}, normal(0, 10)) ///
prior({sigmasq}, igamma(1, 1)) ///
mcmcsize(`mcmcsize´) burnin(`burnin´) ///
notable saving(`draws´, replace) dots ///
initial({delta:i.item} `=el(inits`jj´, `c´, 1)´ ///

{theta:i.person} `=el(inits`jj´, `c´, 2)´ ///
{sigmasq} `=el(inits`jj´, `c´, 3)´) ///

block({sigmasq})

And here is the JAGS code for the Rasch model:

model {
for (i in 1:I) {

delta[i] ~ dunif(-1e6, 1e6)
}
inv_sigma_sq ~ dgamma(1,1)
sigma <- pow(inv_sigma_sq, -0.5)
for (p in 1:P) {

theta[p] ~ dnorm(0, inv_sigma_sq)
}
for (n in 1:N) {

logit(inv_logit_eta[n]) <- theta[pp[n]] - delta[ii[n]]
y[n] ~ dbern(inv_logit_eta[n])

}
}
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Here is the hierarchical Rasch model in Stan, matching bayesmh:

data {
int<lower=1> N; // number of observations in the dataset
int<lower=1> I; // number of items
int<lower=1> P; // number of people
int<lower=1, upper=I> ii[N]; // variable indexing the items
int<lower=1, upper=P> pp[N]; // variable indexing the people
int<lower=0, upper=1> y[N]; // binary outcome variable

}
parameters {

real<lower=0> sigma_sq; // variance of the thetas (random intercepts for people)
real<lower=0> tau_sq; // variance of the deltas (random intercepts for items)
real mu; // mean of the deltas
vector[I] delta_unit; // normalized deltas
vector[P] theta_unit; // normalized thetas

}
transformed parameters {

real<lower=0> sigma;
real<lower=0> tau;
sigma = sqrt(sigma_sq); // SD of the theta random intercepts
tau = sqrt(tau_sq); // SD of the delta random intercepts

}
model {

vector[I] delta;
vector[P] theta;
theta_unit ~ normal(0, 1); // prior for normalized thetas
delta_unit ~ normal(0, 1); // prior for normalized deltas
mu ~ normal(0, sqrt(10)); // prior for the mean of the deltas
sigma_sq ~ inv_gamma(1, 1);
tau_sq ~ inv_gamma(1, 1);
theta = theta_unit * sigma; // convert normalized thetas to thetas (mean 0)
delta = mu + (delta_unit * tau); // convert normalized deltas to deltas (mean mu)
y ~ bernoulli_logit(theta[pp] - delta[ii]); // likelihood

}



356 Fitting Bayesian item response models in Stata and Stan

This is our preferred Stan model:

data {
int<lower=1> N; // number of observations in the dataset
int<lower=1> I; // number of items
int<lower=1> P; // number of people
int<lower=1, upper=I> ii[N]; // variable indexing the items
int<lower=1, upper=P> pp[N]; // variable indexing the people
int<lower=0, upper=1> y[N]; // binary outcome variable

}
parameters {

real<lower=0> sigma; // SD of the thetas (random intercepts for people)
real<lower=0> tau; // SD of the deltas (random intercepts for items)
real mu; // mean of the deltas
vector[I] delta_unit; // normalized deltas
vector[P] theta_unit; // normalized thetas

}
model {

vector[I] delta;
vector[P] theta;
theta_unit ~ normal(0, 1); // prior for normalized thetas
delta_unit ~ normal(0, 1); // prior for normalized deltas
mu ~ normal(0, sqrt(10)); // prior for the mean of the deltas
theta = theta_unit * sigma; // convert normalized thetas to thetas (mean 0)
delta = mu + (delta_unit * tau); // convert normalized deltas to deltas (mean mu)
y ~ bernoulli_logit(theta[pp] - delta[ii]); // likelihood

}

Here is the Stata call for the hierarchical Rasch model:

bayesmh y=({theta:}-{delta:}),likelihood(logit) ///
redefine(delta:i.item) redefine(theta:i.person) ///
prior({theta:i.person}, normal(0, {sigmasq})) ///
prior({delta:i.item}, normal({mu}, {tausq})) ///
prior({mu}, normal(0, 10)) ///
prior({sigmasq} {tausq}, igamma(1, 1)) ///
block({sigmasq} {tausq} {mu}, split) ///
initial({delta:i.item} `=el(inits`jj´, 1, 1)´ ///

{theta:i.person} `=el(inits`jj´, 1, 2)´ ///
{sigmasq} `=el(inits`jj´, 1, 3)´ ///
{tausq} `=el(inits`jj´, 1, 4)´ ///
{mu} `=el(inits`jj´, 1, 5)´) ///

mcmcsize(`mcmcsize´) burnin(`burnin´) ///
saving(`draws´, replace) dots
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And here is the JAGS code for the hierarchical Rasch model:

model {
inv_sigma_sq ~ dgamma(1,1)
sigma <- pow(inv_sigma_sq, -0.5)
for (p in 1:P) {

theta[p] ~ dnorm(0, inv_sigma_sq)
}
inv_tau_sq ~ dgamma(1,1)
tau <- pow(inv_tau_sq, -0.5)
for (i in 1:I) {

delta[i] ~ dnorm(0, inv_tau_sq)
}
mu ~ dunif(-1e6, 1e6)
for (n in 1:N) {

logit(inv_logit_eta[n]) <- mu + theta[pp[n]] - delta[ii[n]]
y[n] ~ dbern(inv_logit_eta[n])

}
}
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Abstract. The instantaneous geometric rate represents the instantaneous proba-
bility of an event of interest per unit of time. In this article, we propose a method to
model the effect of covariates on the instantaneous geometric rate with two mod-
els: the proportional instantaneous geometric rate model and the proportional
instantaneous geometric odds model. We show that these models can be fit within
the generalized linear model framework by using two nonstandard link functions
that we implement in the user-defined link programs log igr and logit igr. We
illustrate how to fit these models and how to interpret the results with an exam-
ple from a randomized clinical trial on survival in patients with metastatic renal
carcinoma.
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1 Introduction

The geometric rate represents the average probability of an event of interest per unit of
time over a specific time interval. Recently, Bottai (Forthcoming) showed that in the
case of events that occur only once, such as death or first diagnosis of a disease, the
geometric rate is a better measure of occurrence than the incidence rate. In the same
article, Bottai proposed a regression method to model the conditional geometric rate
given covariates. That method is based on applying quantile regression to a transfor-
mation of the time variable and is implemented in the user-written grreg command
(Bottai 2015).

As the length of the time interval over which the geometric rate is defined shrinks
to zero, we obtain the instantaneous geometric rate. This measure has a very intuitive
interpretation because it represents the instantaneous probability of the event per unit
of time.

In this article, we propose two models for the effect of covariates on the instan-
taneous geometric rate: the proportional instantaneous geometric rate model and the
proportional instantaneous geometric odds model. We show that these models can be fit
within the generalized linear model (GLM) framework (Nelder and Wedderburn 1972)
by using two nonstandard link functions that can be easily programmed into the official
Stata glm command (Guan and Gutierrez 2002).

c© 2017 StataCorp LLC st0478
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The remainder of this article is organized as follows: In section 2, we briefly review
how the instantaneous geometric rate is defined. In section 3, we show how to model
the instantaneous geometric rate via GLM and present two user-defined link programs,
log igr and logit igr. In section 4, we use data from a randomized clinical trial to
illustrate some practical examples of how these link programs can be specified as an
option of the glm command and how to interpret and present the analysis results. In
section 5, we provide a summary.

2 Geometric rate and instantaneous geometric rate

In this section, we follow the description provided by Bottai (Forthcoming). Let T be
a continuous random variable with support on (0,+∞) representing the time-to-event
of individuals in some population, and let S(t) be the associated survival function. The
geometric rate over the time interval (0, t) is defined as

g(0, t) = 1− S(t)
1
t

and represents the average probability of the event per unit of time over (0, t). The
geometric rate between any two time points t1 and t2, such that 0 < t1 < t2 < +∞, is

g(t1, t2) = 1−
{
S(t2)

S(t1)

} 1
t2−t1

The limit of the geometric rate over shrinking time intervals (t, t + Δt) gives the
instantaneous geometric rate

g(t) ≡ lim
Δt→0+

g(t, t+Δt)

= lim
Δt→0+

1−
{
S(t+Δt)

S(t)

} 1
Δt

= lim
Δt→0+

1− exp

{
logS(t+Δt)− logS(t)

Δt

}
= 1− exp

{
∂logS(t)

∂t

}
= 1− exp

{
− f(t)

S(t)

}
= 1− exp {−h(t)} (1)

where f(t) indicates the probability density function of T and h(t) ≡ f(t)/S(t), the haz-
ard function. The instantaneous geometric rate represents the instantaneous probability
of the event per unit of time.
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3 Instantaneous geometric rates via GLM

In this section, we show how instantaneous geometric rates can be estimated by GLM

using nonstandard link functions. See Hardin and Hilbe (2012) for an exposition of GLM

specifically targeted at Stata users.

Let ti, i = 1, . . . , n, be a sample of n possibly censored observations on the time
variable, di be the event indicator variable (0 for a censored observation, 1 for an event),
xi = (x1,i . . . xp,i)

′ be a vector of covariates, and β = (β1, . . . , βp)
′ be an unknown

parameter vector.

3.1 Proportional instantaneous geometric rate model

We consider the proportional instantaneous geometric rates model

gi(t|xi) = g0(t) exp (x
′
iβ) (2)

By taking the logarithm of both sides of (2), we get

log {gi(t|xi)} = log {g0(t)}+ x′
iβ

and by taking the logarithm of (1), we get

log [1− exp {−hi(t)} |xi] = s(t;γ) + x′
iβ (3)

where s(t;γ) is a smooth parametric function of analysis time that depends on a vector
of unknown parameters γ = (γ1, . . . , γr)

′.

To model the baseline log instantaneous geometric rate via s(t;γ), we split each
individual’s follow-up into a number of intervals (or episodes) by choosing a fine grid of
split points. After splitting the follow-up, let tij be the length of the jth time interval
(the time at risk) relative to the ith individual, and let dij be the event indicator that
takes value 1 if individual i develops the event in interval j, and 0 otherwise.

Following the same rationale behind parametric proportional hazard models (Roys-
ton and Lambert 2011, chaps. 4 and 7), (3) suggests using the following link function,

ηij ≡ k(μij) = log

{
1− exp

(
−μij

tij

)}
(4)

where μij is the expected value of dij , which is assumed to follow a distribution of the
exponential family.
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After suppressing the subscripts, the calculations to program the link function (4)
are

μ = k−1(η) = −t log {− exp (η) + 1}
∂μ

∂η
= t exp(η) {− exp(η) + 1}−1

∂2μ

∂η2
= t exp(η) {exp(η)− 1}−2

(5)

The following is the link program log igr, contained in the log igr.ado ado-file:

*! version 1.0.0 - 07dec2016
capture program drop log_igr
program define log_igr

version 7
args todo eta mu return

if `todo´ == -1 { /* Title */
global SGLM_lt "Log IGR"
global SGLM_lf "log(1-exp(-u/$SGLM_p))"
capture confirm numeric variable $SGLM_p

if _rc != 0 {
noi di as error "argument ($SGLM_p) to log_igr " /*
*/ "link function must be a numeric variable"
exit 198

}
exit

}
if `todo´ == 0 { /* eta = g(mu) */

gen double `eta´ = log(-exp(-`mu´/$SGLM_p)+1)
exit

}
if `todo´ == 1 { /* mu = g^-1(eta) */

gen double `mu´ = -$SGLM_p*log(-exp(`eta´)+1)
exit

}
if `todo´ == 2 { /* (d mu)/(d eta) */

gen double `return´ = $SGLM_p*exp(`eta´)*(-exp(`eta´)+1)^(-1)
exit

}
if `todo´ == 3 { /* (d^2 mu)/(d eta^2) */

gen double `return´ = $SGLM_p*exp(`eta´)*(exp(`eta´)-1)^(-2)
exit

}
noi di as err "Unknown call to glm link function"
exit 198

end

To use this link, specify the link(log igr varname) option in the glm command,
where the existing numeric variable varname contains the time at risk, tij . See Guan and
Gutierrez (2002) for a detailed explanation of how to program a custom link function.
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3.2 Proportional instantaneous geometric odds model

We now consider the proportional instantaneous geometric odds model

gi(t|xi)

1− gi(t|xi)
=

g0(t)

1− g0(t)
exp (x′

iβ) (6)

As we did in section 3.1, we write

logit[1− exp{−hi(t)}|xi] = s(t;γ) + x′
iβ

Therefore, the second proposed nonstandard link function is

ηij ≡ k(μij) = logit

{
1− exp

(
−μij

tij

)}
and the necessary calculations to program it are

μ = k−1(η) = −t log[{exp(η) + 1}−1
]

∂μ

∂η
= t exp(η) {exp(η) + 1}−1

∂2μ

∂η2
= t exp(η) {exp(η) + 1}−2

The following is the content of the logit igr.ado ado-file, which contains the link
program logit igr:

*! version 1.0.0 - 07dec2016
capture program drop logit_igr
program define logit_igr

version 7
args todo eta mu return

if `todo´ == -1 { /* Title */
global SGLM_lt "Logit IGR"
global SGLM_lf "logit(1-exp(-u/$SGLM_p))"
confirm numeric variable $SGLM_p

if _rc != 0 {
noi di as error "argument ($SGLM_p) to logit_igr " /*
*/ "link function must be a numeric variable"
exit 198

}
exit

}
if `todo´ == 0 { /* eta = g(mu) */

gen double `eta´ = logit(1-exp(-`mu´/$SGLM_p))
exit

}
if `todo´ == 1 { /* mu = g^-1(eta) */

gen double `mu´ = -$SGLM_p*log((exp(`eta´)+1)^(-1))
exit

}
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if `todo´ == 2 { /* (d mu)/(d eta) */
gen double `return´ = $SGLM_p*exp(`eta´)*(exp(`eta´)+1)^(-1)
exit

}
if `todo´ == 3 { /* (d^2 mu)/(d eta^2) */

gen double `return´ = $SGLM_p*exp(`eta´)*(exp(`eta´)+1)^(-2)
exit

}
noi di as err "Unknown call to glm link function"
exit 198

end

Some notes are as follows:

1. Both models can easily accommodate time-varying covariates and time-dependent
coefficients.

2. In (2), the exponentiated coefficients exp(β) are interpreted as instantaneous ge-
ometric rate ratios (IGRR), whereas in (6), they are interpreted as instantaneous
geometric odds ratios (IGOR).

3. If the instantaneous geometric rates are proportional across different populations,
the instantaneous geometric odds are not, and vice versa.

4. The inverse link function (5) is defined only for η < 0. This has two practical
consequences. First, the default initial values (γ0,β0) = (0, 0, . . . , 0) used for
the maximization of the log likelihood (Gould, Pitblado, and Poi 2010) are not
feasible, because the log likelihood cannot be evaluated in (γ0,β0). This can
be solved by passing feasible initial values to glm or by specifying the search

option (see [R] maximize). Second, the parameter space for (γ,β) is bounded,
which means the log likelihood is defined only within that parameter space. This
introduces challenges in maximizing the log likelihood and may lead to failed
convergence of the optimization algorithms, similarly to what happens to binomial
models with a log link (Williamson, Eliasziw, and Fick 2013).

4 Example: Survival in metastatic renal carcinoma

We illustrate the use of the two proposed regression models using data from a clinical
trial on 347 patients diagnosed with metastatic renal carcinoma (Medical Research
Council Renal Cancer Collaborators 1999). The patients were randomly assigned to
either interferon-α (IFN) or oral medroxyprogesterone (MPA). A total of 322 patients
died during follow-up.

4.1 Data preparation

The numeric variable survtime represents the time in days to death or censoring, the
binary variable cens indicates the death status (0 = censored, 1 = death), and the
variable pid contains the unique patient identifier.
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First, we declare the data to be survival-time data with the stset command, and
we rescale the analysis time from days to years with the scale(365.24) option.

Next, we split each patient’s follow-up in intervals of length equal to one week using
the stsplit command with the every(‘=1/52’) option and generate a new variable
containing the time at risk within each interval (risktime).

Last, to model the baseline instantaneous geometric rate, we generate restricted
cubic spline (RCS) transformations of analysis time, using the user-written rcsgen com-
mand (Lambert 2008). We use four knots, which by default are located at the minimum,
maximum, and the 33rd and 66th centiles of the uncensored survival times’ distribution.
To do so, we add the df(3) and if2( d == 1) options.

. use http://www.imm.ki.se/biostatistics/data/kidney
(Metastatic renal carcinoma trial. MRCRCC. Lancet. 1999, 353:14-7)

. stset survtime, failure(cens) id(pid) scale(365.24)

id: pid
failure event: cens != 0 & cens < .

obs. time interval: (survtime[_n-1], survtime]
exit on or before: failure

t for analysis: time/365.24

347 total observations
0 exclusions

347 observations remaining, representing
347 subjects
322 failures in single-failure-per-subject data

375.687 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 6.209616

. stsplit click, every(`=1/52´)
(19,360 observations (episodes) created)

. generate risktime = _t - _t0

. rcsgen _t, df(3) if2(_d == 1) gen(_rcs)
Variables _rcs1 to _rcs3 were created

4.2 Proportional instantaneous geometric rates model

We fit a proportional instantaneous geometric rates model with the glm command with
the log igr custom link program. The risktime variable, which contains tij , is passed
as an argument to log igr.

We start by including the binary treatment indicator (trt) and the RCS transfor-
mations of analysis time ( rcs1, rcs2, and rcs3) in the model. The outcome variable
d contains the event indicator dij .
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. glm _d i.trt c._rcs?, family(poisson) link(log_igr risktime) vce(robust) nolog
> search eform
initial: log pseudolikelihood = -<inf> (could not be evaluated)
feasible: log pseudolikelihood = -4804.4455
rescale: log pseudolikelihood = -1959.6083

Generalized linear models No. of obs = 19,707
Optimization : ML Residual df = 19,702

Scale parameter = 1
Deviance = 3239.4169 (1/df) Deviance = .1644207
Pearson = 124086.9279 (1/df) Pearson = 6.298189

Variance function: V(u) = u [Poisson]
Link function : g(u) = log(1-exp(-u/risktime)) [Log IGR]

AIC = .1975652
Log pseudolikelihood = -1941.70845 BIC = -191588.3

Robust
_d exp(b) Std. Err. z P>|z| [95% Conf. Interval]

trt
IFN .8371623 .0568225 -2.62 0.009 .7328824 .9562799
_rcs1 .9604894 .2909327 -0.13 0.894 .5304729 1.739089
_rcs2 1.308916 .8565102 0.41 0.681 .3630067 4.719643
_rcs3 .9010516 .2378547 -0.39 0.693 .5370987 1.511629
_cons .7243848 .0642749 -3.63 0.000 .6087542 .8619789

The estimated IGRR comparing the two treatment groups (IFN versus MPA) is 0.84
(95% confidence interval: [0.73, 0.96]), constant throughout the entire follow-up. Under
this model, the instantaneous yearly probability of death in the IFN group was estimated
to be 16% lower than in the MPA group. We can predict the log instantaneous geometric
death rate for the two treatment groups with the predict postestimation command.

. predict log_igr, xb

. generate igr = exp(log_igr)

In figure 1, we see that the instantaneous yearly risk of dying in patients on MPA

decreased from about 75% to 25% over the 6 years of follow-up. Figure 1 also clearly ex-
hibits the assumption of proportional instantaneous geometric rates in that the vertical
distance between the two lines (on the log scale) is constant throughout the follow-up.
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Figure 1. Predicted instantaneous geometric death rates for the two treatment groups
from an instantaneous geometric proportional rates model. The vertical axis is on a log
scale.
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We now relax the assumption of constant IGRR. To do so, we add interactions (prod-
uct terms) between trt and the three RCS transformations of analysis time.

. glm _d i.trt##c._rcs?, family(poisson) link(log_igr risktime) vce(robust)
> nolog search
initial: log pseudolikelihood = -<inf> (could not be evaluated)
feasible: log pseudolikelihood = -4804.4455
rescale: log pseudolikelihood = -1959.6083

Generalized linear models No. of obs = 19,707
Optimization : ML Residual df = 19,699

Scale parameter = 1
Deviance = 3237.985686 (1/df) Deviance = .1643731
Pearson = 122535.5358 (1/df) Pearson = 6.220394

Variance function: V(u) = u [Poisson]
Link function : g(u) = log(1-exp(-u/risktime)) [Log IGR]

AIC = .197797
Log pseudolikelihood = -1940.992843 BIC = -191560.1

Robust
_d Coef. Std. Err. z P>|z| [95% Conf. Interval]

trt
IFN -.3683698 .1914883 -1.92 0.054 -.7436799 .0069403
_rcs1 -.3103316 .3603476 -0.86 0.389 -1.0166 .3959368
_rcs2 -.2934956 .8245528 -0.36 0.722 -1.909589 1.322598
_rcs3 .1167311 .3344125 0.35 0.727 -.5387053 .7721675

trt#c._rcs1
IFN .7833079 .6631432 1.18 0.238 -.5164289 2.083045

trt#c._rcs2
IFN 1.572779 1.383879 1.14 0.256 -1.139574 4.285131

trt#c._rcs3
IFN -.6156042 .5543412 -1.11 0.267 -1.702093 .4708846

_cons -.2639627 .0874417 -3.02 0.003 -.4353452 -.0925802

. predict log_igr, xb

. generate igr = exp(log_igr)

. predictnl log_igrr = _b[1.trt] + _b[1.trt#c._rcs1]*_rcs1 +
> _b[1.trt#c._rcs2]*_rcs2 + _b[1.trt#c._rcs3]*_rcs3

. generate igrr = exp(log_igrr)

The log-time dependent IGRR is obtained with the predictnl postestimation com-
mand and plotted in figure 2 after exponentiation, together with the instantaneous
geometric death rates for the two treatment groups.
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Figure 2. Predicted instantaneous geometric death rates for patients on MPA (solid
black line) and IFN (long-dashed black line) and predicted time-dependent IGRR (short-
dashed black line) (IFN versus MPA). The gray solid line indicates the time-fixed IGRR,
equal to 0.84. The vertical axes are on a log scale.

When we inspect figure 2, it seems the assumption of constant IGRR throughout the
follow-up is tenable. We can formally test this assumption by testing the coefficients of
the interaction terms to be jointly equal to zero. This can be done with the testparm

postestimation command.

. testparm 1.trt#c._rcs?

( 1) [_d]1.trt#c._rcs1 = 0
( 2) [_d]1.trt#c._rcs2 = 0
( 3) [_d]1.trt#c._rcs3 = 0

chi2( 3) = 1.43
Prob > chi2 = 0.6983

From this output, we fail to reject the null hypothesis of proportionality of the
instantaneous geometric rates (p-value = 0.6983).

4.3 Proportional instantaneous geometric odds model

To illustrate the proportional instantaneous geometric odds model, we now explore
whether white cell count (wcc), a continuous prognostic factor, affects the treatment
effect as measured by the IGOR. This analysis builds upon the findings reported by
Royston, Sauerbrei, and Ritchie (2004), where they observed a beneficial effect of IFN—
in terms of relative hazard—only among patients with a white cell count lower than
about 10× 109 L−1.
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We include the treatment indicator, white cell count, their interaction term, and
the three RCS transformations of analysis time as covariates. We specify the option
link(logit igr risktime) to fit a proportional instantaneous geometric odds model.

. glm _d i.trt##c.wcc _rcs?, family(poisson) link(logit_igr risktime)
> vce(robust) nolog

Generalized linear models No. of obs = 19,707
Optimization : ML Residual df = 19,700

Scale parameter = 1
Deviance = 3210.596989 (1/df) Deviance = .1629745
Pearson = 119282.802 (1/df) Pearson = 6.054965

Variance function: V(u) = u [Poisson]
Link function : g(u) = logit(1-exp(-u/risktime))[Logit IGR]

AIC = .1963057
Log pseudolikelihood = -1927.298494 BIC = -191597.4

Robust
_d Coef. Std. Err. z P>|z| [95% Conf. Interval]

trt
IFN -1.674116 .5957372 -2.81 0.005 -2.841739 -.5064921
wcc .0824596 .0453305 1.82 0.069 -.0063865 .1713058

trt#c.wcc
IFN .1620935 .0705864 2.30 0.022 .0237467 .3004403

_rcs1 .7416164 .8740937 0.85 0.396 -.9715757 2.454809
_rcs2 2.101511 1.771603 1.19 0.236 -1.370766 5.573789
_rcs3 -.8266814 .7022011 -1.18 0.239 -2.20297 .5496075
_cons -.0688033 .4756726 -0.14 0.885 -1.001105 .8634979

Based on the p-value for the interaction term, we reject the null hypothesis of con-
stant treatment effect throughout the observed range of white cell count (p-value =
0.022).

. predictnl log_igor = _b[1.trt] + _b[1.trt#c.wcc]*wcc, se(log_igor_se)

. generate igor = exp(log_igor)

. generate igor_lo = exp(log_igor - 1.96*log_igor_se)

. generate igor_hi = exp(log_igor + 1.96*log_igor_se)

The log IGOR comparing mortality among patients on IFN and patients on MPA

as a function of white cell count can be obtained with the predictnl postestimation
command and then plotted (figure 3).
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Figure 3. Predicted IGOR for IFN versus MPA (solid line) with 95% confidence interval
(long-dashed lines) as a function of white cell count. The vertical axis is on a log scale.

The treatment effect seems to be largest among patients with a low white cell count.
For example, the estimated IGOR for white cell counts of 4.9 and 13.7 × 109 L−1 (5th
and 95th centiles of wcc distribution) were 0.40 (95% confidence interval: [0.23, 0.72])
and 1.72 (95% confidence interval: [0.74, 4.04]), respectively.

5 Summary

In this article, we proposed a method to model the effects of covariates on the instan-
taneous geometric rate within the GLM framework by using two nonstandard link func-
tions. We showed how these link functions could be easily programmed into the glm com-
mand by creating two short, independent ado-files, log igr.ado and logit igr.ado.

Using data from a randomized clinical trial on survival in patients with metastatic
renal carcinoma, we illustrated how to use these link programs and how to interpret
results from the proportional instantaneous geometric rate model and the proportional
instantaneous geometric odds model. We also demonstrated that a clear advantage
of using glm to fit these models is that postestimation commands for glm are readily
available.

In conclusion, the intuitive interpretation of the instantaneous geometric rate and
the ease with which the proposed regression models can be fit in Stata make them a
useful addition to the existing tools for the analysis of survival data.
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Abstract. We describe a major upgrade to the Stata (and R) rdrobust package,
which provides a wide array of estimation, inference, and falsification methods
for the analysis and interpretation of regression-discontinuity designs. The main
new features of this upgraded version are as follows: i) covariate-adjusted band-
width selection, point estimation, and robust bias-corrected inference, ii) cluster–
robust bandwidth selection, point estimation, and robust bias-corrected inference,
iii) weighted global polynomial fits and pointwise confidence bands in regression-
discontinuity plots, and iv) several new bandwidth selection methods, including
different bandwidths for control and treatment groups, coverage error-rate optimal
bandwidths, and optimal bandwidths for fuzzy designs. In addition, the upgraded
package has superior performance because of several numerical and implementa-
tion improvements. We also discuss issues of backward compatibility and provide
a companion R package with the same syntax and capabilities.

Keywords: st0366 1, rdrobust, rdbwselect, rdplot, regression discontinuity

1 Introduction

The regression-discontinuity (RD) design is widely used in applied work. It is one of
the most credible quasi-experimental research designs for identification, estimation,
and inference of treatment effects (local to the cutoff). RD designs are also easy to
present, interpret, and falsify, which are features that have contributed to their pop-
ularity among practitioners and policy makers alike. See Imbens and Lemieux (2008)
and Lee and Lemieux (2010) for early reviews; Cattaneo, Titiunik, and Vazquez-Bare
for a practical introduction to RD designs with a comparison between leading empiri-
cal methods; and Cattaneo and Escanciano (2017) for an edited volume with a recent
overview of the literature.

In this article, we describe a major upgrade to the Stata and R software package
rdrobust (Calonico, Cattaneo, and Titiunik 2014a, 2015b), which provides a wide array
of estimation, inference, and falsification methods for the analysis and interpretation of

c© 2017 StataCorp LLC st0366 1
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RD designs. These major upgrades are implemented following the technical and method-
ological results discussed in Calonico, Cattaneo, and Farrell (Forthcoming, 2016a) and
Calonico et al. (2016b, CCFT hereafter) and its supplemental appendix. To avoid rep-
etition, in this article we focus exclusively on the new functionalities incorporated into
the package; for a description of all previously available features, refer to the previously
published software articles. The main new features of the upgraded rdrobust package
are the following (organized by underlying command or function):

1. rdrobust. This command now allows for covariate-adjusted point estimation and
covariate-adjusted robust bias-corrected inference. In addition, this command
now allows for different heteroskedasticity-robust (heteroskedasticity-consistent k
class or HCk class) and cluster–robust variance estimation methods. When mean
squared error (MSE)–optimal bandwidths are used, the resulting point estimator
for the RD treatment effect is MSE optimal. When coverage error-rate (CER)
optimal bandwidths are used, the resulting confidence intervals (CIs) for the RD

treatment effect are CER–optimal.

2. rdbwselect. This command now offers data-driven bandwidth selection for ei-
ther one common bandwidth or two distinct bandwidths on either side of the
cutoff, selected to be either MSE optimal or CER optimal. In addition, MSE-
and CER-optimal bandwidth choices for fuzzy RD designs are now also avail-
able. Furthermore, new regularization methods are also provided. Finally, the
new implementations allow for covariate-adjusted methods, as well as for differ-
ent heteroskedasticity-robust (HCk class) and cluster–robust variance estimation
methods.

3. rdplot. This command now allows for kernel weighting and possibly different
bandwidths on either side of the cutoff, which permits plotting treatment effects
using RD plots. In addition, this command now allows for CIs for each bin to
assess the (local) variability of the partitioning fit.

Also, all three commands now allow for optional user-defined frequency weights.
Furthermore, the upgraded rdrobust package has new and improved numerical imple-
mentations, which now permit feasible executions with large sample sizes.

First, we tested the default implementation of the old 2014 against the new 2016
rdrobust command, which includes data-driven bandwidth selection via rdbwselect

and uses nearest neighbor (NN)–based variance estimators. We used 100 replications of
simulation model 1 in Calonico, Cattaneo, and Titiunik (2014b) and CCFT. The av-
erage computation time is reported in table 1 for six different sample sizes: n =
500, 1000, 5000, 10000, 50000, 100000. The 2016 package exhibits remarkable improve-
ments in execution time, especially for larger sample sizes (because the old version of
the software is coded in a way that does not scale well with n). For example, for
n = 50000, the average execution time is 95.651 seconds with the 2014 version but only
1.148 seconds with the 2016 version. Thus, for this sample size, the upgraded rdrobust

command runs 83.32 times faster than its predecessor. Importantly, the default imple-
mentation is fully backward compatible (see section 6 for details), and therefore the
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execution time improvements are exclusively attributable to the new way of implement-
ing the package.

Second, the new package was tested using 30+ million observations in Stata/SE 14
with the following results: full execution, including data-driven bandwidth selection,
took roughly 5 minutes if the default options were used and roughly 16 minutes if
a cluster–robust option was used in addition. (We thank Quentin Brummet at the
U.S. Census for carrying out these numerical tests.) In sum, we found that the new ver-
sion of the package exhibits substantial speed improvements relative to its predecessor.

Table 1. Speed comparisons between 2014 and 2016 rdrobust versions

Sample Old New Time
size rdrobust (2014) rdrobust (2016) improvement
(n) (average time in seconds) (average time in seconds) (old/new)

500 0.216 0.154 1.40
1,000 0.270 0.181 1.49
5,000 1.531 0.257 5.96
10,000 4.952 0.375 13.21
50,000 95.651 1.148 83.32

100,000 385.106 2.104 183.04

Notes: i) Computed using 100 replications of simulation model 1 in Calonico, Cattaneo, and Titiunik
(2014b) and CCFT using an Intel Xeon CPU E5-2620 v2 @ 2.1GHz, 32Gb RAM and Stata 14.2.
ii) Time is measured in seconds. iii) Time improvement is computed as the ratio of the old rdrobust

(2014) average speed in seconds relative to the new rdrobust (2016) average speed in seconds.

The 2016 version of the rdrobust package offers a comprehensive set of tools for a
systematic and objective analysis of RD designs in empirical work. For related Stata
and R commands implementing manipulation testing based on discontinuity in density
using local polynomial techniques, see Cattaneo, Jansson, and Ma (2017) and references
therein. For Stata and R commands implementing inference procedures based on a local
randomization assumption, see Cattaneo, Titiunik, and Vazquez-Bare (Forthcoming)
and references therein.

In the remaining sections, we provide methodological, practical, and empirical in-
troductions to the new functionalities of the rdrobust package. In section 2, we briefly
review the main methodological concepts underlying the methods implemented. We
then provide the full syntax and a brief explanation of the functionalities of each of the
three upgraded Stata commands in sections 3, 4, and 5, explicitly highlighting what
is new relative to the previous version. In section 6, we discuss issues of backward
compatibility. In section 7, we present an empirical illustration of the new methods
and functionalities available in the upgraded rdrobust package, using the same dataset
previously used in Calonico, Cattaneo, and Titiunik (2014a, 2015b) to facilitate the
comparison. Finally, we conclude the article in section 8. We also provide a companion
R package with the same functionality and syntax.
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The latest version of this software, as well as other related software for RD designs,
can be found at https://sites.google.com/site/rdpackages/.

2 Overview of new methods

Here we provide a brief account of the main new features included in the upgraded ver-
sion of the rdrobust package. All technical and methodological results are discussed in
Calonico, Cattaneo, and Farrell (2016a) and CCFT and their supplemental appendices.
As mentioned above, we assume that the reader is familiar with the previous versions of
the rdrobust package, their companion software articles, and the underlying technical
papers. Therefore, in this section, we focus exclusively on what is new.

In addition to several numerical and implementation upgrades, four main new fea-
tures are available in the package: i) inclusion of covariates, ii) new heteroskedasticity-
consistent (HC) and cluster–robust variance estimators, iii) new bandwidth selection
methods, and iv) kernel weighting and CIs in RD plots. We discuss these new features
in the next four subsections.

For clarity, we focus on sharp RD designs exclusively. The software does cover all
other RD designs, but because all the new features are conceptually identical for any
RD design, we do not spell out the details for fuzzy and kink RD designs beyond giving
a few generic examples at the end of section 7. See Card et al. (2015) for identification
results in kink RD designs, see the help files for specific implementation details, and
see CCFT for technical and methodological results when using additional covariates or
allowing for clustering.

2.1 Using additional covariates

The first main change to the software is that covariates may be included in the es-
timation. To make this precise, we first describe the set up. The observed data are
assumed to be a random sample (Yi, Ti, Xi,Z

′
i)

′, i = 1, 2, . . . , n, from a large popula-
tion. The score, index, or running variable is Xi, and treatment status is determined as
Ti = �(Xi ≥ x) for the known cutoff x. Using the potential-outcomes framework, the
observed outcome is Yi = Yi(0) × (1 − Ti) + Yi(1) × Ti, where Yi(0) and Yi(1) denote
the potential outcomes for each unit under control and treatment, respectively. The
d-dimensional vector Zi denotes a collection of “preintervention” covariates that could
be continuous, discrete, or mixed.

The parameter of interest is the standard RD treatment effect at the cutoff:

τ = τ(x) = E {Yi(1)− Yi(0)|Xi = x}

The goal is to estimate τ via local polynomial methods at the cutoff x. Previously,
the rdrobust package would use only the outcome Yi and score Xi to estimate the
RD treatment effect. Now, the additional covariates Zi may also be included, which
can increase the efficiency of the estimator. The covariate-adjusted RD estimator of τ
implemented in rdrobust is defined as
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τ̃(h) = e′0β̃Y+,p(h)− e′0β̃Y−,p(h)

where β̃Y+,p(h) and β̃Y−,p(h) are defined through

θ̃Y,p(h) = argmin
β−,β+,γ

n∑
i=1

{
Yi − r−,p(Xi − x)′β− − r+,p(Xi − x)′β+ − Z′

iγ
}2

Kh(Xi − x)

with θ̃Y,p(h) = {β̃Y−,p(h)
′, β̃Y+,p(h)

′, γ̃Y,p(h)
′}′; β−,β+ ∈ R

p+1 and γ ∈ R
d; r−,p(x) =

�(x < 0)(1, x, . . . , xp)′; r+,p(x) = �(x ≥ 0)(1, x, . . . , xp)′; e0, the (p + 1) vector, with
a 1 in the first position and 0s in the rest; and Kh(u) = K(u/h)/h for a kernel function
K(·) and a positive bandwidth sequence h. The kernel and bandwidth serve to localize
the regression fit near the cutoff, and the most popular choices are i) the uniform kernel,
giving equal weighting to observations Xi ∈ [x− h, x+ h], and ii) the triangular kernel
that assigns linear down-weighting to the same observations. The preferred choice of
polynomial order is p = 1, which gives the standard local linear RD point estimator.

The new version of the package allows for weighted least-squares estimation and
inference. To be more precise, if unit-specific weights wi are provided by the user, then
the above fitting (and all underlying estimation and inference procedures) is done with
wi ×Kh(Xi − x) in place of the simple kernel weights Kh(Xi − x).

As formalized in CCFT, the covariates are introduced in a joint least-squares fit to
minimize the underlying assumptions required for the covariate-adjusted RD estimator
τ̃(h) to remain consistent for the standard RD treatment effect τ . This requires one
to assume that some features of the marginal distributions of Zi above and below
the cutoff are equal. This idea matches what typically is understood as covariates
being “pretreatment” in the context of randomized experiments. In the case of sharp
and fuzzy RD designs, it is sufficient to assume that the potential covariates under
treatment and control have equal conditional expectation at the cutoff. Indeed, this is
often conceived and presented as a falsification or placebo test in RD empirical studies.
This simple requirement of balanced covariates at the cutoff, or zero RD treatment effect
on covariates, ensures that τ̃(h) →P τ . In the case of sharp and fuzzy kink RD designs, it
is required to assume that the first derivative of the regression functions under treatment
and control are equal at the cutoff. These conditions can be tested empirically using
the package rdrobust, for example, by taking the covariates as outcome variables.

The precise form of τ̃(h) warrants several comments. Most notably, the estimation
combines units from both sides of the cutoff x, whereas, typically, the two sides are
estimated separately. The most salient consequence is that the coefficient on the covari-
ates, γ̃Y,p(h), is common to both treatment and comparison groups. This turns out to
be important for consistency of τ̃(h), the covariate-adjusted RD estimator of τ , as men-
tioned above. Furthermore, this mimics standard widespread practice for experimental
treatment-effects estimation with covariate adjustment, where additional covariates are
typically included in an additive-separable, linear-in-parameters way. Finally, when the
covariates are excluded, the standard RD treatment effect previously implemented in
rdrobust is recovered. See section 6 for more discussion on backward compatibility.
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In the upgraded version of rdrobust, we continue to use the same kernel function for
units below and above the cutoff, but we now allow for possibly different bandwidths on
either side. This feature is discussed in more detail below in the context of data-driven
bandwidth selection. The presentation of τ̃(h) assumes an equal bandwidth applied to
both sides only to simplify the exposition. The supplemental appendix of CCFT contains
all the details, including the possibility of using different bandwidths on either side of
the cutoff.

For inference based on τ̃(h), we continue to use robust nonparametric bias-correction
methods, following the recent results in Calonico, Cattaneo, and Titiunik (2014b) and
Calonico, Cattaneo, and Farrell (Forthcoming, 2016a). Although technically more cum-
bersome, because of the inclusion of additional covariates and joint RD estimation, the
core ideas underlying robust bias-correction inference do not change much with the in-
clusion of Zi, and they have already been discussed from an implementation perspective
in Calonico, Cattaneo, and Titiunik (2014a, 2015b).

Thus, we do not reproduce the details here and instead offer a quick outline of
their main features for future reference and discussion: i) the misspecification bias of
τ̃(h) now depends on the curvature of E{Yi(t)|Xi = x}, as before, and also on the
curvature of the conditional expectations of the (potential) additional covariates given
the score included in the estimation; ii) this leading bias takes the form hp+1B, where B is
different depending on whether additional covariates are included; iii) the bias-corrected

estimator is then τ̃ bc(h, b) := τ̃(h) − hp+1B̃(b), where B̃(b) denotes an estimator of B
constructed using a possibly different preliminary bandwidth sequence b; and iv) the
variance of τ̃ bc(h, b) is denoted by Vbc(h, b), which captures both the variability of the
RD point estimator and the variability of bias correction.

Based on the above, and under standard regularity conditions, CCFT show that
valid asymptotic inference for τ can be conducted using the usual robust bias-corrected

t statistic
√
nh{τ̃ bc(h, b)− τ}/

√
Ṽbc(h, b), where Ṽbc(h, b) denotes a consistent variance

estimator of Vbc(h, b). Using this result, for example, we obtain a 100× (1−α)% robust
bias-corrected covariate-adjusted CI for the treatment effect τ ,[

τ̃ bc(h, b)−
Φ1−α/2√

nh
×
√
Ṽbc(h, b) , τ̃ bc(h, b) +

Φ1−α/2√
nh

×
√
Ṽbc(h, b)

]
where Φα denotes the α percentile of the standard normal distribution.

In the next two subsections, we discuss the choice of variance estimator, Ṽbc(h, b),
which now allows for different heteroskedasticity-robust and cluster–robust methods,
and the choice of bandwidths, which now allows for several data-driven plug-in methods.
Recall that we focus exclusively on the new features of the rdrobust package. See
section 6 for more discussion on backward compatibility.
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2.2 HCk and cluster–robust variance estimation

The variance estimator used in rdrobust is designed to capture the variability of the
initial estimator, τ̃(h), and the bias correction, hp+1B̃(b), and as such will depend on
both bandwidths. The particular form of the variance, Vbc(h, b), is derived with a fixed-
n (preasymptotic) approach, conditional on the score observations X1, X2, . . . , Xn. This
approach, together with the fact that both sources of variability are captured, yields
asymptotic refinements and increased robustness to bandwidth choice of the associated
inference procedures. Importantly, in the present context, Vbc(h, b) depends on the
additional covariates and hence is necessarily different from prior work.

The only unknown elements of Vbc(h, b) are the variances of the outcome and the
covariates, and their covariance, conditional on X1, X2, . . . , Xn (the latter two being

new here). That is, to form an estimator Ṽbc(h, b), we must estimate, for i = 1, 2, . . . , n
and k = 1, 2, . . . , d,

σY Zk−,i = Cov {Yi(0), Zki(0)|Xi} , σY Zk+,i = Cov {Yi(1), Zki(1)|Xi}

The feasible variance estimators are then constructed by replacing these unknown ob-
jects with estimators thereof, according to one of the following two options:

1. Nearest-neighbor method. This method uses ideas in Müller and Stadtmuller
(1987) and Abadie and Imbens (2008). We replace σY Zk−,i and σY Zk+,i by the
corresponding sample covariance estimator based on the J NNs to unit i, among
units belonging to the same group (that is, below or above the cutoff). Specifically,
neighbors are determined using the Euclidean distance based on the score vari-
able Xi, and J denotes a (fixed) number of neighbors chosen. Up to the change of
variable being used (that is, Yi or Zki for k = 1, 2, . . . , d), the procedure is exactly
the same as the one used in the previous version of the rdrobust package.

2. HCk plug-in residuals method. This method applies ideas from least-squares esti-
mation and inference; see MacKinnon (2013) and Cameron and Miller (2015) for
review on variance estimation in this context. In this case, we replace σY Zk−,i

and σY Zk+,i by, respectively,

�(Xi < x)ω−,i

{
Yi − rq(Xi − x)′β̂Y−,q(h)

}{
Zki − rq(Xi − x)′β̂Zk−,q(h)

}
�(Xi ≥ x)ω+,i

{
Yi − rq(Xi − x)′β̂Y+,q(h)

}{
Zki − rq(Xi − x)′β̂Zk+,q(h)

}
for k = 1, 2, . . . , d, which are plug-in residuals obtained from running local poly-
nomial regressions using either the main outcome variable or the additional co-
variates as the dependent variable. The weights ω−,i and ω+,i denote a possible
finite-sample adjustment for HCk variance estimators, and q > p denotes the poly-
nomial order used for bias correction.

Precise use of these estimators, and the relevant formulas, are discussed in detail
in the supplemental appendix of CCFT. See also Bartalotti and Brummet (2017) for a
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discussion on cluster–robust inference in sharp RD designs. Cluster–robust versions of
variance estimators are also implemented, following the same logic described above but
also accounting for the (one-way) cluster structure of the data.

The different variance estimators are used to Studentize statistics, form CIs, and
implement data-driven bandwidth selectors, allowing for both conditional heteroskedas-
ticity (NN, HC0, HC1, HC2, HC3) and clustering (NN or plug-in residuals with the usual
degrees-of-freedom adjustment). To summarize, the upgraded rdrobust package in-
cludes a total of 10 distinct variance estimators (NN or plug-in residuals with either
HC0, HC1, HC2, or HC3, and NN-adjusted or degrees-of-freedom–adjusted clustering). As
a comparison, the previous version of rdrobust had only two (NN or plug-in residuals
using HC0 weighting). As explained above, when additional covariates are not included,
the upgraded implementations may be used for standard RD inference involving only
the outcome and the score variables. See section 6 for more discussion on backward
compatibility.

Finally, an important practical issue regarding the NN variance estimators arises
when the running variable Xi is not continuously distributed. In some applications,
Xi may exhibit mass points, making the number of eligible equidistant near neighbors
strictly larger than the number specified in rdrobust or rdbwselect (recall that the
default is three neighbors for each observation). In the previous version of these com-
mands, ties were broken at random to select the exact number of neighbors prespecified
by the user (or set by default). In the upgraded version of these commands, the NN

variance estimators use all equidistant neighbors, even if the total number exceeds the
one selected. This new approach is fully replicable and also leads to a more efficient
variance estimator.

2.3 Bandwidth selection

The rdbwselect command has also been upgraded and now offers several new data-
driven bandwidth selection methods. The three main upgrades are i) homogenized and
improved MSE-optimal bandwidth choices for sharp RD designs, ii) new MSE-optimal
bandwidth choices for fuzzy RD designs, and iii) new CER-optimal bandwidth choices
for sharp and fuzzy RD designs. As a comparison, the previous version of rdbwselect
implemented only three main types of MSE-optimal bandwidth choices for sharp RD

designs (ik, cct, and cv). The new version implements over 10 different choices for
sharp RD designs (and also implements the corresponding choices for fuzzy RD de-
signs). In addition, we continue to offer regularization methods for all choices imple-
mented, following Imbens and Kalyanaraman (2012), but implemented as discussed in
Calonico, Cattaneo, and Titiunik (2014a,b, 2015b) and the corresponding supplemental
appendices.

In this section, we heuristically explain some of the bandwidth choices offered in the
upgraded version of the rdbwselect command. See Cattaneo and Vazquez-Bare (2016)
for a more comprehensive discussion and comparison between bandwidth selection pro-
cedures. This command now allows for different bandwidths on either side of the cutoff
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(previously only one common bandwidth was allowed), in addition to distinguishing be-
tween sharp and fuzzy RD designs and between MSE-optimal and CER-optimal choices.
We outline only the case of sharp RD designs to avoid cumbersome notation. For tech-
nical and methodological details, see CCFT and its supplemental appendix.

Regarding the new bandwidth selectors implemented, note that a typical asymptotic
MSE expansion gives

MSE

{
θ̂(h)

}
≈ h2p+2B +

1

nh
V

for some estimator θ̂(h), where B and V denote the squared bias and the variance of
the estimator, respectively. Different estimators will have different bias and variance
terms, which also depend on whether additional covariates are included. For example,
in sharp RD designs, we consider four main alternative MSE expansions determined by
the choice of estimator:

1. RD estimator θ̂(h) = τ̃(h) = e′0β̃Y+,p(h)− e′0β̃Y−,p(h)

2. Left-hand-side estimator θ̂(h) = e′0β̃Y−,p(h)

3. Right-hand-side estimator θ̂(h) = e′0β̃Y+,p(h)

4. Sum of the one-sided estimators θ̂(h) = e′0β̃Y+,p(h) + e′0β̃Y−,p(h)

We construct these MSE expansions for both the standard case without covariates and
the covariate-adjusted case. This gives a set of alternative MSE-optimal bandwidth
choices: hmse,rd, hmse,l, hmse,r, and hmse,sum, with or without additional covariates. The
first three are directly applicable to RD designs, while the fourth is mostly useful for
regularization purposes.

Assuming the denominator is not 0, any of these MSE-optimal bandwidth choices,
with or without additional covariates, takes the following form:

hmse,j =

{
Vj/n

2(1 + p)Bj

} 1
3+2p

j ∈ {rd, l, r, sum}

where the constants are specific to the option chosen. Given a choice of MSE-optimal
bandwidth, preliminary estimates of the leading asymptotic constants are straightfor-
ward to construct, though they depend on whether additional covariates have been
included as well as whether heteroskedasticity or clustering is assumed. This leads to
the MSE-optimal plug-in bandwidth selectors:

ĥmse,j =

{
V̂j/n

2(1 + p)B̂j

} 1
3+2p

j ∈ {rd, l, r, sum}

where the exact form of the specific preliminary estimates, and some of their asymp-
totic properties, are discussed in the supplemental appendix of CCFT. The upgraded
rdbwselect command implements all these alternatives.
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In addition, following the recent work in Calonico, Cattaneo, Farrell (Forthcoming,
2016a), we implement CER-optimal bandwidth choices. These alternative plug-in band-
width selectors take the form

ĥcer,j = n
− p

(3+p)(3+2p) × ĥmse,j j ∈ {rd, l, r, sum}

These bandwidth choices minimize the CER of the robust bias-corrected CI implemented
by rdrobust and therefore may be preferable in practice for inference purposes.

To summarize, the major upgrade of the rdbwselect command offers now eight dis-
tinct MSE-optimal bandwidth choices (ĥmse,rd, ĥmse,l, ĥmse,r, and ĥmse,sum, with and with-

out regularization) and eight distinct CER-optimal bandwidth choices (ĥcer,rd, ĥcer,l,

ĥcer,r, and ĥcer,sum, with and without regularization). Furthermore, we also provide the
following two additional bandwidth selectors, which have better rate properties:

• Possibly different bandwidths on either side: ĥcomb,l = median{ĥmse,l, ĥmse,rd,
ĥmse,sum} and ĥcomb,r = median{ĥmse,r, ĥmse,rd, ĥmse,sum}, and similarly for the CER-
optimal version.

• Equal bandwidth on both sides: ĥcomb = min{ĥmse,rd, ĥmse,sum}, and similarly for
the CER-optimal version.

Importantly, note that the ik, cct, and cv bandwidth choices have been depre-
cated and are no longer supported as part of the rdrobust package. The bandwidth
choice ĥmse,rd is an upgraded version of both the ik and the cct implementations of the
MSE-optimal bandwidth selectors discussed in Imbens and Kalyanaraman (2012) and
Calonico, Cattaneo, and Titiunik (2014b), respectively. See section 6 for more discus-
sion on backward compatibility. Lastly, the cv (cross-validation) bandwidth selection
method was removed because it appears to be considerably less popular than plug-in
bandwidth selection methods in empirical work, and at present it is not theoretically
justified nor easily portable to the new settings considered in the upgraded version of
rdrobust (for example, inclusion of covariates or clustering).

2.4 RD plots

RD plots are commonly used in RD empirical work, and their main methodological fea-
tures are discussed in great detail in Calonico, Cattaneo, and Titiunik (2015a). These
plots can be easily constructed using the rdplot command. The upgraded version of
this command now includes two main new features.

• Kernel-weighted polynomial fits with possibly different bandwidths. The rdplot

command now allows for (global or restricted) weighted polynomial fits using any
of the kernel weighting schemes available for estimation and inference in RD de-
signs: uniform, triangular, or Epanechnikov. Furthermore, following the upgrades
to rdrobust and rdbwselect, the rdplot command now also allows for possi-
bly different bandwidths on either side of the cutoff when computing the global
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polynomial fits. These new options permit the exact graphical presentation of RD

point estimation and inference by restricting the support of the running variable
to the neighborhood around the cutoff determined by the bandwidth used. See
section 5 for syntax details and section 7 for an empirical illustration of this new
feature.

• Confidence intervals for local binned fits. The rdplot command now allows the
user to plot and report CIs for local means within each bin. Specifically, for each
bin j = 1, 2, . . . , Jn, the rdplot command computes the following CI:

CIj =
[
Xj − T1−α/2 ×

√
S2
j /Nj , Xj + T1−α/2 ×

√
S2
j /Nj

]
where Xj denotes the sample mean in bin j, S2

j denotes the sample variance in
bin j, Nj denotes the sample size in bin j, and Tα denotes the α ∈ (0, 1) quantile
of the Student’s t distribution with Nj − 1 degrees of freedom. This formula is
justified by preasymptotic inference and as a nonparametric inference procedure,
up to smoothing bias, following the results in Cattaneo and Farrell (2013) for
partitioning regression methods.

3 The rdrobust command

This section describes the full syntax of the upgraded rdrobust command. When-
ever possible, we retain the same syntax as in the previous version of this command
(Calonico, Cattaneo, and Titiunik 2014a, 2015b).

3.1 Syntax

rdrobust depvar runvar
[
if
] [

in
] [

, c(cutoff) p(pvalue) q(qvalue)

deriv(dvalue) fuzzy(fuzzyvar
[
sharpbw

]
) covs(covars) kernel(kernelfn)

weights(weightsvar) h(hvalueL hvalueR) b(bvalueL bvalueR) rho(rhovalue)

scalepar(scaleparvalue) bwselect(bwmethod) scaleregul(scaleregulvalue)

vce(vcemethod) level(level) all
]

where depvar is the dependent variable and runvar is the running variable (also known
as the score or forcing variable).

Only new options or options that have changed in this version are discussed in
section 3.2.

3.2 Options

fuzzy(fuzzyvar
[
sharpbw

]
) specifies the treatment status variable used to implement

fuzzy RD estimation (or fuzzy kink RD if deriv(1) is also specified). The default is
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sharp RD design. If the sharpbw option is set, the fuzzy RD estimation is performed
using a bandwidth selection procedure for the sharp RD model. This option is
automatically selected if there is perfect compliance at either side of the threshold.

covs(covars) specifies additional covariates to be used for estimation and inference.

weights(weightsvar) specifies the variable used for optional weighting of the estimation
procedure. The unit-specific weights multiply the kernel function.

h(hvalueL hvalueR) specifies the main bandwidth, h, to be used on the left and on the
right of the cutoff, respectively. If only one value is specified, then this value is used
on both sides. If not specified, the bandwidth(s) h is computed by the companion
command rdbwselect.

b(bvalueL bvalueR) specifies the bias bandwidth, b, to be used on the left and on the
right of the cutoff, respectively. If only one value is specified, then this value is used
on both sides. If not specified, the bandwidth(s) b is computed by the companion
command rdbwselect.

bwselect(bwmethod) specifies the bandwidth selection procedure to be used. By de-
fault, it computes both h and b, unless ρ is specified, in which case it computes only
the h and sets b = h/ρ. Implementation and numerical details are given in CCFT.
bwmethod may be one of the following:

mserd specifies one common MSE-optimal bandwidth selector for the RD treatment-
effect estimator. mserd is the default.

msetwo specifies two different MSE-optimal bandwidth selectors (below and above
the cutoff) for the RD treatment-effect estimator.

msesum specifies one common MSE-optimal bandwidth selector for the sum of regres-
sion estimates (as opposed to the difference thereof).

msecomb1 specifies min(mserd, msesum).

msecomb2 specifies median(msetwo, mserd, msesum) for each side of the cutoff sepa-
rately.

cerrd specifies one common CER-optimal bandwidth selector for the RD treatment-
effect estimator.

certwo specifies two different CER-optimal bandwidth selectors (below and above
the cutoff) for the RD treatment-effect estimator.

cersum specifies one common CER-optimal bandwidth selector for the sum of regres-
sion estimates (as opposed to the difference thereof).

cercomb1 specifies min(cerrd, cersum).

cercomb2 specifies median(certwo, cerrd, cersum) for each side of the cutoff sepa-
rately.
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vce(vcemethod) specifies the procedure used to compute the variance–covariance matrix
estimator. Implementation and numerical details are given in CCFT. vcemethod may
be one of the following:

nn
[
nnmatch

]
specifies a heteroskedasticity-robust NN variance estimator with nn-

match indicating the minimum number of neighbors to be used. The default is
vce(nn 3).

hc0 specifies a heteroskedasticity-robust HC0 plug-in residuals variance estimator.

hc1 specifies a heteroskedasticity-robust HC1 plug-in residuals variance estimator.

hc2 specifies a heteroskedasticity-robust HC2 plug-in residuals variance estimator.

hc3 specifies a heteroskedasticity-robust HC3 plug-in residuals variance estimator.

nncluster clustervar
[
nnmatch

]
specifies a cluster–robust NN variance estimator

with clustervar indicating the cluster ID variable and nnmatch indicating the
minimum number of neighbors to be used.

cluster clustervar specifies a cluster–robust plug-in residuals variance estimator
with clustervar indicating the cluster ID variable.

3.3 Options removed or deprecated

The following options were removed from the upgraded rdrobust command: delta(),
cvgrid min(), cvgrid max(), cvgrid length(), cvplot, and matches().

4 The rdbwselect command

This section describes the full syntax of the upgraded rdbwselect command. When-
ever possible, we retain the same syntax as in the previous version of this command
(Calonico, Cattaneo, and Titiunik 2014a, 2015b).

4.1 Syntax

rdbwselect depvar runvar
[
if
] [

in
] [

, c(cutoff) p(pvalue) q(qvalue)

deriv(dvalue) fuzzy(fuzzyvar
[
sharpbw

]
) covs(covars) kernel(kernelfn)

weights(weightsvar) bwselect(bwmethod) scaleregul(scaleregulvalue)

vce(vcemethod) all
]

where depvar is the dependent variable and runvar is the running variable (also known
as the score or forcing variable).

Only new options or options that have changed in this version are discussed in
section 4.2.
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4.2 Options

fuzzy(fuzzyvar
[
sharpbw

]
) specifies the treatment status variable used to implement

fuzzy RD estimation (or fuzzy kink RD if deriv(1) is also specified). The default is
sharp RD design. If the sharpbw option is set, the fuzzy RD estimation is performed
using a bandwidth selection procedure for the sharp RD model. This option is
automatically selected if there is perfect compliance at either side of the threshold.

covs(covars) specifies additional covariates to be used for estimation and inference.

weights(weightsvar) specifies the variable used for optional weighting of the estimation
procedure. The unit-specific weights multiply the kernel function.

bwselect(bwmethod) specifies the bandwidth selection procedure to be used. Imple-
mentation and numerical details are given in CCFT. bwmethod may be one of the
following:

mserd specifies one common MSE-optimal bandwidth selector for the RD treatment-
effect estimator. This is the default.

msetwo specifies two different MSE-optimal bandwidth selectors (below and above
the cutoff) for the RD treatment-effect estimator.

msesum specifies one common MSE-optimal bandwidth selector for the sum of regres-
sion estimates (as opposed to the difference thereof).

msecomb1 specifies min(mserd, msesum).

msecomb2 specifies median(msetwo, mserd, msesum) for each side of the cutoff sepa-
rately.

cerrd specifies one common CER-optimal bandwidth selector for the RD treatment-
effect estimator.

certwo specifies two different CER-optimal bandwidth selectors (below and above
the cutoff) for the RD treatment-effect estimator.

cersum specifies one common CER-optimal bandwidth selector for the sum of regres-
sion estimates (as opposed to the difference thereof).

cercomb1 specifies min(cerrd, cersum).

cercomb2 specifies median(certwo, cerrd, cersum) for each side of the cutoff sepa-
rately.

vce(vcemethod) specifies the procedure used to compute the variance–covariance matrix
estimator. Implementation and numerical details are given in CCFT. vcemethod may
be one of the following:

nn
[
nnmatch

]
specifies a heteroskedasticity-robust NN variance estimator with nn-

match indicating the minimum number of neighbors to be used. The default is
vce(nn 3).
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hc0 specifies a heteroskedasticity-robust HC0 plug-in residuals variance estimator.

hc1 specifies a heteroskedasticity-robust HC1 plug-in residuals variance estimator.

hc2 specifies a heteroskedasticity-robust HC2 plug-in residuals variance estimator.

hc3 specifies a heteroskedasticity-robust HC3 plug-in residuals variance estimator.

nncluster clustervar
[
nnmatch

]
specifies a cluster–robust NN variance estimator

with clustervar indicating the cluster ID variable and nnmatch indicating the
minimum number of neighbors to be used.

cluster clustervar specifies a cluster–robust plug-in residuals variance estimator
with clustervar indicating the cluster ID variable.

4.3 Options removed or deprecated

The following options were removed from the upgraded rdbwselect command:
delta(), cvgrid min(), cvgrid max(), cvgrid length(), cvplot, and matches().

5 The rdplot command

This section describes the full syntax of the upgraded rdplot command. Whenever
possible, we retain the same syntax as in the previous version of this command (Calonico,
Cattaneo, and Titiunik 2014a, 2015b).

5.1 Syntax

rdplot depvar runvar
[
if
] [

in
] [

, c(cutoff) p(pvalue) kernel(kernelfn)

weights(weightsvar) h(hvalueL hvalueR) nbins(nbinsvalueL nbinsvalueR)

binselect(binmethod) scale(scalevalueL scalevalueR) ci(cilevel) shade

support(supportvalueL supportvalueR) genvars graph options(gphopts) hide
]

where depvar is the dependent variable and runvar is the running variable (also known
as the score or forcing variable).

Only new options or options that have changed in this version are discussed in
section 5.2.

5.2 Options

kernel(kernelfn) specifies the kernel function used to construct the global polynomial
estimators. kernelfn may be triangular, uniform, or epanechnikov. The default is
kernel(uniform) (that is, equal or no weighting to all observations on the support
of the kernel).
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weights(weightsvar) specifies the variable used for optional weighting of the estimation
procedure. The unit-specific weights multiply the kernel function.

h(hvalueL hvalueR) specifies the main bandwidth, h, to be used on the left and on
the right of the cutoff, respectively. If only one value is specified, then this value is
used on both sides. If two bandwidths are specified, the first bandwidth is used for
the data below the cutoff and the second bandwidth is used for the data above the
cutoff. If not specified, it is chosen to span the full support of the data.

nbins(nbinsvalueL nbinsvalueR) specifies the number of bins used to the left of the
cutoff (denoted J−) and the number of bins used to the right of the cutoff (denoted
J+), respectively. If only one value is specified, then this value is used on both sides.
If not specified, J− and J+ are estimated using the binselect() option.

scale(scalevalueL scalevalueR) specifies a multiplicative factor to be used with the
optimal number of bins selected. Specifically, for the control and treated units,
the number of bins used will be 〈scalevalueL × Ĵ−,n〉 and 〈scalevalueR × Ĵ+,n〉,
respectively. If only one value is specified, then this value is used on both sides. The
default is scale(1 1).

ci(cilevel) specifies the optional graphical option to display CIs of cilevel coverage for
each bin.

shade specifies the optional graphical option to replace CIs with shaded areas.

support(supportvalueL supportvalueR) specifies an optional extended support of the
running variable to be used in the construction of the bins. The default is the
sample range.

genvars generates the following new variables that store results:

rdplot id stores a unique bin ID for each observation. Negative natural numbers are
assigned to observations to the left of the cutoff, and positive natural numbers
are assigned to observations to the right of the cutoff.

rdplot N stores the number of observations in the corresponding bin for each obser-
vation.

rdplot min bin stores the lower end value of the bin for each observation.

rdplot max bin stores the upper end value of the bin for each observation.

rdplot mean bin stores the middle point of the corresponding bin for each observa-
tion.

rdplot mean x stores the sample mean of the running variable within the corre-
sponding bin for each observation.

rdplot mean y stores the sample mean of the outcome variable within the corre-
sponding bin for each observation.

rdplot se y stores the standard deviation of the mean of the outcome variable
within the corresponding bin for each observation.
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rdplot ci l stores the lower end value of the confidence interval for the sample
mean of the outcome variable within the corresponding bin for each observation.

rdplot ci r stores the upper end value of the confidence interval for the sample
mean of the outcome variable within the corresponding bin for each observation.

rdplot hat y stores the predicted value of the outcome variable given by the global
polynomial estimator.

5.3 Options removed or deprecated

The following options were removed from the upgraded rdplot command: numbinl(),
numbinr(), scalel(), scaler(), generate(), lowerend(), and upperend().

6 Backward compatibility

Here we discuss backward compatibility with the previous version of rdrobust for Stata
and the R software package. We organize the presentation in terms of the three main
functions.

• rdrobust. For a given choice of bandwidth(s), this command is backward com-
patible by default when additional covariates are not included. Point estimators
are identical in all cases, but variance estimators may slightly change in some cases
because of internal numerical and implementation upgrades. The previous version
of this command included only two variance estimators: NN and plug-in residu-
als without weighting (HC0). The upgraded version of this command continues
to offer these two choices, but the residuals are computed in a slightly different
way to improve speed and to give further compatibility with linear least-squares
regression-based methods. This new way of computing residuals may generate
numerical changes in the following cases:

1. Nearest-neighbor variance estimation. This variance estimator (which is the
default) will be identical to the previous version of the rdrobust command
in the absence of ties in the running variable Xi but will change slightly when
ties occur. If the running variable Xi is truly continuously distributed, there
should be no ties, and hence the default option of rdrobust is fully backward
compatible. When ties occur, the new optimized NN procedure will result in
a much faster but slightly different variance estimator.

2. Plug-in residuals variance estimation. The upgraded version of rdrobust

includes a new variance estimator based on plug-in residuals, which is not
backward compatible. This new version computes all residuals at the cut-
off point and is therefore much faster. This approach also mimics exactly
linear least-squares methods. In contrast, the previous version of this com-
mand computed plug-in residuals using nonparametric methods and hence
evaluated the predicted values at different values near the cutoff.
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• rdbwselect. This command is not backward compatible. Given the many new
data-driven bandwidth options, and the several numerical and implementation
upgrades, we were forced to redo the command completely. To allow for backward
compatibility, we do provide its previous version (called rdbwselect 2014) as part
of the upgraded rdrobust package. This previous (deprecated) version may be
used to obtain data-driven bandwidths, which then can be inputted manually to
rdrobust to obtain backward compatible RD estimates and inference procedures.

As mentioned above, now two distinct approaches are available for bandwidth
selection in fuzzy RD design settings:

1. Select the bandwidth(s) focusing only on the sharp RD intention-to-treat
estimator entering the numerator of the fuzzy RD treatment-effect estimator.

2. Select the bandwidth(s) focusing only on the actual fuzzy RD treatment-effect
estimator, that is, the ratio of reduced-form RD estimators.

In the previous version of rdbwselect, only the first approach was available, but
now both alternatives are implemented in the upgraded version. In fuzzy RD

contexts, rdbwselect will use the second approach by default when two-sided im-
perfect compliance is present but will otherwise use the first approach. To force
rdbwselect to use the first approach even when two-sided imperfect compliance
is present, use the additional option sharpbw within the fuzzy() option when
specifying the fuzzy variable. Because rdrobust selects automatic data-driven
bandwidths using rdbwselect, the above remarks and options apply to the up-
graded rdrobust command as well.

• rdplot. This command is fully backward compatible. All upgrades are included
in addition to the features previously available in this command. Notice that
the options for this command have been reorganized to improve consistency and
homogeneity with rdrobust and rdbwselect.

7 Illustration of new methods

We illustrate our commands using the same dataset already used in Calonico, Cattaneo,
and Titiunik (2014a, 2015b), where the previous version of the rdrobust, rdbwselect,
and rdplot commands are introduced and discussed. While this facilitates the discus-
sion and comparison, in this section, we focus almost exclusively on the new features
available in the new version of the package. Whenever possible, we briefly compare and
highlight any substantive changes in implementation.

rdrobust senate.dta contains the outcome variable (Yi), running variable (Xi),
and four additional covariates (Zi) constructed by Cattaneo, Frandsen, Titiunik (2015).
The illustration focuses on party advantages in U.S. Senate elections for the period
1914–2010, using a sharp RD design with the unit of analysis being the state at a given
election. In this section, we focus on the running variable used to analyze the RD effect
of the Democratic party winning a U.S. Senate seat on the vote share obtained in the
following election for that same seat.
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First, we load the database and present summary statistics:

. use rdrobust_senate.dta, clear

. sum vote margin class termshouse termssenate population, sep(2)

Variable Obs Mean Std. Dev. Min Max

vote 1,297 52.66627 18.12219 0 100
margin 1,390 7.171159 34.32488 -100 100

class 1,390 2.023022 .8231983 1 3
termshouse 1,108 1.436823 2.357133 0 16

termssenate 1,108 4.555957 3.720294 1 20
population 1,390 3827919 4436950 78000 3.73e+07

The database also includes two other variables, state and year, which record the
state and year of each election. The running variable is margin, which ranges from −100
to 100 and records the Democratic party’s margin of victory in the statewide election
for a given U.S. Senate seat, defined as the vote share of the Democratic party minus the
vote share of its strongest opponent. The outcome variable is vote, which ranges from 0
to 100 and records the Democratic vote share in the following election for the same seat
(that is, six years later). The cutoff is normalized to x = 0. The additional covariates
are class, termshouse, termssenate, and population. The variable class identifies
the electoral class each Senate seat belongs to (this indicates which of the possible three
electoral cycles each seat is in); the variables termshouse and termssenate capture the
experience of the Democratic candidate by recording the cumulative number of terms
previously served in U.S. House and Senate, respectively; and the variable population
records the population of the Senate seat’s state.

7.1 RD plots with CIs

As mentioned above, the rdplot command is fully backward compatible. Hence, in this
section, we illustrate only its new features. One of these new features is the inclusion
of CIs for the binned sample mean (or partitioning) estimator. This additional option
is useful in presenting and assessing the variability of the RD design.
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. rdplot vote margin, binselect(es) ci(95)
> graph_options(title("RD Plot: U.S. Senate Election Data")
> ytitle(Vote Share in Election at time t+2)
> xtitle(Vote Share in Election at time t)
> graphregion(color(white)))

RD Plot with evenly spaced number of bins using spacings estimators.

Cutoff c = 0 Left of c Right of c Number of obs = 1297
Kernel = Uniform

Number of obs 595 702
Eff. Number of obs 595 702

Order poly. fit (p) 4 4
BW poly. fit (h) 100.000 100.000

Number of bins scale 1.000 1.000

Outcome: vote. Running variable: margin.

Left of c Right of c

Bins selected 8 9
Average bin length 12.500 11.111
Median bin length 12.500 11.111

IMSE-optimal bins 8 9
Mimicking Var. bins 15 35

Rel. to IMSE-optimal:
Implied scale 1.000 1.000

WIMSE var. weight 0.500 0.500
WIMSE bias weight 0.500 0.500
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RD Plot: U.S. Senate Election Data

Figure 1. IMSE-optimal evenly spaced RD plot with CIs

Figure 1 provides CIs using the IMSE-optimal number of bins choice for evenly spaced
bins on the support of the running variable. In theory, the CIs presented may exhibit a
first-order smoothing bias, so in applications it may be useful to select a larger number
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of bins when including these CIs. One way of doing so is to use the mimicking-variance
number of bins choice (for example, using the binselect(esmv) option), which we do
not present here to conserve space. Alternatively, the researcher can simply “under-
smooth” (that is, choose a larger number of bins) manually either by scaling up the
IMSE-optimal choice with the scale() option or by setting the number of bins directly
with the nbins() option.

We illustrate the other new features of the upgraded rdplot command in the fol-
lowing subsections.

7.2 Default results and backward compatibility

The upgraded rdrobust command works in exactly the same way as before. For exam-
ple, using only the outcome and running variables, we obtain the following results with
its default options. (We will refer to these default results several times in the upcoming
subsections.)

. rdrobust vote margin

Sharp RD estimates using local polynomial regression.

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 359 322 VCE method = NN

Order est. (p) 1 1
Order bias (q) 2 2

BW est. (h) 17.708 17.708
BW bias (b) 27.984 27.984

rho (h/b) 0.633 0.633

Outcome: vote. Running variable: margin.

Method Coef. Std. Err. z P>|z| [95% Conf. Interval]

Conventional 7.416 1.4604 5.0782 0.000 4.55378 10.2783
Robust - - 4.3095 0.000 4.09441 10.9255

The above results are not numerically identical to those reported in Calonico, Cat-
taneo, and Titiunik (2014a, 2015b). The differences are due to the choice of bandwidths
because, as explained above, the new upgraded rdbwselect command is not backward
compatible. Recall that, by default, the rdrobust command uses the companion com-
mand rdbwselect to select the bandwidths optimally whenever they are not specified
by the user.
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Nonetheless, the upgraded rdrobust command is backward compatible given the
choice of bandwidths. To see this, we set the bandwidths manually to match those
reported in Calonico, Cattaneo, and Titiunik (2014a, 2015b), which gives the following
results:

. rdrobust vote margin, h(16.79369) b(27.43745)

Sharp RD estimates using local polynomial regression.

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = Manual

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 343 310 VCE method = NN

Order est. (p) 1 1
Order bias (q) 2 2

BW est. (h) 16.794 16.794
BW bias (b) 27.437 27.437

rho (h/b) 0.612 0.612

Outcome: vote. Running variable: margin.

Method Coef. Std. Err. z P>|z| [95% Conf. Interval]

Conventional 7.4253 1.4954 4.9656 0.000 4.49446 10.3561
Robust - - 4.2675 0.000 4.06975 10.9833

These results are equal to those reported in Calonico, Cattaneo, and Titiunik (2014a,
2015b).

7.3 Using RD plots to present treatment effects

We already showed how to incorporate local CIs in RD plots. Now we show how to use
these plots to present the RD treatment effects visually, which is now possible using the
new features of the rdplot command.

We use the default MSE-optimal RD estimate presented above, which is obtained
via the command rdrobust vote margin. Recall that by default rdrobust uses a
triangular kernel with a common bandwidth on both sides of the cutoff. To plot the
point estimate, we can use the rdplot command after setting the p(), kernel(), and
h() options appropriately.
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. quietly rdrobust vote margin

. rdplot vote margin if -e(h_l)<= margin & margin <= e(h_r),
> binselect(esmv) kernel(triangular) h(`e(h_l)´ `e(h_r)´) p(1)
> graph_options(title("RD Plot: U.S. Senate Election Data")
> ytitle(Vote Share in Election at time t+2)
> xtitle(Vote Share in Election at time t)
> graphregion(color(white)))

RD Plot with evenly spaced mimicking variance number of bins using spacings
> estimators.

Cutoff c = 0 Left of c Right of c Number of obs = 681
Kernel = Triangular

Number of obs 359 322
Eff. Number of obs 359 322

Order poly. fit (p) 1 1
BW poly. fit (h) 17.708 17.708

Number of bins scale 1.000 1.000

Outcome: vote. Running variable: margin.

Left of c Right of c

Bins selected 16 18
Average bin length 1.090 0.983
Median bin length 1.090 0.983

IMSE-optimal bins 7 7
Mimicking Var. bins 16 18

Rel. to IMSE-optimal:
Implied scale 2.286 2.571

WIMSE var. weight 0.077 0.056
WIMSE bias weight 0.923 0.944
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Figure 2. RD plot of treatment effect
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Figure 2 is constructed using the upgraded rdplot command by restricting the
support to the neighborhood around the cutoff defined by the choice of bandwidth h (in
this example, equal on both sides). We then set the (global) fit in the RD plot to match
the local polynomial point estimation conducted by rdrobust in that neighborhood;
that is, we choose p = 1, K(·) to be the triangular kernel, and h to be the bandwidth
used in the estimation, shown above. The resulting polynomial fit represents the RD

point estimator exactly.

For graphical presentation purposes, we also selected in rdplot a mimicking-variance
number of bins to exhibit the variability of the data within the window around the
cutoff determined by the data-driven choice of bandwidth. In this example, the vertical
distance between the two weighted linear polynomial fits is exactly 7.416, as reported
in the previous section. By increasing the number of bins using the nbins() option,
the RD plot can be used to exhibit the actual raw data instead of the average values of
the outcome variable within each bin.

7.4 Robust bias-corrected inference with covariates and clustering

In this section, we illustrate the new features of the upgraded rdrobust command.
We show how to incorporate covariates in estimation and inference and how to use
cluster–robust variance estimators (with or without additional covariates).

First, we incorporate the covariates class, termshouse, and termssenate, keeping
the neighborhood around the cutoff constant. That is, we use the same bandwidths
obtained above via the default command: rdrobust vote margin.

. qui rdrobust vote margin

. local len = `e(ci_r_rb)´ - `e(ci_l_rb)´

. rdrobust vote margin, covs(class termshouse termssenate)
> h(`e(h_l)´ `e(h_r)´) b(`e(b_l)´ `e(b_r)´)

Covariate-adjusted sharp RD estimates using local polynomial regression.

Cutoff c = 0 Left of c Right of c Number of obs = 1108
BW type = Manual

Number of obs 491 617 Kernel = Triangular
Eff. Number of obs 309 280 VCE method = NN

Order est. (p) 1 1
Order bias (q) 2 2

BW est. (h) 17.708 17.708
BW bias (b) 27.984 27.984

rho (h/b) 0.633 0.633

Outcome: vote. Running variable: margin.

Method Coef. Std. Err. z P>|z| [95% Conf. Interval]

Conventional 6.8595 1.4165 4.8426 0.000 4.08322 9.63574
Robust - - 4.1911 0.000 3.75238 10.345

Covariate-adjusted estimates. Additional covariates included: 3

. display "CI length change: "
> round(((`e(ci_r_rb)´-`e(ci_l_rb)´)/`len´-1)*100,.01) "%"
CI length change: -3.49%
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The results above set the bandwidths manually (to be equal to the MSE-optimal
bandwidths without covariates) and also compute the percentage change in the interval
length of the robust bias-corrected CIs, because of the inclusion of the three addi-
tional covariates. Specifically, in this illustration, the CI length shrinks by 3.49%. The
MSE-optimal point estimate (without covariates) of 7.416 changes to 6.860 when the
additional covariates are included (though this change is statistically indistinguishable
from 0 at conventional levels).

Second, we incorporate the same additional covariates but let rdrobust select the
optimal bandwidths, which is done via rdbwselect. The data-driven bandwidths are
chosen to be MSE optimal and equal on both sides of the cutoff by default.

. qui rdrobust vote margin

. local len = `e(ci_r_rb)´ - `e(ci_l_rb)´

. rdrobust vote margin, covs(class termshouse termssenate)

Covariate-adjusted sharp RD estimates using local polynomial regression.

Cutoff c = 0 Left of c Right of c Number of obs = 1108
BW type = mserd

Number of obs 491 617 Kernel = Triangular
Eff. Number of obs 313 283 VCE method = NN

Order est. (p) 1 1
Order bias (q) 2 2

BW est. (h) 17.987 17.987
BW bias (b) 28.943 28.943

rho (h/b) 0.621 0.621

Outcome: vote. Running variable: margin.

Method Coef. Std. Err. z P>|z| [95% Conf. Interval]

Conventional 6.8514 1.4081 4.8656 0.000 4.09148 9.61125
Robust - - 4.1999 0.000 3.72856 10.2537

Covariate-adjusted estimates. Additional covariates included: 3

. display "CI length change: "
> round(((`e(ci_r_rb)´-`e(ci_l_rb)´)/`len´-1)*100,.01) "%"
CI length change: -4.48%

In this illustration, the point estimators and the bandwidth choices change only
slightly [from τ̃(h) = 6.860 and h = 17.708 to τ̃(h) = 6.851 and h = 17.987], and the
interval length reduction increases because of the inclusion of the additional covariates
in both point estimation and bandwidth selection (from 3.49% to 4.48%).

Third, we show that, as is well known in the literature, including covariates does not
always lead to improved precision. For example, if the covariates are irrelevant, they
can even increase the length of the CIs. In our illustration, the covariate population

gives an example.

. qui rdrobust vote margin

. local len = `e(ci_r_rb)´ - `e(ci_l_rb)´
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. rdrobust vote margin, covs(population)

Covariate-adjusted sharp RD estimates using local polynomial regression.

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 359 320 VCE method = NN

Order est. (p) 1 1
Order bias (q) 2 2

BW est. (h) 17.585 17.585
BW bias (b) 27.857 27.857

rho (h/b) 0.631 0.631

Outcome: vote. Running variable: margin.

Method Coef. Std. Err. z P>|z| [95% Conf. Interval]

Conventional 7.4376 1.4654 5.0754 0.000 4.56545 10.3097
Robust - - 4.3102 0.000 4.10714 10.9573

Covariate-adjusted estimates. Additional covariates included: 1

. display "CI length change: "
> round(((`e(ci_r_rb)´-`e(ci_l_rb)´)/`len´-1)*100,.01) "%"
CI length change: .28%

As seen above, conducting covariate-adjusted RD inference with population as the
additional covariate slightly increases the length of the resulting CIs (by roughly a
quarter of a percentage point).

Fourth, as discussed above, the covariates will not affect the consistency of the RD

treatment-effect estimator if they are “balanced” in the appropriate sense. For the
case of sharp RD designs, “balanced” means that they should have equal conditional
expectations at the cutoff. For the case of kink RD designs, “balanced” means that they
should have equal first derivatives of the conditional expectations at the cutoff. This
can be tested empirically.

. local covs "class termshouse termssenate population"

. local num: list sizeof covs

. mat balance = J(`num´,2,.)

. local row = 1

. foreach z in `covs´ {
2. qui rdrobust `z´ margin
3. mat balance[`row´,1] = round(e(tau_cl),.001)
4. mat balance[`row´,2] = round(e(pv_rb),.001)
5. local ++row
6. }

. mat rownames balance = `covs´

. mat colnames balance = "RD Effect" "Robust p-val"

. mat lis balance

balance[4,2]
RD Effect Robust p-val

class -.021 .897
termshouse -.173 .561
termssenate -.192 .901
population -318455.26 .634
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Based on the empirical results above, we find that all four additional covariates have
an RD treatment effect indistinguishable from 0 at conventional significance levels. In
other words, we cannot reject the null hypothesis of equal conditional expectations at
the cutoff. Notice that we can also use RD plots to show covariate balance at the cutoff,
but we do not present these additional results to conserve space.

Fifth, the upgraded rdrobust command also allows for cluster–robust variance esti-
mation, as does the underlying upgraded rdbwselect command used to compute data-
driven bandwidth selectors. This is illustrated using the Senate data as follows, where
we cluster at the state level using NN methods to construct the estimated residuals
(recall that by default three matches per observation are used).

. rdrobust vote margin, vce(nncluster state)

Sharp RD estimates using local polynomial regression.

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 359 320 VCE method = NNcluster

Order est. (p) 1 1
Order bias (q) 2 2

BW est. (h) 17.509 17.509
BW bias (b) 27.032 27.032

rho (h/b) 0.648 0.648
Number of clusters 50 50

Outcome: vote. Running variable: margin.

Method Coef. Std. Err. z P>|z| [95% Conf. Interval]

Conventional 7.4221 1.5225 4.8750 0.000 4.43811 10.4061
Robust - - 4.2659 0.000 4.09109 11.0456

Std. Err. adjusted for clusters in state

In this case, the robust bias-corrected CIs change from [4.094, 10.926], the (default)
heteroskedasticity-robust interval reported previously, to the cluster–robust interval
[4.091, 11.046].

To end this section, we provide one final illustration using i) covariate-adjustment,
ii) cluster–robust variance estimation, and iii) MSE-optimal bandwidth selection with
(possibly) different bandwidths on either side of the cutoff.
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. rdrobust vote margin, covs(class termshouse termssenate)
> bwselect(msetwo) vce(nncluster state)

Covariate-adjusted sharp RD estimates using local polynomial regression.

Cutoff c = 0 Left of c Right of c Number of obs = 1108
BW type = msetwo

Number of obs 491 617 Kernel = Triangular
Eff. Number of obs 274 310 VCE method = NNcluster

Order est. (p) 1 1
Order bias (q) 2 2

BW est. (h) 14.661 20.893
BW bias (b) 24.458 37.338

rho (h/b) 0.599 0.560
Number of clusters 48 50

Outcome: vote. Running variable: margin.

Method Coef. Std. Err. z P>|z| [95% Conf. Interval]

Conventional 6.8072 1.3696 4.9704 0.000 4.12297 9.49153
Robust - - 4.6153 0.000 4.13522 10.2398

Covariate-adjusted estimates. Additional covariates included: 3
Std. Err. adjusted for clusters in state

In this final case, we observe that the two one-sided MSE-optimal bandwidths are
actually quite distinct from their common bandwidth counterpart. To be clear, these
bandwidth selectors also account for the additional covariates and the clustering struc-
ture of the matrix of variances and covariances, but the numerical results show that
the two bandwidths are different (for example, ĥl = 14.661 and ĥr = 20.893). The

point estimate is, nonetheless, quite stable [τ̂(ĥl, ĥr) = 6.807]. Finally, the robust bias-
corrected covariate-adjusted cluster–robust CIs are [4.135, 10.240], quite similar to the
cluster–robust version reported previously.

7.5 Data-driven bandwidth selectors

As already implicitly illustrated above, the upgraded rdbwselect command includes
several new features, such as covariate-adjusted and cluster–robust bandwidth selection.
Furthermore, although not used above explicitly to conserve space, several other data-
driven bandwidth selectors are now available.

In this section, we present one empirical result exhibiting all the available data-driven
bandwidth selectors, in the context of our empirical illustration. We do not include
additional covariates or consider cluster–robust variance estimation only for simplicity,
because the main goal is to discuss the different bandwidth selectors available.
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. rdbwselect vote margin, all

Bandwidth estimators for sharp RD local polynomial regression.

Cutoff c = 0 Left of c Right of c Number of obs = 1297
Kernel = Triangular

Number of obs 595 702 VCE method = NN
Min of margin -100.000 0.036
Max of margin -0.079 100.000

Order est. (p) 1 1
Order bias (q) 2 2

Outcome: vote. Running variable: margin.

BW est. (h) BW bias (b)
Method Left of c Right of c Left of c Right of c

mserd 17.708 17.708 27.984 27.984
msetwo 16.154 18.009 27.096 29.205
msesum 18.326 18.326 31.280 31.280

msecomb1 17.708 17.708 27.984 27.984
msecomb2 17.708 18.009 27.984 29.205

cerrd 12.374 12.374 27.984 27.984
certwo 11.288 12.585 27.096 29.205
cersum 12.806 12.806 31.280 31.280

cercomb1 12.374 12.374 27.984 27.984
cercomb2 12.374 12.585 27.984 29.205

The output shows all the different bandwidth selectors available for estimation and
inference in RD designs. These options are also available in the case of covariate-
adjustment or cluster–robust variance estimation. The first group considers MSE-
optimal bandwidths, while the second group considers CER-optimal bandwidths, both
following the methodology discussed in previous sections.

Among these choices, the most useful ones are i) mserd for MSE-optimal point estima-
tion using a common bandwidth on both sides of the cutoff, ii) msetwo for MSE-optimal
point estimation using two distinct common bandwidths on either side of the cutoff,
iii) cerrd for robust bias-corrected CIs with faster coverage error decay rates using a
common bandwidth on both sides of the cutoff, and iv) certwo for robust bias-corrected
CIs with faster coverage error decay rates using two distinct common bandwidths on
either side of the cutoff. The other options are useful for regularization and sensitivity
analysis purposes.

Finally, recall that the results above include regularization, as introduced in Imbens
and Kalyanaraman (2012) but implemented as discussed in Calonico, Cattaneo, and
Titiunik (2014a, 2014b, 2015b) and the corresponding supplemental appendix. Includ-
ing this regularization term always leads to smaller bandwidths; it can be modified or
removed with the scaleregul() option. In particular, it can be removed by simply
adding scaleregul(0).
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7.6 Other examples and RD designs

The companion replication file (rdrobust illustration.do) includes the syntax of all
the examples discussed above, as well as the following additional examples:

1. rdrobust vote margin, kernel(uniform) vce(cluster state)

Robust bias-corrected inference using a uniform kernel and clustering with plug-in
residuals at state level. This is the command that produces the closest results
to those obtained using the Stata built-in regress command with clustering to
construct the RD point estimator. (Without clustering, the most similar results
to those obtained with regress are obtained using the vce(hc1) option.)

2. rdrobust vote margin, bwselect(certwo) vce(hc3)

Robust bias-corrected inference using the CER-optimal bandwidth choice, allowing
for a different bandwidth on each side of the cutoff, and HC3 heteroskedasticity-
robust variance estimation.

3. rdrobust vote margin, h(12 15) b(18 20)

Robust bias-corrected inference with user-chosen bandwidths (hl, hr) = (12, 15)
and (bl, br) = (18, 20).

4. rdrobust vote margin, covs(class) bwselect(cerrd) scaleregul(0)

rho(1)

Robust bias-corrected inference using covariate adjustment with a single covariate
(class), CER-optimal common bandwidth selector, no regularization, and h = b
(that is, ρ = 1).

5. rdbwselect vote margin, kernel(uniform) vce(cluster state) all

All data-driven bandwidth selectors using uniform kernel and clustering with plug-
in residuals at state level.

6. rdbwselect vote margin, covs(class) bwselect(msetwo) vce(hc2) all

MSE-optimal bandwidth selectors on either side of the cutoff adjusting by covariate
class and using HC2 heteroskedasticity-robust variance estimation.

Finally, we discuss how to implement other RD designs. Let y be the outcome
variable, t the treatment status variable, x the running variable, z a “preintervention”
covariate, and cid a cluster ID variable.

1. rdrobust y x, deriv(1) covs(z) vce(nncluster cid)

Sharp kink RD with additional covariates and clustering.

2. rdrobust y x, fuzzy(t) covs(z) vce(nncluster cid)

Fuzzy RD with additional covariates and clustering.

3. rdrobust y x, fuzzy(t) deriv(1) covs(z) vce(nncluster cid)

Fuzzy kink RD with additional covariates and clustering.
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8 Conclusion

In this article, we discussed a major upgrade to the rdrobust package for Stata and
R, which provide general-purpose software for regression-discontinuity designs. The
main new features of this upgraded version are i) covariate-adjusted bandwidth se-
lection, point estimation, and robust bias-corrected inference, ii) clustered-consistent
bandwidth selection, point estimation, and robust bias-corrected inference, iii) weighted
global polynomial fits and pointwise confidence bands in RD plots, and iv) several new
bandwidth selection methods, including different bandwidths for control and treatment
groups, CER optimal bandwidths, and optimal bandwidth for fuzzy designs. We pro-
vided a detailed account of all technical and methodological results implemented in
CCFT and its supplemental appendix.

A companion R package with the same functionality and syntax is also available.
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Abstract. Most randomized controlled trials with a time-to-event outcome are de-
signed and analyzed assuming proportional hazards of the treatment effect. The
sample-size calculation is based on a log-rank test or the equivalent Cox test.
Nonproportional hazards are seen increasingly in trials and are recognized as a
potential threat to the power of the log-rank test. To address the issue, Roys-
ton and Parmar (2016, BMC Medical Research Methodology 16: 16) devised a
new “combined test” of the global null hypothesis of identical survival curves in
each trial arm. The test, which combines the conventional Cox test with a new
formulation, is based on the maximal standardized difference in restricted mean
survival time (RMST) between the arms. The test statistic is based on evaluations
of RMST over several preselected time points. The combined test involves the min-
imum p-value across the Cox and RMST-based tests, appropriately standardized
to have the correct null distribution. In this article, I outline the combined test
and introduce a command, stctest, that implements the combined test. I point
the way to additional tools currently under development for power and sample-size
calculation for the combined test.

Keywords: st0479, stctest, randomized controlled trial, time-to-event outcome,
restricted mean survival time, treatment effect, hypothesis testing, flexible para-
metric model, jackknife

1 Introduction

Most randomized controlled trials with a time-to-event outcome are designed and an-
alyzed assuming proportional hazards (PH) of the treatment effect. The sample-size
calculation is based on a log-rank test or the equivalent Cox test. However, non-
proportional hazards (non-PH) are increasingly recognized as an issue (for example,
Trinquart et al. [2016]). Significant non-PH may be present in about a quarter of cancer
trials (Trinquart et al. 2016). Nonstatistically significant, but still practically impor-
tant non-PH are likely to be present in a much larger proportion of trials, particularly
as trial sample size and follow-up time tend to increase, conferring higher power to
detect non-PH.

c© 2017 StataCorp LLC st0479
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Possible reasons for non-PH include treatments that really do have time-dependent
effects. For example, a research treatment given only over a limited period may be
effective early but wear off later. Alternatively, a treatment may have no effect for a
relatively long period after randomization but “kick in” further on, which is a “late
effect” of a type sometimes seen in prevention trials and screening trials. Treatments
with different modes of action, such as surgery, drug treatment, and watchful waiting,
may induce non-PH because of dissimilarity between the shapes of the hazard functions
in the control and research arms. Additionally, the presence of a subpopulation with a
differential response to the research treatment may distort the survival curve.

Concerns about use of the hazard ratio (HR) as a summary measure and as the
basis of a test of the treatment effect in such trials include poor interpretability and
potential loss of power of the associated Cox or log-rank test. Difference (or ratio) in
restricted mean survival time (RMST) between treatment groups is gaining popularity
as a summary measure and as the basis of a possible test of a treatment effect. RMST

at some time point (t∗ > 0) is the integral of the survival function at t∗, that is, the
“area under the survival curve” from 0 to t∗. It is interpreted as the mean of the
survival-time distribution truncated at t∗. The difference, ΔRMST, defined as RMST

in a research arm minus RMST in the control arm, is the integrated difference between
the survival functions—in other words, the (signed) area between the survival curves
up to t∗. Conventionally, a “large” positive value of ΔRMST is regarded as a “good”
trial outcome because it represents an extension of survival time because of the research
regimen, at least up to t∗. Further details and an implementation of RMST and ΔRMST

in the user-written strmst command may be found in Royston (2015); also see the
strmst2 command (Cronin, Tian, and Uno 2016).

One might surmise that, with a suitable choice of t∗, ΔRMST divided by its stan-
dard error (SE) might provide a useful test statistic for the “global” null hypothesis
H0 : S0 (t) = S1 (t) for any t > 0, where Sj (t) is the survival function in the jth
group (j = 0, 1) with j = 0 denoting the control group. The problem is the choice of
t∗. A single value is fragile regarding power. To protect power, one would prefer to
test over a range of t∗ values. Recognizing such a requirement, Royston and Parmar
(2016) proposed a test of H0 based on evaluating the maximal chi-squared statistic
Cmax = max

(
Z2
)
over several time points, where Z = ΔRMST/SE (ΔRMST). Arguing

pragmatically, Royston and Parmar (2016) determined Cmax over 10 equally spaced val-
ues of t∗ between the 30th and 100th centiles of the failure times in the dataset. Starting
with Cmax, they developed an approach to testing H0 that they called the “combined
test”.

My principal aim here is to present a new command, stctest, that implements the
combined test. In section 2, I outline the methodological steps leading to the combined
test and describe different “flavors” of the test. In section 3, I present the stctest

command. In section 4, I apply the methodology to an example trial dataset. Section 5
is a discussion.
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2 Methods

2.1 Estimation of RMST

Estimation of RMST at some time t∗ requires determining the area under the survival
curve from 0 to t∗. I consider two methods: i) ps, using jackknife estimation of pseu-
dovalues (Andersen, Hansen, and Klein 2004), equivalent to integrating the Kaplan–
Meier curve; and ii) rp, integration of smooth survival curves predicted from flexible
parametric survival models (Royston and Parmar 2002; Lambert and Royston 2009;
Royston and Lambert 2011), also known as Royston–Parmar (RP) models. Next, I
briefly describe these methods.

Jackknife estimation from pseudovalues

Andersen, Hansen, and Klein (2004) described the use of “pseudo-observations” (I call
them pseudovalues) to provide nonparametric estimates of RMST at the individual par-
ticipant level. Pseudovalues are leave-one-out (jackknife) estimates of a parameter of
interest, here the RMST, constructed in such a way that their sample mean estimates the
RMST. They are computed from the Kaplan–Meier estimate of the survival curve for the
sample. The effects of covariates on the RMST may be modeled with the pseudovalues as
the response variable in generalized linear models with a suitable link function. Standard
errors of parameter estimates use the robust “sandwich” estimator in Stata through the
robust estimation option. Because pseudovalues are based on Kaplan–Meier estimates,
they are distribution free.

In Stata, pseudovalues for RMST are available through the user-written stpmean com-
mand (Parner and Andersen 2010; Overgaard, Andersen, and Parner 2015). A treat-
ment effect can be estimated by a command of the form regress psvar trtvar, robust.
The response variable, psvar, contains the pseudovalues for some t∗, as estimated by
stpmean. The regression coefficient for trtvar estimates the arithmetic difference in
RMST between the treatment groups.

RP models

Conceptually, RP models fit the baseline distribution function explicitly using a suitable
smoother; Royston and Parmar (2002) chose restricted cubic spline functions. Effects
of covariates x are accommodated in generalized linear models of the form

gθ {S (t;x)} = gθ {S0 (t)}+ xβ

where S (t;x) and S0 (t) are the survival and baseline survival functions, respectively,
and gθ (·) is a monotonic link function. See Royston and Lambert (2011, 118–119) for
further details of this class of models.

Here I use the subclass with a complementary log-log link function, defined by
gθ {S (t;x)} = ln {− lnS (t;x)} = ln {H (t;x)} , the log cumulative-hazard function:

lnH (t;x) = lnH0 (t) + xβ
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The function lnH0 (t) is modeled using restricted cubic splines in ln t, the complexity of
which is determined by the number and position of user-selected interior knots (poly-
nomial join points). If the covariate effects β are independent of time, as in the above
expression, the formulation gives a parametric PH model.

RP models are easily extended to include non-PH covariate effects; see Royston and
Lambert (2011, sect. 7.6). In a randomized controlled trials context, time-dependent
effects are achieved by fitting different spline functions in each treatment group. De-
pending on the degree of freedom (d.f.) chosen for the spline functions, the approach
potentially provides sufficient flexibility to represent many varieties of non-PH patterns.
Here I suggest using a relatively complex spline model with five d.f. (equivalent to four
internal knots) in each treatment group, providing estimates of the treatment effect that
are comparably flexible with those from the method based on pseudovalues.

In general, the tool recommended for fitting RP models in Stata is stpm2 (Lam-
bert and Royston 2009). Estimation of RMST after fitting an RP model with stpm2 is
straightforward. One uses the rmst option of predict together with a second option,
tmax(#), to define t∗. Standard errors and confidence intervals (CIs) are supported
through the stdp and ci options. Further useful options are at() to predict RMST at
specific values of covariates and zeros to predict at baseline (all covariates set to zero).
For applications to trials, please see the user-written strmst command (Royston 2015),
which conveniently packages RMST calculations from RP models.

2.2 Approximate combined test

The motivation for Cmax (defined in the Introduction) as the basis of a test of the
treatment effect is to try to identify the largest standardized treatment effect over a
relevant time interval. Because of multiple testing at 10 time points, the null distribution
of Cmax is not central chi-squared on 1 d.f. To correct for multiplicity and arrive at a
usable test statistic, Royston and Parmar (2016) took the following steps:

1. To estimate a p-value associated with Cmax, they first create M values of Cmax

in the null case. This is done by randomly permuting the treatment label in the
given dataset, thereby “scrambling” any treatment-outcome association. Cmax is
calculated in each permuted sample; call the resulting values C1, . . . , CM . Suppose
that r ≥ 0 of the Ci exceeds Cmax. The larger r is, the weaker the evidence that
Cmax is “extreme” and the larger the corresponding p-value. Their continuity-
corrected estimate of the p-value is pperm = {r + (1/2)}/ (M + 1). (Note that r
can take any of the M +1 values 0, 1, . . . ,M .) The smallest pperm that can result
with a given M is 1/ (2M + 2). A binomial-based exact CI for r/M may be used
to calculate a CI for pperm.

2. Such a permutation test has a stochastic element. Let pmax be the p-value cor-
responding to Cmax according to a chi-squared distribution on one d.f. In Stata
terms, pmax = chi2tail(1, Cmax). To stabilize the test, they used simulations
based on several real datasets to derive p̃perm, an empirical approximation to pperm
as a function of pmax,
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p̃perm = 1.762 (pmax)
0.885 − 0.802 (pmax)

2.547

3. Next, they developed a new test combining p̃perm with the Cox test p-value, pCox.
The aim was to capitalize on the strengths of each test across a range of patterns
of survival curves, including PH and non-PH examples. They defined

pmin = min (pCox, p̃perm)

Although the individual null distributions of pCox and p̃perm are approximately
uniform on (0, 1), pCox and p̃perm are correlated, and the null distribution of pmin

is not expected to be uniform. They approximated the null distribution of pmin

empirically using a two-parameter beta distribution. To calculate an approxi-
mate p-value, p̃CT , from a given pmin, they applied the formula (in Stata terms)
p̃CT = ibeta(a, b, pmin), where ibeta(a, b, x) is the incomplete beta function
with parameters a, b and argument x (0 < x < 1). For the two-sided test, they
estimated a = 1, b = 1.5.

Royston and Parmar (2016) did not provide an expression for p̃CT for use in one-
sided tests. However, in subsequent work using similarly constructed simulations, they
obtained the following two-parameter beta approximation to the null distribution of
pmin for the one-sided test: a = 0.9642, b = 1.2581.

2.3 Permutation combined test

Description

In an analysis of simulations based on data from 20 selected randomized trials, Royston
and Parmar (2016) showed that p̃CT maintained approximately the correct significance
level in the null case of no treatment effect. However, the possibility of heterogeneity
remained in other (unconsidered) trials, meaning that p̃CT might be (slightly) too large
or (slightly) too small in some trials. In critical cases, this might matter. Ensuring the
integrity of a p-value for a treatment effect in a randomized trial is important.

With such a motivation, I extend the permutation approach used with Cmax to create
a permutation-based combined test, as follows:

1. Determine Cmax, pmax, p̃perm (but not pperm), and pCox on the original dataset,

as described above. Note that none of these quantities is stochastic. Let porigmin =
min (pCox, p̃perm).

2. Determining a permutation p-value, pCT , for the combined test rests on assessing
the relative position of porigmin in the null (permutation) distribution of pmin. The
method is similar to the determination of pperm given above.

3. In each ofM samples with a random permutation of the treatment label, determine
pmax, p̃perm, pCox, and hence pmin, thus establishing a sample of size M from the
permutation distribution of pmin.
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4. Calculate the permutation combined test as pCT = {r + (1/2)}/ (M + 1), where
r is the number of samples in which pmin is smaller (that is, “more significant”)

than porigmin. A CI for pCT may be found via a binomial based CI for r/M and some
simple algebra.

Validation of type 1 errors

If the nonstochastic combined test p̃CT has the correct type 1 error probability, the
expected proportion of M samples with a random permutation of the treatment label
in which p̃CT < α should be α for any trial and choice of α. Here α is interpreted as
the nominal significance level and is the appropriate critical value for the test. I tested
this important characteristic through a heterogeneity chi-squared statistic, defined for a
given α by CH;α =

∑20
j=1 (pj;α − α)

2
/var (pj;α). For trial j, pj;α denotes the proportion

of M samples in which p̃CT < α; and var (pj;α) = pj;α (1− pj;α) /M . If E (pj;α) = α for
each j, then CH;α is distributed approximately as central chi-squared on 20 d.f.

For each of 20 trials, I created M = 5000 permutation samples. I estimated pmin and
hence p̃CT = ibeta(a, b, pmin) in each sample, thus generating 100,000 observations of
p̃CT for the two-sided combined tests.

For conventional values α ∈ {0.01, 0.025, 0.05, 0.1}, I estimated pj;α as the proportion
of M = 5000 values so that p̃CT < α in trial j (j = 1, . . . , 20). Aside from chance
variation, the pj;α should be consistent with α. Figure 1 shows the pj;α with 95% CIs
for the two-sided combined test.
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Figure 1. Empirical type 1 error probabilities p1;α, . . . , p20;α with 95% CIs for the two-
sided combined test across 20 trials. Solid horizontal lines show critical values (α), and
dashed lines show the corresponding pα in the pooled dataset of 100,000 samples with
a randomly permuted treatment label.

For each α, the pj;α are scattered seemingly randomly around α and lie within about
two SEs errors of α. For the pooled sample (M = 100000), pα is close to α. The
heterogeneity chi-squared (CH;α) is not significant at the 5% level for any of the four
illustrated values of α.
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Figure 2 shows an analogous plot for the one-sided combined test.

0.005

0.010

0.015

0 5 10 15 20

� = 0.01

0.015

0.020

0.025

0.030

0.035

0 5 10 15 20

� = 0.025

0.030

0.040

0.050

0.060

0.070

0 5 10 15 20

� = 0.05

0.080

0.090

0.100

0.110

0.120

0 5 10 15 20

� = 0.1

T
yp

e 
1 

er
ro

r 
fo

r 
on

e−
si

de
d 
p C

T

Trial number

Figure 2. Empirical type 1 error probabilities p1;α, . . . , p20;α with 95% CIs for the one-
sided combined test across 20 trials. Solid horizontal lines show critical values (α), and
dashed lines show the corresponding pα in the pooled dataset of 100,000 samples with
a randomly permuted treatment label.

The values of pj;α are again generally close to α. None of the four heterogeneity chi-
squared is significant at the 5% level.

I conclude that the approximations that lead to p̃CT for the two-sided and one-sided
combined tests appear to work well. Nevertheless, the permutation combined test, pCT ,
provides an important “safety net” for use in critical cases, for example, when p̃CT is
close to a critical value such as α = 0.05.

3 The stctest command

The syntax of stctest is as follows:

stctest {ps | rp} trt varname
[
if
] [

in
] [

, adjust(adj varlist) compare(#1 #2)

detail df(#) dftvc(df list) nperm(#) onesided(+ | -)
]
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Note that before all the features of stctest can be used, two programs must be
installed: stpmean and stpm2. stpmean may be installed from the Stata Journal website
using the commands

. net sj 15-3 st0202_1

. net install st0202_1

Also, stpm2 may be installed or updated from the Statistical Software Components
archive using the command

. ssc install stpm2, replace

Important: Please ensure you install (or update to) the most recent version of stpm2,
as above.

3.1 Description

stctest ps and stctest rp carry out a combined significance test (Royston and Par-
mar 2016) of a generalized treatment effect comparing level #1 of trt varname with
level #2. The data are assumed to arise from a randomized controlled trial with a time-
to-event outcome and assumed to have been stset. Usually, #1 denotes the control
arm and #2 a research arm. trt varname may contain more than two levels (treat-
ment arms), but stctest compares only selected pairs of levels as determined by the
compare(#1 #2) option. Typically, a research treatment (a novel regimen under in-
vestigation) is compared with a control arm (standard of care or some other kind of
reference therapy such as a placebo).

The combined test combines a standard log-rank or Cox test (implemented through
stcox trt varname) with a statistic derived from the maximal squared standardized
between-arm difference in time-dependent RMST. Further details are given above and
in the help file under Remarks.

stctest ps carries out the combined test “nonparametrically” using RMST “pseu-
dovalues” calculated by the user-written stpmean command (Parner and Andersen 2010;
Overgaard, Andersen, and Parner 2015). Pseudovalues are jackknife quantities derived
from the Kaplan–Meier survival function and constructed so that their arithmetic mean
estimates the RMST at a given time point, t∗.

stctest rp carries out the combined test “parametrically” using estimates of RMST

derived from an RP model (Royston and Parmar 2002; Royston and Lambert 2011) fit
by stpm2 (Lambert and Royston 2009). Regression parameters are defined on the scale
of the log cumulative-hazard function. To allow for the possibility of non-PH, the model
includes a time-dependent treatment effect.

3.2 Options

I describe the more important options here. Lesser used options df() and dftvc() are
described in the help file.
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adjust(adj varlist) adjusts RMST for variables in adj varlist, allowed to be any mixture
of binary, continuous, and factor variables. Note that stctest ps and stctest

rp adjust differently for covariates. In both flavors, the Cox component of the
combined test is a PH model that includes trt varname and variables in adj varlist.
The RMST test component in stctest ps includes trt varname and adj varlist in
multiple linear regression models for the RMST pseudovalues at the different time
points. Thus stctest ps incorporates linear adjustment for covariates on the scale
of RMST. In contrast, stctest rp includes adj varlist in the hazards-scaled RP model
that incorporates a time-dependent effect (non-PH) for treatment. Thus stctest

rp adjusts linearly for covariates on the log cumulative-hazard scale, which, in the
absence of time-dependent effects, is a PH model for these variables.

compare(#1 #2) selects the levels of the treatment variable to be compared. Usually
#1 denotes the control arm and #2 a research arm. The default is compare(0 1).

detail reports results of the component Cox and RMST tests in addition to pCT , the
p-value for the primary test (the combined test).

nperm(#) changes the mechanics of stctest ps and stctest rp so that the null
distribution of the combined test statistic is derived directly from a permutation test
procedure. Using the Stata permute command, the treatment covariate is randomly
permuted # times, and the combined test is performed in each permuted dataset,
providing multiple values of p̃perm, pCox, and pmin. The ensemble constitutes a

sample from the permutation distribution of pmin. The relative position of porigmin, the
test statistic from the original data, in the permutation distribution of pmin estimates
pCT for the combined permutation test.

Using nperm(#) with # > 0 allows one to estimate a p-value for the combined test
that does not rely on empirical approximations. However, the variance of such a
p-value may be large. If a p-value with a “narrow” CI is desired, a “large” value
of # will be required, for example, 5,000 or more. Computation time increases
linearly with #. Computation times with stctest rp will be particularly long, so
the approach should be used only when absolutely needed.

The default is nperm(0), meaning that the combined test p-value, pCT , is obtained
nonstochastically through a beta distribution approximation (see Royston and Par-
mar [2016]).

onesided(+ | -) performs one-sided tests of the treatment effect. For the Cox test, one-
sided p-values are reported. With onesided(+), the direction of the test is that lower
HRs have smaller p-values, because HR < 1 in most trials represents a “positive” test
result. onesided(-) may be appropriate when the event of interest is a “good”
outcome, for example, time to wound healing. With onesided(+), the RMST test
responds to RMST being higher in the research arm than the control arm, and vice
versa for onesided(-). In most trials, an increase in the mean time to event is
a “good” outcome. The default is onesided(); that is, the option is unspecified,
meaning that all tests are two sided.
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4 Example

An interesting example is the PATCH1 trial of treatment for cellulitis of the leg, a com-
mon bacterial infection of the skin and underlying tissue (Thomas et al. 2013). In a
prophylaxis phase, 274 patients were randomly assigned to placebo or treatment with
penicillin. One of the main outcomes of interest was time to first disease recurrence
during a no-intervention follow-up period. Only one event occurred after three years.
For presentation purposes, follow-up time was truncated at three years. There were 128
first recurrences and 146 censored observations.

Figure 3 shows estimated “survival” curves by treatment group.
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Figure 3. PATCH1 trial: Survival curves for time to first recurrence of cellulitis by
treatment group. Unbroken lines, placebo group; dashed lines, penicillin group. Jagged
lines, Kaplan–Meier curves; smooth curves, estimates from an RP model. Values in
parentheses denote number of events in the corresponding time interval.

The Cox test of the treatment effect “just fails to achieve significance” at conventional
levels, with p = 0.052. However, the Kaplan–Meier curves suggest a clear difference
between treatments. The median time to recurrence of cellulitis increases by almost one
year, from 1.70 years on placebo to 2.65 years on penicillin (difference = 0.95, SE = 0.41,
p = 0.021). Applying the combined test with the ps (pseudovalues) method produces
the following result. I include the detail option to see the component test results:
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. use patch1
(PATCH1 trial (public release version), PR May 2016)

. stctest ps trt, detail

Treatment Obs p(CT)*

trt(0,1) 274 0.023746

* Non-stochastic, from approximation to permutation test

p-values from tests underlying p(CT):

p(Cox) p(chi2) p(perm) p(min)

0.051835 0.004893 0.015894 0.015894

The combined test is significant at the 0.05 level (p = 0.02375), similar to the test of
medians. As discussed, the uncorrected p-value for the test of RMST differences is “too
small” (0.00489). After correction, it is 0.01589, which is significant at the 0.05 level.
p(min), the smaller of the Cox and approximate permutation test p-values, is 0.01589.
After adjustment for the null distribution of pmin, the combined test p-value, p(CT), is
0.02375.

Repeating the stctest command, but this time using the nperm(5000) option, gives
the following output. To ensure reproducibility, I first set the random-number generator
seed:

. set seed 123

. stctest ps trt, nperm(5000) detail

Treatment Obs p(CT)* [95% Conf. Interval]

trt(0,1) 274 0.025495 0.021314 0.030242

* Stochastic, from estimated permutation null distribution of p(min)

p-values from tests underlying p(CT):

p(Cox) p(chi2) p(perm) p(min)

0.051835 0.004893 0.015894 0.015894

The p-value for the permutation version of the combined test is 0.02549, similar to
the nonstochastic value of 0.02375. Displaying return list to see the stored quantities
provides the following information:
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. return list

scalars:
r(nperm) = 5000

r(delta_max) = .2652538362205551
r(tstar_max) = 2.103439807892

r(pct) = .025494901019796
r(pct_ub) = .030241944495036
r(pct_lb) = .021313527894152

r(nsig) = 127
r(pmin) = .0158943253638914
r(pperm) = .0158943253638914
r(pchi2) = .0048928816887735

r(pjoint) = .021944650127736
r(pgt) = .0495280333667285
r(plr) = .0517262578749101
r(hr) = .7080773912586498

r(pcox) = .0518346333672928
r(t2) = 2.997728890592487
r(t1) = .3148614609571788

Of the M = r(nperm) = 5000 permuted datasets, pmin is less than or equal to
porigmin = r(pmin) = 0.01589 in r = r(nsig) = 127 permuted datasets, giving pCT =
r(pct) = {r + (1/2)}/ (M + 1) = (r(nsig) + 0.5)/(r(nperm) + 1) = 128.5/5001 =
0.02549.

Note that the 95% CI for r(pct) = 0.02549 is r(pct lb) = 0.02131, r(pct ub) =
0.03024. Although the CI is fairly wide, the upper bound is well below the reference
level of 0.05, confirming that at conventional significance levels, there is a real effect of
treatment.

A brief description of the remaining stored quantities is given in the help file. In
particular, the Grambsch–Therneau test of the PH assumption, for which the p-value is
returned in r(pgt) as 0.04953, is just significant at the 0.05 level. Non-PH may explain
why the Cox test appears to have low power, despite the HR r(hr) = 0.708 being well
below 1.0.

Rerunning the combined test using the rp method gives results that are similar but
not identical to the ps method:

. stctest rp trt, detail

Treatment Obs p(CT)*

trt(0,1) 274 0.017265

* Non-stochastic, from approximation to permutation test

p-values from tests underlying p(CT):

p(Cox) p(chi2) p(perm) p(min)

0.051835 0.003409 0.011543 0.011543
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Figure 4 illustrates time-dependent estimates of ΔRMST according to the ps and rp

methods.
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Figure 4. PATCH1 trial. Time-dependent estimates of ΔRMST, with pointwise 95% CIs,
according to two methods. Solid lines and gray shaded area: ps method; dashed lines,
rp method.

ΔRMST and pointwise 95% CIs were calculated at 25 equally spaced time points between
the 30th and 100th centiles of the uncensored failure times (0.31 and 3.00 years, respec-
tively). Note the considerable similarity of the two sets of estimates. At t∗ = 3.0 years
(for example), I find ΔRMST = 0.35 (0.07, 0.63) years with ps and 0.33 (0.06, 0.61)
years with rp. I conclude that at t∗ = 3 years, treatment with penicillin extends the
restricted mean time to recurrence of cellulitis by about four months.

5 Discussion

I have described two methods for performing the combined test that are both imple-
mented by stctest, pseudovalues (ps), and RP models (rp). The two approaches give
similar but not identical results. Which method would I recommend for trial design and
analysis?
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In essentially all relevant trials, the primary test of the null hypothesis is a Cox or
log-rank test of the treatment covariate, with no other covariates in the model. Although
in practice a trial may have been designed with stratification on known prognostic and
structural factors, such factors are not normally accounted for in the power and sample-
size calculations and arguably should not be included in the primary analysis. The issue
of covariate adjustment is somewhat controversial, and this is not the place to pursue
it.

Accordingly, I recommend the ps method when covariate adjustment is not envi-
sioned. The reasons are as follows: First, ps does not require the user to choose a
suitable “model” from which to estimate ΔRMST, because the pseudovalues method is
based on “nonparametric” Kaplan–Meier curves. The rp method assumes a particular
formulation of the spline model (by default, as already mentioned, df(5) and dftvc(5))
to estimate the survival curves in each treatment group and hence ΔRMST. The user can
alter the spline model via the df() and dftvc() options of stctest if desired. How-
ever, I discourage such modifications because they are potentially data driven, which is
undesirable in a trial context. I believe the default settings are sufficiently flexible to
estimate ΔRMST reliably in the vast majority of trials. Second, the ps method is con-
siderably faster to execute than rp. Such efficiency is helpful when using the nperm()

option to check the p-value of the nonstochastic combined test.

If covariate adjustment is deemed essential, I recommend the rp method because
adjustment for covariates with the ps method is done differently for the two compo-
nents of the combined test, namely, the Cox and RMST models. The Cox test makes
a PH assumption, whereas adjusted RMST estimation involves linear regression of the
pseudovalues on the covariates and treatment. This does not seem a coherent approach.
With the rp method, all covariates except treatment are adjusted for in a PH model,
with the treatment effect permitted to have non-PH. Further elaboration of this rather
complex issue is beyond the scope of this article.

A reviewer pointed out that there are rather few events (15 to be exact) during the
third year and subsequent few months of follow-up. If one truncates follow-up at two
years, the Cox test of the treatment effect is significant (p = 0.0071), with no evidence
of non-PH (p = 0.53). The combined test gives p̃CT = 0.0105. This confirms that
there is a real treatment effect. Most of the evidence for non-PH appears to arise from
the characteristics of the event and censoring times during the third year. However,
one would never present an analysis of the data truncated at two years as a primary
assessment of the treatment effect, because such an analysis would certainly not have
been prespecified in the trial protocol.

For practical use in trial design, Royston and Parmar (2016) suggested a simple,
rough-and-ready way to power a trial under PH when the primary test of the null
hypothesis is the combined test. A more precise approach to sample-size calculation
requires simulation. Work on new commands implementing power and sample-size
calculations is under way and will be reported in the Stata Journal in due course.
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Abstract. rscore computes unit-specific responsiveness scores using an iter-
ated random-coefficient regression approach. The model fit by rscore considers a
regression of a response variable y, that is, outcome, on a series of factors (or re-
gressors) x, that is, varlist, by assuming a different reaction (or “responsiveness”)
of each unit to each factor contained in x. rscore allows for i) ranking units
according to the obtained level of the responsiveness score; ii) detecting more in-
fluential factors in driving unit performance; and iii) studying the distribution
(heterogeneity) of factors’ responsiveness scores across units. Also, rscore offers
useful graphical representation of results. We provide two illustrative applications
of the model: the first is on a cross-section, and the second is on a longitudinal
dataset.

Keywords: st0480, rscore, responsiveness scores, random-coefficient regression

1 Introduction

In biomedical and socioeconomic disciplines, it is commonly recognized that individual
agents react heterogeneously to external stimuli. Such heterogeneity also characterizes
aggregated units of analysis such as companies, regions, and entire countries.

Thus measuring unit-heterogeneous response to specific factors is relevant to pro-
viding a clearer understanding of the relationship between a stimulus (a drug adminis-
tration, a policy program, etc.) and its effect on predefined target variables.

To this end, in this article, I present rscore, a user-written command for computing
a unit-specific responsiveness score (RS) by means of an iterated random-coefficient
regression (RCR) approach.

Simply put, the model fit by rscore considers a regression of a response variable y,
that is, outcome, on a series of factors (or regressors) x, that is, varlist, by assuming a
different reaction (or “responsiveness”) of each unit to each factor contained in x.

A simple example can better illustrate the usefulness of this command for applied
research. Consider the popular Stata instructional dataset auto.dta, and suppose we
are interested in regressing the variable price (“price of the car”) on mpg (“miles per
gallon”). What we usually estimate is a common slope regression of this type,

pricei = α+ β × mpgi + ei

c© 2017 StataCorp LLC st0480
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where α and β are two parameters common to all units i, and ei, an error term. However,
suppose (when reasonable) each car has a different behavior in terms of the reaction
of its price to its consumption. The coefficient β catches only the “average” effect of
all cars, whereas knowing about the idiosyncratic behavior of each single car would be
much more informative.

To this end, we may be interested in estimating a regression with a unit-specific
slope, such as

pricei = α+ βi × mpgi + ei

where it is now clear that the slope refers to unit i. If, under reasonable assumptions,
we could compute each βi, we would obtain precious additional information about the
relation between car price and consumption.

rscore aims at estimating each βi that, in this context, we call the RS of price

to mpg.1 As will be clearer later on, it is a score, not an estimate, because we assume
insufficient information in the data to perform proper inference on each βi (without
strong additional assumptions, as discussed in the next section). However, RSs may
convey useful descriptive information for many phenomena in empirical research. More
specifically, rscore may allow for i) ranking units according to the obtained level of the
RS; ii) detecting more influential factors in driving unit performance; and iii) studying
the distribution (heterogeneity) of factors’ RSs across units. Also, rscore offers useful
graphical representation of results.

This article is organized as follows: section 2 provides a short statistical account of
the RCR, which is useful to transition into section 2.5, where I describe the model fit
by rscore. Section 4 illustrates the syntax of rscore. Section 5 and section 6 provide
two illustrative applications, one on a cross-section and one on a longitudinal dataset.
Finally, section 7 ends the article.

2 Statistical background

In recent years, random-coefficient models have been the objective of vibrant research
(Lewbel and Pendakur Forthcoming; Hoderlein, Klemelä, and Mammen 2010; Beran,
Feuerverger, and Hall 1996). This literature has tried to overcome some limits of the
traditional regression model by incorporating either correlated or uncorrelated random
coefficients, estimated parametrically or nonparametrically. In what follows, I provide
a brief description of an (exogenous) linear random-coefficient model.

To set the stage, consider a standard regression model. In such a model, parameters
(that is, “regression coefficients”) are singleton numbers. In a simple regression of the
type

yi = α+ β × xi + εi i = (1, . . . , N)

1. More precisely, rscore computes the expectation of βi, conditional on the exogenous covariates (in
this specific case, the covariate mpg). See section 2.5.
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the regression coefficient β is a population parameter, which summarizes the effect of
factor2 x on outcome y, when it is assumed that each observation within such population
shares the same β (as well as the same α).

A way to relax such an assumption is to assume each unit owns a specific regression
coefficient in the population. The previous model thus becomes

yi = αi + βi × xi + εi

where the generic unit i owns both a specific intercept (αi) and a specific slope (βi).
Assume that xi is exogenous, implying that E(εi|xi) = 0, and let’s focus on βi by letting
αi = α for the sake of clarity. With no further information than that specified in the
previous model, identifying and estimating an intercept and a slope for each individual
within a sample of size N would be impossible.

However, to identify such parameters, one can impose assumptions over the proba-
bilistic distribution of βi by holding, for instance, that each βi is a draw from a com-
pounded random variable of the type

βi = β + υi

where υi is a random variable with E(υi) = 0 and β is a (common) parameter. This im-
plies that E(βi) = β. Under this assumption, we obtain—by substitution—a simplified
version of the previous model:

yi = α+ β × xi + υixi + εi

If we assume E(υi|xi) = 0, we get

E(yi|xi) = α+ β × xi

which is a standard regression model, where the common slope β is consistently esti-
mated by ordinary least squares (OLS) or, in the case of a heteroskedastic error, gener-
alized least squares.

When longitudinal data are available, one can also estimate each βi by unit-specific
OLS. For this purpose, one can refer to Swamy (1970) for estimating RCRs within lon-
gitudinal data, as well as the related implementation provided by Poi (2003).

With cross-section datasets, another possible route is assuming E(υi|xi) �= 0, which
implies that βi is a function of the covariates (or a subset of those) included in the
regression model. In this case,

E(yi|xi) = α+ βxi + E(υi|xi)× xi + εi

= α(xi) + β(xi)xi (1)

provided again that E(εi|xi) = 0. In the previous equation, α(xi) = α+βxi and β(xi) is
a generic function of x that can be modeled either parametrically or nonparametrically,
depending on the way one models the conditional expectation E(υi|xi).

2. In this article, we use the term “factor” to indicate a generic covariate, although “factor” generally
refers to a variable taking a discrete number of values.
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Following (1), one can compute the partial effect of x on y as

∂

∂xi
E(yi|xi) = α′(xi) + β′(xi)xi + β(xi) (2)

where it is clear that each unit i owns a different partial effect depending on xi. The
mean over x of (2) is known as average partial effect (APE), which is defined as

APE = Ex

{
∂

∂xi
E(yi|xi)

}
= Ex {α′(xi) + β′(xi)xi + β(xi)} (3)

To estimate APE, one can use the sample equivalent of (3), that is

ÂPE =
1

N

N∑
i=1

{
α̂′(xi) + β̂′(xi)xi + β̂(xi)

}
It is clear that the heterogeneous response of each unit to a given covariate (or factor)
can be interesting to evaluate per se because it brings several pieces of information
about how APE takes a specific value whenever one looks at APE as the global average
effect of x on y.

In this article, the partial effect of a given factor x on a unit’s outcome y is called
the RS of a unit’s y to a unit’s x, all other things being equal. Once such RSs are
estimated (using a proper estimation procedure, as I will show later on), one can use
them for various purposes, such as i) ranking units according to the obtained level of
the RSs; ii) detecting factors that are more influential in driving unit performance; and
iii) studying the distribution (heterogeneity) of factors’ RSs across units.3

rscore is a command for computing these unit-specific RSs. Thus it uses an iterated
RCR model whose baseline regression is similar to (1). Before presenting the syntax of
rscore, I will illustrate the RS model’s structure and assumptions.

3 The model

RSs measure the change of a given outcome y when a given factor xj (with j = 1, . . . , Q)
changes, conditional on all other (Q− 1) factors:

x−j = (x1, . . . , xj−1, xj+1, . . . , xQ)

Algebraically, it is the derivative of y on xj , given x−j , when one allows for each ob-
servation to have its own RS. Importantly, we assume x−j is a vector of all exogenous
variables. RSs are obtained using an iterated RCR model, the basic econometrics of
which can be found in Wooldridge (2002, 638–642; 2010, 141–145).

3. An early empirical application of the RS approach proposed in this article can be found in Cerulli
(2014).
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Calculating an RS follows this simple protocol:

1. Define y, the outcome (or response) variable.

2. Define a set of Q factors thought of as affecting y, and indicate the generic factor
with xj .

3. Define an RCR model linking y to the various xj , and extract a unit-specific re-
sponsiveness effect of y to all set of factors xj , with j = 1, . . . , Q.

4. For the generic unit i and factor j, indicate such effects as bij , and collect all of
them in a matrix B.

5. Finally, aggregate by unit (row) or by factor (column) the E(bij |xi,−j), thus get-
ting synthetic unit and factor responsiveness measures.

Analytically, an RS is the “partial effect” of a factor x in an RCR (Wooldridge 1997;
2003; 2004). Indeed, for each j = 1, . . . , Q, define an RCR model of this kind as⎧⎨⎩ yi = aij + bijxij + ei

aij = γ0 + xi,−jγ + uij

bij = δ0 + xi,−jδ + vij

where ei, uij , and vij are freely correlated error terms with

E(ei|xi,−j ;xij) = E(uij |xi,−j ;xij) = E(vij |xi,−j ;xij) = 0

It is easy to see that the regression parameters, aij and bij , are both nonconstant
because they depend on all the other inputs x except xj (this is, in fact, the meaning
of the vector xi,−j). Observe that δ0 and γ0 are, on the contrary, constant parameters.
According to this model, we can define the regression line as

E(yi|xij ,xi,−j) = E(aij |xi,−j) + xij × E(bij |xi,−j)

Given this, we define the responsiveness effect of xij on yi as the derivative of yi
with respect to xij ; that is,

∂

∂xij
{E(yi|xij ,xi,−j)} = E(bij |xi,−j)

where E(bij |xij ,xi,−j) is the partial effect of xij on yi. We can repeat the same pro-
cedure for each xij (with j = 1, . . . , Q)—so it is eventually possible to define, for each
unit i = 1, . . . , N and factor j = 1, . . . , Q, the N × Q matrix B of the partial effects as
follows:

B =

⎛⎜⎝ E(b11|xi,−j) . . . E(b1Q|xi,−j)
... E(bij |xi,−j)

...
E(bN1|xi,−j) · · · E(bNQ|xi,−j)

⎞⎟⎠
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If all variables are standardized with zero means and unit variance, partial effects
are beta coefficients and therefore independent of the unit of measurement. Thus they
can be compared with each other and summed.4

Once the matrix B is known, we can define, for each unit i, the total unit respon-
siveness (TUR) and the mean unit responsiveness (MUR) as

TURi =

Q∑
j=1

bij

and

MURi =
1

Q

Q∑
j=1

bij

and define, for each factor j, the total (or mean) responsiveness of y to factor j’s unit
change (TFR and MFR) as

TFRj =

N∑
i=1

bij

and

MFRj =
1

N

N∑
i=1

bij

In a cross-section data setting, OLS provide a consistent estimation of each bij within
this regression,5

yi = γ0 + xi,−jγ + (δ0 + x−jδ)xij + xij(xi,−j − x−j)δ + ηi
ηi = uij + xijvij + ei

where x−j is the vector of the sample means of xi,−j . Once previous regression param-
eters are estimated, we can obtain an estimate of the partial effect of factor xj on y for
the generic unit i as

Ê(bij |xi,−j) = δ̂0 + xi,−j δ̂

By repeating this procedure for each unit i and factor j, we can finally obtain B̂, that
is, the estimation of matrix B.

When a longitudinal dataset is available, the estimation of B can be obtained by
using either random-effects or fixed-effects estimation of the following panel-data re-
gression,

yit = γ0 + xi,−j,tγ + (δ0 + x−j,tδ)xijt + xijt(xi,−j,t − x−j,t)δ + αi + ηit (4)

4. Because beta coefficients are measured in standard deviations, they can be compared. The meaning
of a beta coefficient is straightforward; suppose that in a regression of y on x, the beta is found to be
equal to 0.3. This means that one standard-deviation increase in x leads to a 0.3 standard-deviation
increase in the predicted y with all the other variables in the model held constant.

5. Indeed, OLS are consistent because for each j = 1, . . . , Q, we have E(ηi|xij) = E(uij |xij) + xij ×
E(vij |xij) +E(ei|xij) = 0. However, ηi is clearly heteroskedastic. Thus robust OLS provide more
correct standard errors.
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where the added parameter αi represents a unit-specific effect accounting for unobserved
heterogeneity. In particular, fixed-effects estimation, assuming free correlation between
αi and ηit, can mitigate a potential endogeneity bias due to misspecification of previous
equation and measurement errors in the variables considered in the model (Wooldridge
2010, 281–315). As such, a panel dataset may allow for more reliable estimates of true
RS than usual OLS.

Finally, as long as variables are standardized, (4) becomes

yit = γ0 + xi,−j,tγ + δ0xijt + xijt × xi,−j,tδ + αi + ηit

which simplifies the formula.

4 The rscore command

4.1 Syntax

As seen above, rscore computes unit-specific RSs using an iterated RCR model. The
model fit by rscore considers a regression of a response variable y, that is, outcome, on a
series of factors x, that is, varlist, by assuming a different reaction (or “responsiveness”)
of each unit to each factor contained in x. The basic syntax of rscore is

rscore outcome
[
varlist

] [
if
] [

in
] [

weight
]
, model(modeltype) rs name(stub)[

factors(varlist f ) xlist(varlist c) graph(#) radar(numlist)

id string(varname) vce(vcetype) save graph1(filename)

save graph2(filename)
]

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

4.2 Options

model(modeltype) specifies the model to be fit, where modeltype must be one of the
following models: ols (OLS), fe (panel fixed effect), or re (panel random effect).
model() is required.

rs name(stub) specifies the beginning part of the name of the RS variables generated by
rscore. RS variables are thus named as stub1, stub2, stub3, . . . , stubQ. rs name()

is required.

factors(varlist f ) specifies that factor variables have to be included among the regres-
sors.

xlist(varlist c) specifies that control variables (which are not factors) have to be in-
cluded among the regressors.
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graph(#) provides a combined graph of the densities of the RSs. The number # defines
the width of the graph’s x axis. The user can set a proper # for providing a good
rendering of the graph.

radar(numlist) provides a radar plot of the RSs for the units specified in numlist . To
run this option, the user must specify the id string() option. This option uses the
user-written radar command provided by Mander (2007).

id string(varname) requests that a string variable as identifier of each observation be
specified. This is required if the user wishes to provide a radar plot of the RSs.

vce(vcetype) allows the user to choose vcetype as either robust or cluster clustvar .

save graph1(filename) saves the graph generated by the graph() option in the user-
specified filename.

save graph2(filename) saves the graph generated by the radar() option in the user-
specified filename.

4.3 Stored results

Finally, for each factor regression, rscore returns goodness-of-fit statistics—that is,
R-squared—stored in scalars e(R1), e(R2), e(R3), . . . , e(RQ), as well as the average
R-squared, which is the overall goodness of fit of the model, stored in the scalar e(R).

5 Application 1

This section presents an illustrative application of rscore within a cross-section data
structure. It is intended to allow users to become familiar with the use of this command.

To this end, we consider the usual auto.dta, with a full specification of the rscore
syntax. In this application, we are interested in identifying the main factors driving
the price of a car and identifying the distribution of such an effect over observations
for each declared factor. We focus on price responsiveness to five covariates (that is,
mpg, trunk, weight, length, and displacement) by controlling for two factor variables
(that is, foreign and rep78) and two controls (that is, gear ratio and headroom).
The application of rscore results in code like this:

. sysuse auto
(1978 Automobile Data)

. rscore price mpg trunk weight length displacement, rs_name(RS)
> model(ols) factors(foreign rep78) xlist(gear_ratio headroom)
> graph(100) id_string(make) radar(4 9 13 40) save_graph1(mydistr)
> save_graph2(myradar)

**********************************************************************
*** DESCRIPTIVE STATISTICS FOR SINGLE FACTOR RESPONSIVENESS SCORES ***
**********************************************************************
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Responsiveness scores for variable mpg_std

Percentiles Smallest
1% -.9230999 -.9230999
5% -.3402585 -.7910841

10% -.2775861 -.7330251 Obs 69
25% -.090533 -.3402585 Sum of Wgt. 69

50% .0403205 Mean .0112316
Largest Std. Dev. .2559057

75% .1841674 .3397723
90% .2829912 .3649702 Variance .0654877
95% .3397723 .4167671 Skewness -1.354045
99% .477404 .477404 Kurtosis 5.911784

Responsiveness scores for variable trunk_std

Percentiles Smallest
1% -.5023578 -.5023578
5% -.2346051 -.3120776

10% -.1627576 -.2949739 Obs 69
25% .0015847 -.2346051 Sum of Wgt. 69

50% .1770424 Mean .2170236
Largest Std. Dev. .3706054

75% .3745154 .718573
90% .6115505 1.25186 Variance .1373483
95% .718573 1.303261 Skewness 1.583251
99% 1.77037 1.77037 Kurtosis 7.317773

Responsiveness scores for variable weight_std

Percentiles Smallest
1% .4967597 .4967597
5% .5914793 .5649452

10% .6201076 .5688947 Obs 69
25% .7530873 .5914793 Sum of Wgt. 69

50% .9084411 Mean .9705862
Largest Std. Dev. .3131494

75% 1.128973 1.620982
90% 1.530207 1.666719 Variance .0980625
95% 1.620982 1.668086 Skewness .8406102
99% 1.763967 1.763967 Kurtosis 2.886559

Responsiveness scores for variable length_std

Percentiles Smallest
1% -.8865399 -.8865399
5% -.8249316 -.8677544

10% -.6593894 -.8445593 Obs 69
25% -.5387048 -.8249316 Sum of Wgt. 69

50% -.4376124 Mean -.4303998
Largest Std. Dev. .1895008

75% -.3094746 -.143986
90% -.2292118 -.0476573 Variance .0359106
95% -.143986 .0030893 Skewness -.0796322
99% .0920853 .0920853 Kurtosis 3.649125
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Responsiveness scores for variable
displacement_std

Percentiles Smallest
1% -.8768004 -.8768004
5% -.5376742 -.7265469

10% -.4575502 -.6088864 Obs 69
25% -.2181616 -.5376742 Sum of Wgt. 69

50% -.0629257 Mean .0022286
Largest Std. Dev. .4293259

75% .1630541 .698191
90% .5437063 1.304059 Variance .1843207
95% .698191 1.332656 Skewness 1.316481
99% 1.496196 1.496196 Kurtosis 5.795581

*************************************************************
*************** RSCORE GOODNESS-OF-FIT **********************
*************************************************************

The R-squared for mpg_std is:
.63707556

The R-squared for trunk_std is:
.65798794

The R-squared for weight_std is:
.65783691

The R-squared for length_std is:
.62031188

The R-squared for displacement_std is:
.73278452

The mean R-squared is:
.66119936

We call rscore using an OLS estimation through the model(ols) option. This
option is appropriate with a cross-section dataset such as auto.dta. The default output
of rscore is a series of summary statistics tables for each factor RS considered and a
table reporting the single-factor regression R-squared and the model mean (or overall)
R-squared. In this specific case, we obtain five summary statistics and six R-squared.
From summary statistics, we see that the variable weight sets out the highest average
RS (with a value of 0.97). Notice that RSs are beta coefficients because rscore z-
standardizes each variable in advance. Therefore, a mean RS for weight of 0.97 means
that—on average—one standard-deviation change in cars’ weight yields a one standard-
deviation increase in cars’ price. We do not have a significance test for this value because
it is held only as a score. From the goodness-of-fit output, we see that the best fit is
reached by variable displacement with an R-squared of about 0.73, which is substantial.
The average R-squared of the model is 0.66, meaning that—on average—our factors’
specification explains around 66% of the total variance of cars’ prices. Because it is a
rather high R-squared, we can accept our specification as a good one.
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Because we set the rs name(RS) option, the command generates five new variables
called RS1, RS2, RS3, RS4, and RS5, which contain the RSs for the five factors. The
variables’ labels suggest which factor each generated variable refers to.

The factors(foreign rep78) and xlist(gear ratio headroom) options set the
factor variables and a set of additional (continuous) variables to control for. They are
specified only as controls; that is, they provide rscore with a correct specification for
price.

To generate graphical results, rscore offers two options that can also be com-
bined: graph(#) and radar(4 9 13 40). Note that the latter option needs to be
specified jointly with the string identifier of the observations, which in this case is the
make variable. Hence, the radar(4 9 13 40) option needs to be combined with the
id string(make) option.

If the graph(#) option is specified, Stata returns the graph in figure 1. This is the
joint plot of the distribution of all factors’ RSs. This graph allows one to visually detect
two aspects:

• Factor importance: This is (positively) higher as soon as the factor’s RS distribu-
tion lies on the right side of the figure.

• Factor response heterogeneity: This is higher whenever the factor’s RS distribution
presents long tails.
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Figure 1. Joint plot of the distribution of factors’ RSs

Looking at figure 1, we see that the factor whose distribution stands out in terms of
a positive effect on price is a car’s weight. This distribution is located at the extreme
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right of the graph and presents a long right tail. However, the factors with larger
RS dispersions are trunk and displacement, while length shows a very concentrated
distribution, albeit with a negative impact on price on average. It means that cars’ price
response to their length are weak, negative, and very similar among all car models.

If the radar(4 9 13 40) and id string(make) options are (jointly) specified, we
obtain the radar graph of figure 2.

mpg_std

trunk_std

weight_stdlength_std

displacement_std

−0

0

1

1

2

 Buick Century  Buick Riviera

 Cad. Seville  Olds Starfire

Center is at −.733025074005127

Figure 2. Units’ RS radar graph

This graph is useful for comparing—factor by factor—different unit RSs. In this
example, we aim to compare units 4, 9, 13, and 40 in our dataset, which correspond to
specific models of cars. By looking at figure 2, we immediately see that the car model
“Cadillac Seville” presents a higher RS for each factor, except for mpg. The car models
“Buick Century” and “Old Starfire” show a similar RS on each factor, while “Buick
Riviera” has a larger impact on price through trunk and displacement. Thus the
radar graph is useful to have a quick snapshot of units’ comparative results on single
factors’ RSs. This is a handy option, which emphasizes the advantage of using an RS

approach over traditional regression methods.
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6 Application 2

In this second application, I use rscore to identify the main drivers of countries’ gross
domestic product (GDP). I address three research questions:

• Factor importance rank: Among countries’ GDP components, what are those
whose growth change produces a larger or smaller response in terms of GDP

growth?

• Factor response heterogeneity: Is a country’s GDP growth response more or less
heterogeneously or homogeneously distributed among its driving factors?

• Unit responsiveness rank: Which units have larger or smaller RSs for each given
factor?

For a dataset, we consider the World Bank’s “Economy & Growth” indicators
database, which is made of 283 macroeconomic indicators for 250 countries collected
from 1960–2014. We consider 13,695 observations, thus obtaining a huge longitudinal
dataset.

As drivers, we consider the main components of GDP formation, plus the government
surplus or deficit, that is,

• Cash surplus or deficit (percent of GDP)

• General government final consumption expenditure (annual percent growth)

• Household final consumption expenditure (annual percent growth)

• Gross fixed capital formation (annual percent growth)

• Exports of goods and services (annual percent growth)

• Imports of goods and services (annual percent growth)

Within this dataset, we consider the variable ny_gdp_pcap_kd_zg representing the
“real GDP rate of growth”. We plot the time pattern of this variable from 1990–2013
for the five largest European countries, namely, Great Britain (GBR), Germany (DEU),
Italy (ITA), France (FRA), and Spain (ESP). Figure 3 shows the time pattern, and the
Stata code to obtain this figure is
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. clear all

. set maxvar 30000

. use "data_worldbank_economy&growth.dta", clear

. global time year>=1990

. twoway
> line Y year if countrycode == "GBR" & $time, sort ||
> line Y year if countrycode == "FRA" & $time, sort ||
> line Y year if countrycode == "ITA" & $time, sort ||
> line Y year if countrycode == "ESP" & $time, sort ||
> line Y year if countrycode == "DEU" & $time, sort
> xlabel(1990(2)2015, gmax angle(horizontal))
> legend(label(1 "GBR") label(2 "FRA") label(3 "ITA")
> label(4 "ESP") label(5 "DEU")) title("GDP annual growth")
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Figure 3. GDP annual growth rate: 1990–2012

We now apply rscore by running a fixed-effects model (because a panel-data struc-
ture is now available):

. * Estimate RS for the "GDP annual growth" (Y)

. global xvars B G C I E M

. * Model with fixed effects

. capture drop w

. generate w=10

. capture drop id_country

. encode countryname, generate(id_country)

. tsset id_country year
panel variable: id_country (strongly balanced)
time variable: year, 1960 to 2014

delta: 1 unit
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. capture drop year2

. tostring year, gen(year2)
year2 generated as str4

. capture drop countryr

. generate countryr=countryname+year2

. rscore Y $xvars [pweight=w], model(fe) rs_name(_bx) graph(3)
> radar(4508 4233 5938 12978 11383 13033) id_string(countryr)

(output omitted )

For the sake of brevity, we omit the RS summary tables and consider only the graph-
ical outcomes. Indeed, as in the previous application, rscore generates the following
combined plot of the distributions of RS for each variable considered. This graph is
illustrated in figure 4.
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Figure 4. Distribution of RSs: 1990–2012

Quite surprisingly, figure 4 shows that the most relevant factor driving larger GDP

rate of growth (by country and by time) is represented by the private fixed investment.
Larger annual growth in this variable is associated with larger GDP growth, other things
being equal. More precisely, one standard-deviation increase in private investment turns
out to be associated—on average—with about two standard-deviations’ positive increase
in the GDP rate of growth.

However, private investment is also the factor showing the largest RS variance around
its mean, which can be interpreted as a measure of risk whenever one wants to draw
policy advice from this result. The second most relevant driver of GDP growth is export,
which shows a much more concentrated RS distribution than investment. As expected,
imports rank in the last position, with a negative average RS. Table 1 shows factor
importance results for all the factors considered in this example.
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Table 1. Factor importance results

Factor Observations Mean Standard Min Max
deviation

Deficit 1,877 0.1973794 0.3941552 −4.902884 15.50016
Public spending 1,877 0.1369482 0.2697644 −10.85175 0.6500276
Consumption 1,877 0.2479453 0.0429293 −0.1079709 0.4484287
Investment 1,877 1.847772 0.3886027 −1.261205 5.092096
Export 1,877 0.2691284 0.3522494 −14.00593 0.8352496
Import 1,877 −0.0319164 0.2415005 −9.790175 0.3935999

Figure 5 shows the time pattern of country GDP growth RS to the growth in fixed
investments. As can be seen, from 2000–2010, Spain was the country with the highest
GDP growth responsiveness to fixed investment, while Great Britain was the best per-
former during the ’90s. The last year (that is, 2012) shows that Germany and Italy are
particularly responsive.
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Figure 5. Time pattern of GDP growth RS to the growth in fixed investments: 1990–2012

An interesting piece of information we can obtain from matrix B is a ranking of
observations according to their RS. For example, we could be interested in knowing the
observation in our dataset with the highest investment RS. To obtain such information,
we simply sort observations over variable _bx4 and list them as follows:
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. sort _bx4

. list countryname year _bx4 if _bx4>=3 & _bx4!=.

countryname year _bx4

1865. Mali 2005 3.036985
1866. Belarus 1992 3.045852
1867. Congo, Rep. 2008 3.075329
1868. Nigeria 2012 3.094015
1869. Macao SAR, China 2009 3.143898

1870. Seychelles 2008 3.196258
1871. Argentina 2002 3.227396
1872. Indonesia 1999 3.309149
1873. Trinidad and Tobago 2007 3.3421
1874. Iran, Islamic Rep. 1994 3.403374

1875. Bulgaria 1991 3.416531
1876. Bulgaria 1990 4.174945
1877. Nigeria 2004 5.092096

We see that Nigeria in 2004 exhibits the highest GDP growth response to investment
growth with an RS equal to 5.09; this means that one standard-deviation change in the
rate of growth of fixed investment is associated with about a five standard-deviation
increase in Nigerian GDP growth, which is rather high if one considers that the average
RS over countries and years in this case is around two.

Finally, as a global responsiveness index, we calculate the MUR and show the first
and last 10 observations according to this index:

. generate MUR = (_bx1 + _bx2 + _bx3 + _bx4 + _bx5 + _bx6)/6
(11,818 missing values generated)

. sort MUR

. list countryname year MUR in 1/10

countryname year MUR

1. Sierra Leone 2000 -3.208911
2. Nigeria 2004 -.0919238
3. Sierra Leone 2010 -.0733859
4. Rwanda 1991 -.0355732
5. Congo, Dem. Rep. 2003 -.0349704

6. Nigeria 2007 -.0310322
7. Venezuela, RB 1997 .0403034
8. Sierra Leone 2011 .0478267
9. Azerbaijan 1996 .0880654
10. Madagascar 2003 .0898289
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. gsort - MUR

. list countryname year MUR in 1/10

countryname year MUR

1. Bulgaria 1990 .8761727
2. Bulgaria 1991 .8273186
3. Congo, Rep. 2008 .779387
4. Macao SAR, China 2009 .7609017
5. Mali 2006 .7523293

6. Argentina 2002 .7505001
7. Belarus 1992 .7342721
8. Iran, Islamic Rep. 1994 .7301948
9. Congo, Dem. Rep. 1994 .7280833
10. Seychelles 2003 .7250628

Bulgaria in 1990 and 1991 displays the highest average global response to all the
drivers considered in this application, while the worst-performing country was Sierra
Leone in 2000.

Lastly, we consider the radar graph provided by rscore in this second application.
The result for 2012 is illustrated in figure 6.
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Figure 6. Radar graph for RS country comparison—year 2012

It is evident to see that no remarkable differences arise among European countries
(and United States) in 2012. As expected, private fixed investment stands out as the
factor with leading responsiveness.
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7 Conclusion

The rscore command presented in this article can be a useful tool to detect both
factor importance and factor heterogeneous response in a regression analysis measuring
the impact of a factor xj on an outcome y. rscore also allows the analyst to exploit
fixed-effects estimation for a regression of y on xj , thus mitigating potential factor
endogeneity within each factor regression. This command allows one to suitably rank
both factors and observations according to their RSs, providing the analyst with more
detailed idiosyncratic information of the response of an outcome y on factor xj whenever
the analysis of such a relation appears to be meaningful.
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Hoderlein, S., J. Klemelä, and E. Mammen. 2010. Analyzing the random coefficient
model nonparametrically. Econometric Theory 26: 804–837.

Lewbel, A., and K. Pendakur. Forthcoming. Unobserved preference heterogeneity in
demand using generalized random coefficients. Journal of Political Economy .

Mander, A. 2007. radar: Stata module to draw radar (spider) plots. Statistical Software
Components S456829, Department of Economics, Boston College.
https://ideas.repec.org/c/boc/bocode/s456829.html.

Poi, B. P. 2003. From the help desk: Swamy’s random-coefficients model. Stata Journal
3: 302–308.

Swamy, P. A. V. B. 1970. Efficient inference in a random coefficient regression model.
Econometrica 38: 311–323.

Wooldridge, J. M. 1997. On two stage least squares estimation of the average treatment
effect in a random coefficient model. Economics Letters 56: 129–133.

. 2002. Econometric Analysis of Cross Section and Panel Data. Cambridge, MA:
MIT Press.

. 2003. Further results on instrumental variables estimation of average treatment
effects in the correlated random coefficient model. Economics Letters 79: 185–191.

. 2004. 03.2.1. Fixed effects estimation of the population-averaged slopes in a
panel data random coefficient model—Solution. Econometric Theory 20: 428–429.



G. Cerulli 441

. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cam-
bridge, MA: MIT Press.

About the author

Giovanni Cerulli is a researcher at CNR-IRCrES, National Research Council of Italy, Institute
for Research on Sustainable Economic Growth. He received a degree in statistics and a PhD in
economic sciences from Sapienza University of Rome, and is editor-in-chief of the International
Journal of Computational Economics and Econometrics. His main research interest is applied
microeconometrics, with a focus on counterfactual treatment-effects models for program eval-
uation. He is the author of the book Econometric Evaluation of Socio-Economic Programs:
Theory and Applications (Springer, 2015). He has published articles in high-quality, refereed
economics journals.



The Stata Journal (2017)
17, Number 2, pp. 442–461

Multilevel multiprocess modeling with gsem

Tamás Bartus
Corvinus University of Budapest

Budapest, Hungary
tamas.bartus@uni-corvinus.hu

Abstract. Multilevel multiprocess models are simultaneous equation systems
that include multilevel hazard equations with correlated random effects. Demog-
raphers routinely use these models to adjust estimates for endogeneity and sample
selection. In this article, I demonstrate how multilevel multiprocess models can
be fit with the gsem command. I distinguish between two classes of multilevel
multiprocess models: nonrecursive systems of hazard equations without observed
endogenous variables and recursive systems that include a hazard equation with ob-
served endogenous qualitative variables. I illustrate the estimation of both classes
of models using sample datasets shipped with the statistical software aML. I pay
special attention to identifying structural coefficients in nonrecursive simultaneous
systems.

Keywords: st0481, survival analysis, multilevel multiprocess models, multilevel
analysis, simultaneous equations, endogeneity, gsem

1 Introduction

Multilevel multiprocess models were developed as systems of proportional hazard mod-
els with correlated individual-level random effects. These models adjust estimates
of the parameters of hazard equations for two forms of simultaneity (Lillard 1993;
Lillard and Waite 1993). Suppose a researcher examines the impact of children on
marital stability. Estimates of ordinary survival models of the hazard of divorce are
likely to be biased; the first form of simultaneity is the endogeneity of the presence of
children, because it is the outcome of a related process of timing of births. Further-
more, the conception hazard might depend on the latent dissolution hazard; if couples
expect that their marriage will be short lived, they may decide to postpone the first
(or higher-order) births. The second form of simultaneity arises because the latent haz-
ard of marriage dissolution is an unobservable (endogenous) variable in the conception
hazard equation.

The multilevel multiequation modeling framework has advantages. First, some of
the explanatory variables in hazard models are endogenous, and estimation of the
hazard model of substantive interest jointly with probit models explaining the en-
dogenous variables eliminates the endogeneity bias (Lillard, Brien, and Waite 1995;
Impicciatore and Billari 2012). Second, the multilevel multiprocess modeling frame-
work easily deals with selection bias. Consider the estimation of the effect of education
on second-birth hazards (Kravdal 2001). Finding a positive effect of higher education
can be explained in terms of a selection effect. Because educated women postpone

c© 2017 StataCorp LLC st0481
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first births, unmeasured factors that also affect the timing of births will be correlated
with education in the sample of mothers, even when those unmeasured factors are in-
dependent of education in the population of childless women. The selection effect is
appropriately controlled if the hazard models explaining first, second, and higher-order
births are jointly fit.

In this article, I show how multilevel multiprocess models can be fit with the gsem

command, which is a natural choice for two reasons: it allows one to estimate multi-
level equations with correlated latent variables, and it supports survival equations in
Stata 14. My endorsement of the gsem command contrasts an earlier suggestion of fit-
ting systems of survival models with the user-written cmp command (Roodman 2011;
Bartus and Roodman 2014). The advantage of the cmp command is that the correla-
tion of residuals can be modeled without including random effects. This strategy has
an additional computational advantage because systems including two equations can be
estimated without numerically approximating two-dimensional integrals. However, the
cmp command forces researchers to impose lognormal duration dependence on the data,
an unrealistic assumption in several applications. Additionally, the computational ad-
vantage of the cmp command might have been overstated because numerical integration
procedures seem to be substantially faster in Stata 14 than in older versions.

I begin by identifying two classes of multilevel multiprocess models: nonrecursive
systems of hazard equations without observed endogenous variables and recursive sys-
tems that include hazard equations with observed endogenous qualitative variables.
Afterward, I detail how both classes of models can be fit using the gsem command. The
examples use sample datasets shipped with the statistical software aML, which was ex-
plicitly developed for multilevel multiprocess modeling (Lillard and Panis 2003). I pay
special attention to identifying structural parameters in nonrecursive systems of hazard
equations, an issue often neglected in empirical applications.

2 Multilevel multiprocess hazard models

2.1 Motivation

Multilevel multiprocess modeling addresses the problem that explanatory variables are
often endogenous because of selection mechanisms. Consider the classic example of
estimating the impact of children on marital stability. Estimates from a separate
hazard model of divorce suffer from two forms of simultaneity biases (Lillard 1993;
Lillard and Waite 1993). First, the presence of children is endogenous because it is the
outcome of a process of timing of births. Second, the latent birth hazard might depend
on the latent dissolution hazard as well. Similar biases arise if the researcher is also
interested in examining the effect of marriage on childbearing. Marriage is the outcome
of the partnership formation process, which may depend on the latent propensity of
becoming a parent.

The aforementioned simultaneity problems can easily be studied within the frame-
work of simultaneous equations with qualitative variables (Heckman 1978). Let y∗1t and
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y∗2t denote the endogenous latent hazards under study; for instance, the former might
be the hazard of conception, and the latter might denote the hazard of marital disso-
lution. Subscript t expresses the possible time dependence of the hazards. y1t and y2t
are observed realizations of the latent variables. The dependence of each latent variable
on the other, as well as on other (possibly time-varying) explanatory variables x1t and
x2t, is described with the structural equations

y∗1t = α1y2t + λ1y
∗
2t + β′

1x1t + ε1t

y∗2t = α2y1t + λ2y
∗
1t + β′

2x2t + ε2t (1)

The two forms of simultaneity are related to the presence of latent variables and
observed realizations on the right-hand side of the equations. First, the error terms
are correlated with the exogenous explanatory variables because of the presence of an
unobserved hazard on the right-hand side and the dependence of that hazard on the
same exogenous variables. Second, the expected value of the residual is not constant
across the categories of the observed realizations (Lee 1979).

Joint estimation of the system is viewed as a method for eliminating both sources of
endogeneity bias. I will discuss the method separately for two classes of the model. It
is well known that the parameters of the model defined by (2) are not identified with-
out further restrictions. Using classic results on logical consistency and identification
(Maddala 1983), we see that the model exists only if λ1α2 = λ2α1 = 0 and α1α2 = 0.
This condition implies that there are two forms of estimable systems. The first form is
nonrecursive systems without observed endogenous variables (α1 = α2 = 0):

y∗1t = λ1y
∗
2t + β′

1x1t + ε1t

y∗2t = λ2y
∗
1t + β′

2x2t + ε2t

The second form is recursive systems with observed endogenous variables (λ1 = λ2 = 0
and α1 = 0):

y∗1t = β′
1x1t + ε1t

y∗2t = α2y1t + β′
2x2t + ε2t (2)

I will now discuss these models briefly.

2.2 Nonrecursive systems without observed endogenous variables

In these systems, endogeneity bias emerges because unobserved endogenous hazards
appear on the right-hand sides of both equations. The dependence of hazards on other
hazards disappears in the reduced-form system. However, the reduced-form parame-
ters are not equal to the structural parameters of interest. In this section, I focus on
identifying these parameters via excluded instruments. To emphasize the presence of
excluded instruments, we rewrite the structural model as
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y∗1t = λ1y
∗
2t + β′

1xt + γ1z1t + ε1t

y∗2t = λ2y
∗
1t + β′

2xt + γ2z2t + ε2t

where x is a vector of exogenous variables common to both equations and the z’s are
excluded instruments. The system of reduced-form equations is

y∗1t = π′
10xt + π11z1t + π12z2t + v1t

y∗2t = π′
20xt + π21z1t + π22z2t + v2t

where

πj0 = (1− λ1λ2)
−1

(β′
j + λjβ

′
k)

πjj = (1− λ1λ2)
−1

γj

πjk = (1− λ1λ2)
−1

λjγk

vj = εj + λjεk (3)

where j = {1, 2} indexes the equations and k = 3 − j. Estimation must account
for the residuals in the reduced-form equations being generally correlated, even when
the disturbances in the structural equations are independent of each other. If the
latter error terms are normally distributed, the correlation of the residuals can easily
be modeled using the multivariate normal distribution. In proportional hazard models,
however, the error terms are exponentially distributed. Hence, the correlation of the
underlying residuals should be modeled with the help of jointly normally distributed
random intercepts (Lillard 1993). The resulting multilevel multiprocess model can be
stated as follows:

y∗1t = π′
10xt + π11z1t + π12z2t + u1 + η1t

y∗2t = π′
20xt + π21z1t + π22z2t + u2 + η2t[

u1

u2

]
∼ N

(
0,

[
σ2
1 σ12

σ12 σ2
2

])
(4)

In the presence of excluded instruments, the structural coefficients can be recovered
as follows. First, notice from (3) that the selection coefficient λj can easily be estimated
as follows:

λj = πjk/πkk (5)

Second, use the estimated selection parameters to solve the system:

π10 = (1− λ1λ2)
−1

(β′
1 + λ1β

′
2)

π20 = (1− λ1λ2)
−1

(β′
2 + λ2β

′
1)

The solution is a simple nonlinear combination of reduced-form coefficients:

βj = πj0 − λkπk0 = πj0 − (πjk/πkk)πk0 (6)

Both the nonlinear combination and its standard error can be calculated using the nlcom
command.
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2.3 Recursive systems with observed endogenous variables

In recursive systems, all coefficients are structural. Endogeneity arises because the
expected value of ε1 differs in groups y1t = 1 and y1t = 0. The problem is the same
as the problem of sample selection. The endogeneity bias is eliminated if the residuals
are allowed to be correlated and the seemingly unrelated system is jointly estimated.
In the case of two equations with normally distributed residuals, this boils down to the
estimation of a bivariate probit model. However, the second equation is a proportional
hazard model, and the joint estimation requires the inclusion of random intercepts. The
multilevel multiprocess model is

y∗1t = β′
1x1t + u1 + η1t

y∗2t = α2y1t + β′
2x2t + u2 + η2t[

u1

u2

]
∼ N

(
0,

[
σ2
1 σ12

σ12 σ2
2

])
(7)

To identify the correlation of the random effects, one should include in the first-stage
equation at least one variable not included in the second-stage hazard equation.

In empirical applications, the latent variable y∗1t is often a time-constant latent
propensity to experience an event. The classic example is the propensity to form a
cohabiting union before marriage that in turn will affect the (time-varying) hazard of
marital dissolution (Lillard, Brien, and Waite 1995).

3 Fitting multilevel multiprocess models with gsem

The official Stata gsem command can fit multiprocess hazard models because it supports
multiequation survival models with correlated latent variables. The description of the
syntax is restricted to components of the gsem command specific to our purposes. We
also assume a multispell data structure where each record corresponds to an episode
nested within an individual.

3.1 Multilevel hazard models

In the multispell dataset, idvar identifies the individuals, timevar records the survival
time, t0var records entry time, and event is a dummy variable recording the occurrence
of the event under study. The inclusion of the random intercept requires specification
of a latent variable at the level of individuals. This latent variable might be specified
as U[idvar]. Instead of U, one can choose any word beginning with a capital letter.
However, specifying [idvar] after the chosen word is mandatory; this syntax element
tells Stata that the latent variable is random intercept, which is constant within the
individuals.
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To fit a multilevel hazard model assuming distribution family, one should type

gsem (timevar <- indepvars U[idvar], family(family, fail(event) lt(t0var)))

3.2 Piecewise-constant multilevel hazard models

Most of the empirical applications in demography use piecewise-linear exponential haz-
ard models. Thus I will focus on simple exponential hazard models. Exponential hazard
models can easily be fit as Poisson models of events, provided that the explanatory vari-
ables include the natural log of the duration of the current spell (Skrondal and Rabe-
Hesketh 2004). The reason is that if survival time t follows an exponential distribution
with parameter h, the expected number of failures follows a Poisson distribution with
parameter ht (Holford 1980).

Define durvar as timevar minus t0var. durvar thus measures the duration of the
current spell. The multilevel piecewise-constant exponential hazard model can be fit as
follows:

gsem (event <- indepvars U[idvar], poisson exposure(durvar))

Duration dependence is allowed if indepvars includes t0var, other variables generated
from t0var, or indicator variables capturing the rank order of the current spell.

3.3 Fitting nonrecursive systems without observed endogenous vari-
ables

Systems of piecewise-constant exponential models require separate latent variables for
the equations. Let U1[idvar] and U2[idvar] be the equation-specific latent variables
(random intercepts). Two equations can be jointly estimated as follows:

gsem

(event 1 <- indepvars 1 U1[idvar], poisson exposure(durvar))

(event 2 <- indepvars 2 U2[idvar], poisson exposure(durvar))

gsem automatically estimates the variance–covariance matrix of the random effects. The
loadings of the latent variables will be constrained to 1.

event 1 and event 2 might refer to recurrent events of the same kind. (For simplicity,
the outcomes of sequential choices, like the timing for first, second, and higher-order
births, are also treated as recurrent events.) The practice of multilevel modeling sug-
gests that equations for recurrent events should share the same latent variable. Even if
K different equations are used to model recurrent events of the same kind, the equations
should include a single latent variable, not K different latent variables. This strategy
of modeling first, second, and higher-order births is present in Lillard’s (1993) seminal
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article. The reason for using one instead of K different latent variables is computa-
tional: integrating out one latent variable takes less time than integrating out K jointly
distributed latent variables. The syntax for recurrent events is

gsem

(event 1 <- indepvars 1 U[idvar], poisson exposure(durvar))

(event 2 <- indepvars 2 U[idvar], poisson exposure(durvar))

gsem automatically constrains the loading of the latent variable to 1 in the first equation
but estimates the loadings in the other equations and the variance of the latent variable.

Lillard (1993) modeled recurrent occurrences of births jointly with marital disso-
lution. The joint modeling of recurrent events nested within another process can be
implemented as follows: Variables event 11 and event 12 capture the occurrences of the
recurrent events. Variable event 2 measures the termination of another process within
which the occurrences of event 11 and event 12 are nested. The syntax, which combines
the previous syntax elements, is

gsem

(event 11 <- indepvars 12 U1[idvar], poisson exposure(durvar))

(event 12 <- indepvars 12 U1[idvar], poisson exposure(durvar))

(event 2 <- indepvars 2 U2[idvar], poisson exposure(durvar))

3.4 Fitting recursive systems with observed endogenous variables

For simplicity, consider one survival process and one probit equation. Again, event is
the variable indicating failures. xvar is the endogenous dummy variable in the hazard
equation. indepvars includes the exogenous variables appearing in both the hazard and
the probit equations. Finally, zvars contains the excluded instrument (or the list of
excluded instruments), which appears only in the probit equation. The syntax is

gsem

(event <- xvar indepvars U[idvar], poisson exposure(durvar))

(xvar <- zvars indepvars V[idvar], probit)
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gsem also allows one to estimate more complicated systems. Consider a hazard model
that includes two endogenous dummy variables. (For an example, see Impicciatore and
Billari [2012].) The syntax for fitting models of this kind is

gsem

(event <- xvar 1 xvar 2 indepvars U[idvar], poisson exposure(durvar))

(xvar 1 <- zvars 1 indepvars V1[idvar], probit)

(xvar 2 <- zvars 2 indepvars V2[idvar], probit)

One can also fit a hazard model with an endogenous qualitative variable jointly with
a multinomial selection model:

gsem

(event <- xvar indepvars U[idvar], poisson exposure(durvar))

(xvar <- zvars indepvars V[idvar], mlogit)

4 Example 1. Nonrecursive simultaneous equations for
hazards

4.1 Introduction: The research problem and the dataset

Our first example considers the relationship between education and second-birth rates.
We hypothesize that higher education has a positive effect on second-birth hazards
(even when higher education has a negative effect on first births). We use a sample
dataset on married American women that was shipped with the statistical software aML

(Lillard and Panis 2003). The original dataset was converted into a multispell dataset.
You can obtain the data as follows:

. use "http://web.uni-corvinus.hu/bartus/stata/divorce2.dta"
(Data on marriages (source: divorce4.raw, shipped with aML))

The data have a multilevel structure: spells are nested within conception episodes,
and conception episodes are nested within individuals. Our sample data include the
first two conception episodes within the first marriage. Conception episodes within
marriages are identified with the variable numkids, measuring the number of children
at the beginning of conception episodes. The duration of a conception episode is the
difference between two variables, time and mardur. mardur measures the duration of
the marriage at the beginning of each spell, while time measures the date of separation
(or interview date).

We begin by creating separate dummies for first and second conceptions. We use
the separate command to separate the samples for the study of first and second births.
Then, we define the model. The key explanatory variable is hereduc, which is a categor-
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ical variable with three categories: primary, secondary, and higher education. (Actually,
these variables are computed from years of schooling.) I chose secondary education as
the reference category. To keep matters simple, I used only the age at the beginning
of the conception spell (that is, the mother’s age when the first child was born) as a
control variable. We place the independent variables and the model definition in global
macros. The commands are

. separate birth, by(numkids)

(output omitted )

. global xvars ib2.hereduc age

. global model poisson exposure(dur)

We begin our analyses with fitting the model separately. We fit a multilevel model
because records within the multispell dataset are nested within individuals. The com-
mand and result are

. gsem (birth2 <- $xvars U[id], $model)

(output omitted )

Coef. Std. Err. z P>|z| [95% Conf. Interval]

birth2 <-
hereduc

<12 years -.0389349 .0727403 -0.54 0.592 -.1815032 .1036334
16+ years .4029357 .1093571 3.68 0.000 .1885998 .6172716

age -.0914562 .0062165 -14.71 0.000 -.1036404 -.079272

U[id] 1 (constrained)

_cons -1.86012 .0506612 -36.72 0.000 -1.959414 -1.760826
ln(dur) 1 (exposure)

var(U[id]) .6216596 .068415 .5010442 .7713105

The third level of the hereduc variable (16+ years of education) has a positive and
statistically significant coefficient. This suggests that second-birth rates are relatively
high among educated women. In the rest of this section, we control for sample selection
and endogeneity to check whether the estimate of 0.403 is robust.

4.2 Joint model for first and second births

Our first concern with the previous result is it might arise because of a selection effect.
Education has a negative effect on the transition to first birth, so education will be
positively correlated with unobserved causes of fertility in samples of mothers (Kravdal
2007). Therefore, the comparison of the fertility outcomes across educational categories
in the sample of mothers measures not only the true effect of education but also the effect
of unobserved preferences or personality traits (Kravdal 2001). This selection effect can
be controlled for if the parity-specific transitions are modeled jointly by adding person-
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specific random intercepts to both the second- and first-birth equations. The command
is

. gsem (birth2 <- $xvars U[id], $model)
> (birth1 <- $xvars U[id], $model)

(output omitted )

Results are not shown because the coefficient of higher education is again positive
and statistically significant and, more importantly, the exact value of the estimate,
0.381, is close to the previous estimate. This finding suggests that the positive effect of
higher education cannot be explained in terms of sample selection.

4.3 Joint model for second births and marital dissolutions

Our second concern is the dependence of the birth process on the latent hazard of marital
dissolution; pessimistic expectations regarding the duration of the marriage are likely
to affect second births. To eliminate the bias arising from simultaneity, we now turn to
fitting a joint model of the timing of second births and the timing of marital dissolutions.
Because the joint model includes reduced-form equations, identifying the structural
parameters requires excluded instruments. We assume that age affects only second-
birth rates, while the hazard of marital disruption depends exclusively on marriage
duration. In other words, age and marital duration are the excluded instruments in
the respective birth and dissolution equations. The reduced-form equations include all
variables appearing in all structural equations. We again specify the model using a
global macro:

. global xvars ib2.hereduc age mardur

We restrict the analysis to married mothers of one child. The reduced-form system
is estimated as follows:
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. gsem (birth2 <- $xvars U[id], $model)
> (divorce <- $xvars V[id], $model)
> if numkids==2

(output omitted )

Generalized structural equation model Number of obs = 5,100

(output omitted )

Coef. Std. Err. z P>|z| [95% Conf. Interval]

birth2 <-
hereduc

<12 years -.0028288 .068905 -0.04 0.967 -.1378801 .1322225
16+ years .3128652 .1036965 3.02 0.003 .1096238 .5161066

age -.0396747 .0087697 -4.52 0.000 -.056863 -.0224863
mardur -.1071725 .0138669 -7.73 0.000 -.1343512 -.0799939

U[id] 1 (constrained)

_cons -1.180374 .0971953 -12.14 0.000 -1.370873 -.9898746
ln(dur) 1 (exposure)

divorce <-
hereduc

<12 years -.1479639 .1482184 -1.00 0.318 -.4384667 .1425389
16+ years -.4958348 .2942543 -1.69 0.092 -1.072563 .0808931

age -.0970939 .0212381 -4.57 0.000 -.1387197 -.0554681
mardur .0857423 .0290449 2.95 0.003 .0288152 .1426693

V[id] 1 (constrained)

_cons -4.391784 .3508382 -12.52 0.000 -5.079414 -3.704153
ln(dur) 1 (exposure)

var(U[id]) .4275274 .0636296 .3193583 .5723342
var(V[id]) .478624 .3789376 .1014095 2.258969

cov(V[id],
U[id]) -.0836689 .1472204 -0.57 0.570 -.3722154 .2048777

Introducing the latent variables implies that five additional parameters should be
estimated: the loadings and the variances of the latent variables and the covariance of
the latent variables. We can identify three of these parameters because the variance–
covariance matrix of the dependent variables includes the variances and the covariance
of the outcomes. To identify these parameters, Stata constrains the loadings to unity.

To interpret the results, recall that the birth equation is not a structural equation
but a reduced-form equation (see section 2.2). The structural effect of higher education
must be recovered using (1). The structural effect is a nonlinear combination of four
reduced-form coefficients. This nonlinear combination can easily be computed with the
nlcom command:
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. nlcom _b[birth2:3.hereduc] - (_b[birth2:mardur] / _b[divorce:mardur]) *
> _b[divorce:3.hereduc]

_nl_1: _b[birth2:3.hereduc] - (_b[birth2:mardur] / _b[divorce:mardur])
> * _b[divorce:3.hereduc]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.3068977 .4508039 -0.68 0.496 -1.190457 .5766616

The structural effect of higher education in the second-birth equation, labeled nl 1

in the output, is small and lacks statistical significance. This suggests that the partial
correlation between higher education and second-birth rates is not direct but might be
mediated by the latent separation hazard. This conjecture can easily be tested. Using
(2.2), we can compute the structural effect of higher education on the dissolution hazard
as follows:

. nlcom _b[divorce:3.hereduc] - (_b[divorce:age] / _b[birth2:age]) *
> _b[birth2:3.hereduc]

_nl_1: _b[divorce:3.hereduc] - (_b[divorce:age] / _b[birth2:age]) *
> _b[birth2:3.hereduc]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -1.261495 .4305668 -2.93 0.003 -2.10539 -.4175992

Using (2.2), we see that the effect of the dissolution hazard on the second-birth hazard
is

. nlcom _b[birth2:mardur] / _b[divorce:mardur]

_nl_1: _b[birth2:mardur] / _b[divorce:mardur]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -1.249938 .4477062 -2.79 0.005 -2.127426 -.3724502

These linear combinations support the hypothesis that the positive effect of higher
education on second births is mediated by the latent hazard of marital separation: highly
educated women tend to live in relatively stable marriages, and marital stability has a
positive effect on second-birth rates.

4.4 Joint model for first births, second births, and marital dissolution

In the previous subsections, we first modeled first- and second-birth processes, then
modeled second-birth and marital dissolution processes jointly. The respective concerns
were sample selection bias and endogeneity bias. We can address these concerns at the
same time and estimate the first-birth, second-birth, and marital dissolution equations
jointly. Indeed, this model is very close to the classic multilevel multiprocess model
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presented in Lillard (1993). As described in section 3.3, we specify two correlated latent
variables for the respective conception and marital dissolution processes. The syntax is

. gsem (birth2 <- $xvars U[id], $model)
> (birth1 <- $xvars U[id], $model)
> (divorce <- $xvars V[id], $model)

(output omitted )

We omit the output because the ultimate interest lies in the structural coefficients.
These can be recovered by computing the appropriate nonlinear combination:

. nlcom _b[birth2:3.hereduc] - (_b[birth2:mardur] / _b[divorce:mardur]) *
> _b[divorce:3.hereduc]

_nl_1: _b[birth2:3.hereduc] - (_b[birth2:mardur] / _b[divorce:mardur])
> * _b[divorce:3.hereduc]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 .1031687 .1907404 0.54 0.589 -.2706757 .4770131

Again, there is no evidence that higher education would have a direct effect on
second-birth rates. By contrast, there is evidence that the positive effect of higher ed-
ucation is an indirect one, mediated by the latent dissolution hazard. The respective
nonlinear combinations that estimate the direct effect of higher education on the disso-
lution hazard and the effect of the dissolution hazard on the second-birth hazard are as
follows:

. nlcom _b[divorce:3.hereduc] - (_b[divorce:age] / _b[birth2:age]) *
> _b[birth2:3.hereduc]

_nl_1: _b[divorce:3.hereduc] - (_b[divorce:age] / _b[birth2:age]) *
> _b[birth2:3.hereduc]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.5290925 .2280571 -2.32 0.020 -.9760761 -.0821088

. nlcom _b[birth2:mardur] / _b[divorce:mardur]

_nl_1: _b[birth2:mardur] / _b[divorce:mardur]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.8249733 .2544315 -3.24 0.001 -1.32365 -.3262967
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5 Example 2. Hazard models with endogenous dummy
variables

5.1 Introduction: The research problem and the dataset

Our second example is about examining the impact of hospital delivery on child mor-
tality. We hypothesize that children delivered in hospitals have a lower death hazard
than similar children delivered at home. We use a modified and Stata-compatible ver-
sion of the children dataset shipped with the statistical software aML to replicate one of
the examples in the aML manual (Lillard and Panis 2003). You can obtain the data as
follows:

. use "http://web.uni-corvinus.hu/bartus/stata/children1.dta", clear
(Child mortality data (source: aML))

The data have a multispell and multilevel structure: spells are nested within children,
identified with the variable bid, and children are nested within mothers, identified with
the variable id. For simplicity, the survival process is split into two spells; the first spell
lasts three months (or less in case of early death). Episode splitting is motivated by
the observation that child mortality is relatively large in the first three months. The
survival process is described by three variables: death indicates deaths, dur records the
duration of the spell (in months), and age0 is the age of the child (in months) at the
beginning of the spell.

We begin with estimating a simple multilevel child mortality hazard equation. The
explanatory variables include the hospital dummy, education, and an indicator for being
aged three months at the beginning of the current spell. For simplicity, we assume that
the mortality hazard is constant within the spells. We use a random intercept at the
level of mothers to model the interdependence of spells within mothers. We place the
independent variables and the model definition in global macros. The commands are

. global death hospital i.edu i.age0

. global model poisson exposure(dur)

. gsem (death <- $death U[id], $model)

(output omitted )

Estimates are not shown. The coefficient of the hospital dummy is negative (the
estimate is −0.382) but statistically not significant (p = 0.064). The robustness of this
estimate is examined in the next subsection.

5.2 Joint estimation of hazard and probit equations

Finding no statistically significant negative effect of hospital delivery might be due to a
selection effect. Mothers are aware of their health status and form an expectation about
the mortality of their child. Hospital delivery is chosen by mothers who fear losing their
baby and believe hospitals reduce this risk. By contrast, home delivery is chosen by
women with a low risk of losing their baby. In short, hospital delivery is correlated with
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factors affecting child mortality. To control for this endogeneity bias, one can fit the
hazard model jointly with a probit model of hospital delivery on education and distance
to the nearest hospital, the latter being the excluded instrument. The joint model is fit
as follows:

. global hospital distance i.edu

. gsem (death <- $death U[id], $model)
> (hospital <- $hospital V[id], probit)

(output omitted )

Generalized structural equation model Number of obs = 2,002

(output omitted )

Coef. Std. Err. z P>|z| [95% Conf. Interval]

death <-
hospital -.5131628 .2411954 -2.13 0.033 -.9858971 -.0404285

educ
high school -.2625067 .1909157 -1.37 0.169 -.6366945 .1116811

college -2.021169 .7341519 -2.75 0.006 -3.46008 -.5822573

3.age0 -4.920847 .1656668 -29.70 0.000 -5.245548 -4.596146

U[id] 1 (constrained)

_cons -3.12697 .1432276 -21.83 0.000 -3.407691 -2.846249
ln(dur) 1 (exposure)

hospital <-
distance -.0231453 .0175738 -1.32 0.188 -.0575894 .0112987

educ
high school 2.01218 .2895358 6.95 0.000 1.4447 2.57966

college 3.148736 .5114086 6.16 0.000 2.146393 4.151078

V[id] 1 (constrained)

_cons -2.209737 .2767038 -7.99 0.000 -2.752066 -1.667407

var(U[id]) .4091622 .2339894 .1333875 1.255093
var(V[id]) 4.149642 1.079965 2.491617 6.910987

cov(V[id],
U[id]) .2157169 .1885667 1.14 0.253 -.1538671 .5853009

The coefficient of the hospital delivery variable is now statistically significant. The
estimate of −0.513 is larger than that appearing in the separate model. This suggests
that hospital delivery has the expected negative effect on mortality, but this effect was
partially suppressed by the aforementioned selection effect.
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The present example assumes that the hazard of death is constant within the spells.
Descriptive analyses, not reported in this article, suggest this assumption is unreal-
istic. The hazard is monotonically decreasing in the first three months, while it is
approximately constant after surviving the first three months. A more realistic model
specification would be a Weibull model, which can be fit as follows:

. global model family(weibull, fail(death) lt(age0))

. gsem (month <- $death U[id], $model)
> (hospital <- $hospital V[id], probit)

(output omitted )

Note that the dependent variable in the hazard equation is the variable recording
the survival time. The output is not reported because the coefficient of the hospital
delivery dummy is statistically significant, and the size of the coefficient is very close to
the previously estimated −0.513.

5.3 Joint estimation of hazard and multinomial logit equations

Suppose that children can be delivered in public hospitals, in private hospitals, and at
home. Suppose further that hospital delivery improves life expectancy, but the negative
effect of hospital delivery on child mortality differs between private and public hospitals.
Women are expected to select the delivery form, which minimizes the risks but also
economizes on (travel and other) costs. Again, the chosen form of delivery will be
correlated with factors affecting the health of the child. To eliminate the endogeneity
bias, one must fit the hazard model jointly with a multinomial model of delivery choice.
The gsem command allows one to fit hazard models jointly with multinomial selection
equations. To illustrate, we use a modified version of the child mortality dataset. The
specification of the hazard and the selection equations is not changed. The only change
is that we use a multinomial logit selection model instead of a probit model. The
commands are

. use "http://web.uni-corvinus.hu/bartus/stata/children2.dta", clear
(Child mortality data (source: aML))

. global death i.hospital i.edu i.age0

. global hospital distance i.edu

. global model poisson exposure(dur)
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. gsem (death <- $death U[id], $model)
> (hospital <- $hospital V[id], mlogit)

(output omitted )

Generalized structural equation model Number of obs = 2,002

(output omitted )

Coef. Std. Err. z P>|z| [95% Conf. Interval]

death <-

hospital
1 -.5085083 .2527484 -2.01 0.044 -1.003886 -.0131305
2 -3.024408 .5896255 -5.13 0.000 -4.180053 -1.868763

educ
high school -.1914267 .1871073 -1.02 0.306 -.5581502 .1752968

college -1.965382 .7309886 -2.69 0.007 -3.398093 -.5326702

3.age0 -4.836307 .1661777 -29.10 0.000 -5.16201 -4.510605

U[id] 1 (constrained)

_cons -2.885532 .1392459 -20.72 0.000 -3.158449 -2.612615
ln(dur) 1 (exposure)

0.hospital (base outcome)

1.hospital <-
distance -.0530196 .0337748 -1.57 0.116 -.1192171 .0131779

educ
high school 3.239981 .4779804 6.78 0.000 2.303157 4.176805

college 4.849681 .7717843 6.28 0.000 3.337011 6.36235

V[id] 1 (constrained)

_cons -3.793961 .4544799 -8.35 0.000 -4.684725 -2.903196

2.hospital <-
distance -.0060001 .0212732 -0.28 0.778 -.0476949 .0356946

educ
high school 1.074023 .1810285 5.93 0.000 .7192138 1.428833

college 1.707243 .3263577 5.23 0.000 1.067594 2.346892

V[id] .2732314 .0500081 5.46 0.000 .1752174 .3712454

_cons -1.293195 .1406849 -9.19 0.000 -1.568932 -1.017458

var(U[id]) .2992881 .2126223 .0743658 1.204497
var(V[id]) 13.02677 2.624814 8.776573 19.3352

cov(V[id],
U[id]) .3196824 .3756769 0.85 0.395 -.4166308 1.055996
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Again, we find that hospital delivery reduces child mortality compared with home
delivery. The effect is larger in hospitals coded with 2 than in hospitals coded with 1.
(It is up to the reader to interpret the 1 code as a private or as a public hospital.)

6 Concluding remarks

Demographers routinely use multilevel multiprocess models to adjust estimates for en-
dogeneity and sample selection. In this article, I showed how multilevel multiprocess
models could be fit with the gsem command. I provided two examples to illustrate the
estimation of nonrecursive systems without observed endogenous variables and recur-
sive systems with observed endogenous variables. The examples used sample datasets
shipped with the statistical software aML, explicitly developed for multiprocess multi-
level modeling (Lillard and Panis 2003). I paid special attention to identifying structural
effects in nonrecursive systems.

Most of the examples in this article illustrate the estimation of systems with two
equations. In some empirical applications, however, more than two equations are esti-
mated jointly (Upchurch, Lillard, and Panis 2002; Steele et al. 2005). As the number
of equations increases, the number of correlated random intercepts increases. Fitting
models with a large number of random effects is slow and may have convergence prob-
lems. Referencing the classic article on multilevel multiprocess modeling (Lillard 1993),
I suggested a simple rule to avoid or minimize numerical problems: the number of latent
variables must be equal to the number of processes under study, but separate equations
for recurrent (or sequential) occurrences of events of the same kind should share the
same latent variable.

For simplicity, I used (piecewise-constant) exponential hazard models for the purpose
of survival modeling. As shown in section 3.1, gsem supports a large class of parametric
survival models. Recently, multilevel multiprocess models often rely on discrete-time
(binary and multinomial) logistic regression models (Steele et al. 2005). However, the
Poisson model is flexible enough to model duration dependence and represent discrete-
time event-history models. In theory, systems of logit and multinomial logit models can
easily be estimated with gsem. In conclusion, the gsem command is a powerful tool to
fit various forms of multilevel multiprocess models. I believe the examples shown in this
article will help researchers solve complicated research problems.
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Abstract. In competing-risks analysis, the cause-specific cumulative incidence
function (CIF) is usually obtained in a modeling framework by either 1) transform-
ing on all cause-specific hazards or 2) transforming by using a direct relationship
with the subdistribution hazard function. We expand on current competing-risks
methodology from within the flexible parametric survival modeling framework and
focus on the second approach. This approach models all cause-specific CIFs si-
multaneously and is more useful for answering prognostic-related questions. We
propose the direct flexible parametric survival modeling approach for the cause-
specific CIF. This approach models the (log cumulative) baseline hazard without
requiring numerical integration, which leads to benefits in computational time. It
is also easy to make out-of-sample predictions to estimate more useful measures
and incorporate alternative link functions, for example, logit links. To implement
these methods, we introduce a new estimation command, stpm2cr, and demon-
strate useful predictions from the model through an illustrative melanoma dataset.

Keywords: st0482, stpm2cr, survival analysis, competing risks, flexible parametric
models, subdistribution hazard, cumulative incidence function

1 Introduction

In competing-risks analysis, researchers consider the cause-specific cumulative incidence
function (CIF), which is the probability of failure of an event in the presence of other
competing events. From within the modeling framework, the CIF is usually obtained

c© 2017 StataCorp LLC st0482
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by either 1) estimating all the cause-specific hazard (CSH) functions or 2) transform-
ing by using a direct relationship with the subdistribution hazard (SDH) function for
the cause of interest. Many tools in Stata allow us to estimate the cause-specific
CIF. We can obtain an empirical, nonparametric estimate of the cause-specific CIF us-
ing the user-written command stcompet, which applies the Aalen–Johansen approach
(Coviello and Boggess 2004).

Alternatively, we can fit regression models on either the CSH or SDH scale depending
on the research question (Sapir-Pichhadze et al. 2016; Noordzij et al. 2013; Koller et al.
2012). CSH regression models can be fit from within a semiparametric approach using
a typical Cox model or from within a flexible parametric modeling framework using
the user-written postestimation command stpm2cif. This command works with an
expanded dataset in which each patient has a row for each cause and is used after
fitting a cause-specific flexible parametric survival model (FPM) with stpm2 to model all
causes (Hinchliffe and Lambert 2013; Lambert and Royston 2009; Lambert et al. 2011;
Royston and Parmar 2002).

The preferred method for modeling covariate effects on the cause-specific CIF is the
Fine and Gray (1999) model, available through the stcrreg command. However, this
approach allows us to model only one event using the partial likelihood. We must fit
separate models for each competing event if we want to understand the overall impact
of a covariate on risk.

Competing-risks models can also be fit using the user-written command stcrprep,
which restructures the data and calculates appropriate weights (Lambert Forthcoming).
Standard Stata survival analysis commands can then be used to fit models more com-
putationally efficiently, for example, fitting the Fine and Gray model and parametric
models for the cause-specific CIF (Lambert, Wilkes, and Crowther Forthcoming).

We introduce parametric methods using the full likelihood because smooth esti-
mates can be obtained for the baseline cause-specific CIF or SDH for a particular cause
that can easily extend to incorporate nonproportional SDHs. Fitting parametric models
for the cause-specific CIF in this way is computationally quicker than fitting models
with stcrprep because no numerical integration or data restructure is required. An
additional advantage of these models is that we can model all cause-specific CIFs simul-
taneously and model covariate effects on all competing causes. Jeong and Fine (2006)
investigated a direct parametric inference approach and defined a likelihood that al-
lows us to model all the cause-specific CIFs simultaneously. We extend this approach
to FPMs, in which it is easy to model time-dependent effects and obtain useful out-of-
sample predictions.

Others have also proposed modeling the SDH under alternative link functions. For
example, Gerds, Scheike, and Andersen (2012) propose the proportional log-odds model
for the cause-specific CIF, which offers an alternative interpretation. However, the in-
terpretation is not as simple as modeling a single event and suffers from similar issues
in interpretation as the complementary log-log link function. Incorporating such al-
ternative link functions on the cause-specific CIF is also easy to implement using the
approach we outline in this article.
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This article continues as follows. In section 2, we introduce the methods for direct
inference on the cause-specific CIF under an FPM framework. In section 3, we outline
the syntax of stpm2cr, which fits the models introduced in section 2. In section 4, we
describe syntax for postestimation using predict after fitting models with stpm2cr.
In section 5, we provide illustrative examples. Finally, we conclude by discussing the
approach’s limitations and potential extensions.

2 Methods

Let T be the time to event for any K competing causes k = 1, . . . ,K, and let D denote
the type of event, where D = 1, . . . ,K. Here we consider the events to be death from
different causes, so the cause-specific CIF, Fk(t), is the probability of dying from a
particular cause D = k by time t while also being at risk of dying from other causes
(Putter, Fiocco, and Geskus 2007):

Fk(t) = P (T ≤ t,D = k)

The all-cause CIF, F (t), which is the probability of dying from any of the K causes
by time t, is the sum of all K cause-specific CIFs, Fk(t), and can also be expressed as
the complement of the overall survival function, S(t):

F (t) = P (T ≤ t) =

K∑
j=1

Fj(t) = 1− S(t)

2.1 Cause-specific hazard function

The cause-specific CIF, Fk(t), can be expressed as a function of either the CSH functions
for allK causes or the SDH for cause k. The CSH function, hcs

k (t), gives the instantaneous
mortality rate from a particular cause k given that the patient is still alive at time t in
the presence of all other causes of death.

hcs
k (t) = lim

Δt→0

P (t < T ≤ t+Δt,D = k|T > t)

Δt

The cause-specific CIF can be expressed as a function of the CSHs for all K causes:

Fk(t) =

∫ t

0

⎡⎣exp
⎧⎨⎩−

∫ t

0

K∑
j=1

hcs
j (u)du

⎫⎬⎭
⎤⎦hcs

k (u)du

Note here that the leading term within the integral gives the overall survival function,

S(t) = exp

⎧⎨⎩−
∫ t

0

K∑
j=1

hcs
j (u)du

⎫⎬⎭
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2.2 Subdistribution hazard function

Gray (1988) introduces the SDH for cause k, hsd
k (t), which gives a direct relationship

with the cause-specific CIF. This has the mathematical formulation

hsd
k (t) = lim

Δt→0

P {t < T ≤ t+Δt,D = k|T > t ∪ (T ≤ t ∩D �= k)}
Δt

=
d
dt {Fk(t)}
1− Fk(t)

= −d [ln {1− Fk(t)}]
dt

and is interpreted as the instantaneous rate of failure at time t from cause k among
those still alive or those who have died from any of the other K − 1 competing causes
excluding cause k. The SDH rate is not a conventional epidemiological rate because of
the risk set (Lau, Cole, and Gange 2009) and should not be interpreted as a standard
hazard rate.

The cause-specific CIF can be expressed directly in terms of the SDH function for
cause k using standard survival relationships along with the cumulative SDH for cause
k, Hsd

k (t),

Fk(t) = 1− exp
{
−Hsd

k (u)
}

and Hsd
k (t) =

∫ t

0

hsd
k (u)du

Using the SDH functions for all K causes, we can also obtain the CSH functions,
hcs
k (t), for all K causes (Latouche et al. 2007),

hcs
k (t) = hsd

k (t)

⎡⎢⎢⎢⎢⎣1 +
{

K∑
j=1

Fj(z)

}
− Fk(t)

1−
K∑
j=1

Fj(t)

⎤⎥⎥⎥⎥⎦
2.3 Regression modeling

The most common model for the SDH for cause k is the Fine and Gray (1999) model,
which is expressed in a similar way to the cause-specific Cox proportional hazards model
because it assumes proportionality of covariate effects on the SDH scale,

hsd
k (t|x) = hsd

0,k(t) exp
(
xβββsd

k

)
(1)

where βββsd
k are log-SDH ratios for cause k. The SDH ratios, exp

(
βββsd
k

)
, are interpreted

as the association on the effect of a covariate on risk (refer to Wolbers et al. [2014]
for more details on interpretation). We focus on implementing and extending the SDH

regression model in (1) from within the FPM approach.
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2.4 Likelihood estimation

Jeong and Fine (2006) showed that we can simultaneously fit parametric models that
directly fit covariate effects on the cause-specific CIF for all k causes, Fk(t|xk) (k =
1, . . . ,K), without requiring indirect specification through the CSHs. Hence, for an
observable failure time ti, with independent and noninformative right censoring, for
each individual i = 1, . . . , N , the likelihood for direct inference on the cause-specific CIF

is

L =

N∏
i=1

⎡⎢⎢⎢⎣
⎛⎝ K∏

j=1

[
hsd
j (ti|xj) {1− Fj (ti)}

]δij⎞⎠⎧⎨⎩1−
K∑
j=1

Fj(ti|xj)

⎫⎬⎭
1−

K∑
j=1

δij

⎤⎥⎥⎥⎦ (2)

where the censoring indicator, δik, tells us whether an individual died from any cause
k (δik = 1), or not (δik = 0). Note that the cause-specific CIF, Fk(t), in (2) is not a
proper cumulative distribution function and is instead referred to as a subdistribution
function because limt→∞ Fk(t) < 1 (Andersen et al. 2012).

2.5 Flexible parametric regression on the cause-specific cumulative
incidence function

Using the likelihood in (2), we can fit a parametric survival model simultaneously for all
K cause-specific CIFs. We apply the likelihood to the FPM approach described by Roys-
ton and Parmar (2002) and extend it using restricted cubic splines, sk(ln(t);γγγk,mk),
with M − 1 degrees of freedom, where sk is a restricted cubic spline function for cause
k on log-time and consists of a vector of M knots, m; a vector of M − 1 parameters, γγγ;
and covariates, xk (Durrleman and Simon 1989). The following model can be specified
through a general link function, g(·), for each of the k = 1, . . . ,K cause-specific CIF

with covariates, xk,

g {Fk(t|xik)} = sk {ln(t);γγγk,mk}+ xkβββk

= γ0k + γ1kz1k + · · ·+ γ(M−1)kz(M−1)k + xkβββk (3)

where z1k, . . . , z(M−1)k are the basis functions of the restricted cubic splines and are
defined as

z1k = ln(t)

zjk = {ln(t)−mjk}3+ − φjk {ln(t)−m1k}3+ − (1− φjk) {ln(t)−mMk}3+
j = 2, . . . ,M − 1

where

φjk =
mMk −mjk

mMk −m1k

and

(u)+ =

{
u, if u < 0

0, otherwise
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Through the general link function g(·) for the cause-specific CIF, Fk(t), in (3), we
can apply similar transformations described in Royston and Parmar (2002) for the sur-
vival function. Lambert, Wilkes, and Crowther (Forthcoming) offer more details on the
various link functions available for the cause-specific CIF, but here we introduce only
the complementary log-log (cloglog) and logit link functions (see table 1).

Table 1. Common transformations on the general link function for the cause-specific
CIF

Parameters Link function Link name

log-subdistribution hazard ratios ln [− ln{1− Fk(t|xk)}] cloglog

log odds-ratios Fk(t|xk)
1−Fk(t|xk)

logit

2.6 Time-dependent effects

To relax the proportionality assumption, we fit interactions between the associated
covariates and the spline function for log-time. This allows us to introduce a new set
of knots, mek, that represent the eth time-dependent effect for cause k with associated
parameters, αααek. If there are e = 1, . . . , E time-dependent effects, we can extend the
model in (3) to

ηk(t) = sk {ln(t);γγγk,m0k}+ xkβββk +
E∑
l=1

sk {ln(t);αααlk,mlk}xlk

In this approach, the spline function for different time-dependent effects can be
different and usually requires fewer knots for the baseline spline function. This extends
the original approach proposed by Royston and Parmar (2002). As all K causes are
modeled, one can also specify different time-dependent effects for each of the k cause-
specific FPM regression models.

2.7 Delayed entry

stpm2cr can also model left-truncated data or data with delayed entry. This is when
subjects are considered to be at risk some time after t = 0.

2.8 Cure models

Andersson et al. (2011) proposed a method to estimate the cure proportion in a relative
survival FPM framework. In the competing-risks scenario, this would occur in a situa-
tion where the cause-specific CIF is constant after a certain point in time t. Hence, by
adapting the approach described by Andersson et al. (2011), we can estimate the cure
proportion from within a flexible parametric model for the cause-specific CIF specified
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in section 2.5 by forcing the log cumulative SDH to plateau after the last knot. This
involves adjusting how spline variables are calculated, so the cause-specific CIF is forced
to plateau (see Andersson et al. [2011] for more details). Because we use the SDH func-
tion for cause k, on which we assume the cure must be evaluated while simultaneously
modeling all other causes, the final knot must be specified after the final observed time
of death, which has been set at the 110th percentile of log time. Applying the methods
in Andersson et al. (2011) and the above adjustment to a specific cause k = c, we can fit
a flexible parametric cure model with a complementary log-log link for a cause-specific
CIF such that

Fc(t|xc) = 1− (1− πc)
exp

[
γ2cz2c+···+γ(M−1)cz(M−1)c+

E∑
i=1

sc{ln(t);αααic,mic}xic

]

1− πc = 1− exp {− exp (γ0c + xcβββc)}

Therefore, the parameters γ0c and βββc are used to estimate the cure proportion for
cause k = c. Here we also implement a constraint on the linear spline, γ1c, such that it
is equal to 0.

To fit a cure model, we need to observe a plateau in the “raw” data for the cause-
specific CIF on which we wish to model the cure. This is usually done for a single
relevant cause, particularly the event of interest.

3 Syntax

stpm2cr [equation1] [equation2] ... [equationN]
[
if
] [

in
]
, events(varname)[

cause(numlist) censvalue(#) noorthog alleq eform level(#) lininit

maximize options
]

where equation1, equation2, . . . , equationN are the equations for each competing event.
Note that at least two equations must be specified. The syntax of each equation is

causename:
[
varlist

]
, scale(scalename)

[
df(#) knots(numlist) tvc(varlist)

dftvc(df list) knotstvc(knotslist) bknots(knotslist) bknotstvc(knotslist)

noconstant cure
]

You must stset your data before using stpm2cr; see [ST] stset. All events must be
specified in the failure() option of stset.

3.1 Main options

Model

events(varname) specifies the varname that contains the indicators for each competing
event failure. events() is required.
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cause(numlist) specifies the indicator values for the competing events specified in
events(). The indicators specified in numlist must be listed in the same order
as the equations equation1, equation2, . . . , equationN.

censvalue(#) specifies the indicator values in events() for censored individuals. The
default is censvalue(0).

noorthog suppresses orthogonal transformation of spline variables.

Reporting

alleq reports all equations used by ml. The models are fit using various constraints for
parameters associated with the derivatives of the spline functions. These parameters
are generally not of interest and thus are not shown by default. Also, an extra
equation is used when fitting delayed-entry models and is also not shown by default.

eform reports the exponentiated coefficients. For models on the log cumulative-subdis-
tribution hazard scale, scale(hazard), this option gives the subdistribution haz-
ard ratios if the covariate is not time dependent. Similarly, for models on the log
cumulative-subdistribution odds scale, scale(odds), this option will give odds ratios
for nontime-dependent effects (see the scale() option).

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.7 Specifying the width
of confidence intervals.

Max options

lininit obtains initial values by fitting only the first spline basis function (that is, a
linear function of log survival-time). This is useful when models fail to converge
using the initial values obtained in the usual way. However, this option is seldom
needed.

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log,

trace, gradient, showstep, hessian, shownrtolerance, tolerance(#),
ltolerance(#), gtolerance(#), nrtolerance(#), nonrtolerance, and
from(init specs); see [R] maximize. These options are seldom used, but the
difficult option may be useful if there are convergence problems when
fitting models that use the Aranda–Ordaz family of link functions.

3.2 Equation options

scale(scalename) specifies the scale on which to model the cause-specific CIF. scale()
is required.

scale(hazard) fits a model on the log cumulative-subdistribution hazard scale, that
is, the scale of ln[− ln{1−Fk(t)}]. If no time-dependent effects are specified, the
resulting model assumes proportionality.
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scale(odds) fits a model on the log cumulative-odds scale, that is, the scale of
log {Fk(t)}/{1− Fk(t)}. If no time-dependent effects are specified, the resulting
model assumes proportionality of the odds ratios over time.

df(#) specifies the degrees of freedom for the restricted cubic spline function used
for the baseline subdistribution hazard rate. Usually a value between 3 and 5 is
sufficient, and the choice of degrees of freedom is insensitive to parameter estimates.
Using df(1) is equivalent to fitting a Weibull model when using scale(hazard).
The internal knots are placed at the centiles of the distribution of the uncensored
log times with boundary knots placed at the 0th and 100th centiles. An example is
provided below for df(5):

Degrees of freedom Internal knots Centile positions (log time)

5 4 20th, 40th, 60th, 80th

knots(numlist) specifies knot locations for the baseline distribution function, as op-
posed to the default knot locations set by df(). The locations of the knots are
placed on the log-time scale. Default knot positions are determined by the df()

option.

tvc(varlist) specifies the names of time-dependent variables. Time-dependent effects
are fit using restricted cubic splines. The degrees of freedom are specified using the
dftvc() option.

dftvc(df list) specifies the degrees of freedom for time-dependent effects. If the same
degree of freedom is used for all time-dependent effects, then the syntax is the same
as df(#). With one degree of freedom, a linear effect of log time is fit. If there is
more than one time-dependent effect and different degrees of freedom are required
for each time-dependent effect, then the following syntax can be used: dftvc(x1:3
x2:2 1), where x1 has three degrees of freedom, x2 has two degrees of freedom, and
any remaining time-dependent effects have one degree of freedom.

knotstvc(knotslist) defines numlist knotslist as the location of the interior knots for
time-dependent effects. If different knots are required for different time-dependent
effects, the option is specified, for example, as follows: knotstvc(x1 1 2 3 x2 1.5

3.5).

bknots(knotslist) is a two-element list giving the boundary knots. By default, these
are located at the minimum and maximum of the uncensored survival times for all
cause-specific events on the log scale.

bknotstvc(knotslist) gives the boundary knots for any time-dependent effects. By
default, these are the same as for the bknots() option. They are specified on the
scale defined by scale(). For example, bknotstvc(x1 0.01 10 x2 0.01 8).

noconstant; see [R] estimation options.
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cure is specified when fitting cure models for a particular cause. It forces the cause-
specific cumulative subdistribution hazard to be constant after the last knot. When
the df() option is used together with the cure option, the internal knots are placed
evenly according to centiles of the distribution of the uncensored log survival-times
except one, which is placed at the 95th centile, and the final knot is placed outside
the last uncensored cause-specific log survival-time (110th percentile by default).
Alternative knot locations can be selected using the knots() option. Cure models
can be used only when modeling on the log cumulative-subdistribution hazard scale
(scale(hazard)).

4 Postestimation

stpm2cr is an estimation command and shares most features of standard Stata esti-
mation commands; see [U] 20 Estimation and postestimation commands. The
predictions available after fitting a model using stpm2cr are briefly described below.

4.1 Syntax

predict newvar
[
if
] [

in
] [

, at(varname #
[
varname #

]
) cause(numlist)

chrdenominator(varname #
[
varname # ...

]
)

shrdenominator(varname #
[
varname # ...

]
)

chrnumerator(varname #
[
varname # ...

]
)

shrnumerator(varname #
[
varname # ...

]
) ci cif

cifdiff1(varname #
[
varname # ...

]
)

cifdiff2(varname #
[
varname # ...

]
) cifratio csh cumodds

cumsubhazard cured subdensity subhazard timevar(varname) uncured xb

zeros dxb level(#)
]

Main

at(varname #
[
varname #

]
) requests that the covariates specified by varname be

set to #. This is a useful way to obtain out-of-sample predictions. If at() is used
together with zeros, then all covariates not listed in at() are set to zero. If at()
is used without zeros, then all covariates not listed in at() are set to their sample
values.

cause(numlist) specifies the causes on which to make the predictions for and that are
stored in newvar c#. If cause() is not specified, then predictions are made for all
causes included in the model and stored in newvar c#.
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chrdenominator(varname #
[
varname # ...

]
) and shrdenominator(varname #[

varname # ...
]
) specify the denominator of the cause-specific hazard ratio or

subdistribution hazard ratio for a specific cause. By default, all covariates not spec-
ified using this option are set to zero. See the cautionary note in chrnumerator()

and shrnumerator() below. If # is set to missing (.), then the covariate has the
values defined in the dataset.

chrnumerator(varname #
[
varname # ...

]
) and shrnumerator(varname #[

varname # ...
]
) specify the numerator of the (time-dependent) cause-specific

hazard ratio or subdistribution hazard ratio for a specific cause. By default, all
covariates not specified using this option are set to zero. Setting the remaining
values of the covariates to zero may not always be sensible, particularly on models
other than those on the cumulative subdistribution hazard scale or when more than
one variable has a time-dependent effect. If# is set to missing (.), then the covariate
has the values defined in the dataset.

ci calculates a confidence interval for the requested statistic and stores the confidence
limits in newvar lci and newvar uci.

cif predicts the cause-specific cumulative incidence function.

cifdiff1(varname #
[
varname # ...

]
) and cifdiff2(varname #

[
varname #

...
]
) predict the difference in cause-specific cumulative incidence functions, with

the first cause-specific cumulative incidence function defined by the covariate values
listed for cifdiff1() and the second by those listed for cifdiff2(). By default,
covariates not specified using either option are set to zero. Setting the remaining
values of the covariates to zero may not always be sensible. If # is set to missing
(.), then varname has the values defined in the dataset.

Example: cifdiff1(stage 1) (without specifying cifdiff2()) computes the dif-
ference in predicted cause-specific cumulative incidence functions at stage = 1 com-
pared with stage = 0 with all other covariates set to 0.

Example: cifdiff1(stage 2) cifdiff2(stage 1) computes the difference in pre-
dicted cause-specific cumulative incidence functions at stage = 2 compared with
stage = 1.

Example: cifdiff1(stage 2 age 50) cifdiff2(stage 1 age 70) computes the
difference in predicted hazard functions at stage = 2 and age = 50 compared with
stage = 1 and age = 70 with all other covariates set to 0.

cifratio predicts the relative contribution of failing from an event to the overall cu-
mulative incidence function. For example, if the event of interest is cancer, this
is the relative contribution of dying from cancer to the total mortality. cifratio

must be used along with the cause() option to specify the cause-specific cumulative
incidence function on the numerator of the ratio.

csh predicts the cause-specific hazard function.

cumodds predicts the cumulative odds-of-failure function.
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cumsubhazard predicts the cumulative subdistribution hazard function.

cured predicts the cause-specific cure proportion after fitting a cure model.

subdensity predicts the subdensity function.

subhazard predicts the subdistribution hazard function.

timevar(varname) defines the variable used as time in the predictions. The default is
timevar( t). timevar() is useful for large datasets where, for plotting purposes,
predictions are needed only for 200 observations, for example. Be cautious when
using this option because predictions may be made at whatever covariate values are
in the first 200 rows of data. This can be avoided using the at() option or the zeros
option to define the covariate patterns for which you require the predictions.

uncured can be used after fitting a cure model for a specific cause. It can be used with
the subhazard and cif options to base predictions for the uncured group.

xb predicts the linear predictor, including the spline function.

zeros sets all covariates to zero (baseline prediction). For example, predict cif,

cause(1) cif zeros calculates the baseline cause-specific cumulative incidence func-
tion for cause = 1.

Subsidiary

dxb calculates the derivatives of the linear predictors.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.

5 Examples

5.1 Northern European Cancer Registry Data (1975–1994)

In this section, we illustrate the methods outlined in this article using the Northern
European cancer registry data, which were previously used to illustrate the use of strs
for relative survival models (Dickman and Coviello 2015). We use a subset of these data
that contains observations on 4,204 patients who were between 40 and 79 years old and
diagnosed with melanoma between 1975 and 1994. The covariates of interest are patient
age at diagnosis and stage of cancer, which is categorized into localized or regional stage
cancer at diagnosis. We excluded patients with distant stage cancer because of their
very high mortality rate, leaving a few patients at risk toward the end of follow-up time.
Most of these deaths are due to cancer, which means the effect of competing causes of
death is small and thus less interesting practically. Survival time is measured in months
since diagnosis to death because of cancer or other causes. Follow-up time is restricted
to 15 years from diagnosis.
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5.2 Nonparametric estimates for the cause-specific cumulative inci-
dence function

Estimated cause-specific CIFs have been predicted using the stcompet command, which
implements the Aalen–Johansen method (Coviello and Boggess 2004). Figure 1 shows
cause-specific CIFs estimated by stage at diagnosis for death from cancer and death from
other causes and shows that those with a more distant stage cancer at diagnosis have
an increased risk of dying from cancer and a lower risk of dying from other causes. The
sum of the cancer-specific CIF and CIF for other causes gives the overall, or all-cause
probability of death.
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Figure 1. Predicted cause-specific cumulative incidence functions for death from cancer
or death from other causes using the Aalen–Johansen method by stage at diagnosis for
patients 40 to 80 years old.

5.3 Fine and Gray (1999) model

We initially fit direct regression models on the cause-specific CIF using the Fine and
Gray approach, the most commonly implemented method for modeling covariate effects
on the cause-specific cumulative incidence function. Fine and Gray models are fit only
with stage at diagnosis as a covariate for each of the cause-specific CIFs.

We generated a new indicator variable, status2, to overcome a small reporting error
with the stcrreg command when using the exit() option in stset at the time of sub-
mission. When one uses the usual censoring indicator variable in stset for one cause
before fitting a Fine and Gray model, the number of actual competing events is under-
reported because the competing events and censored events are no longer distinguished
and those who die before the exit time are instead treated as censored. Although this
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does not directly affect the parameter estimates, the total number of overall failures
reported for each cause-specific model is inconsistent. Therefore, we go on to fit Fine
and Gray models using the new variable, which is generated as follows:

. stset surv_mm, failure(status == 1, 2) scale(12) id(id) exit(time 180)

(output omitted )

. generate status2 = cond(_d==0,0,status)

. *Cancer

. stset surv_mm, failure(status2 == 1) scale(12) id(id) exit(time 180)

(output omitted )

. stcrreg i.stage, compete(status2 == 2)

failure _d: status2 == 1
analysis time _t: surv_mm/12

exit on or before: time 180
id: id

Iteration 0: log pseudolikelihood = -7389.917
Iteration 1: log pseudolikelihood = -7389.4747
Iteration 2: log pseudolikelihood = -7389.4745

Competing-risks regression No. of obs = 4,204
No. of subjects = 4,204

Failure event : status2 == 1 No. failed = 937
Competing event: status2 == 2 No. competing = 583

No. censored = 2,684

Wald chi2(1) = 287.75
Log pseudolikelihood = -7389.4745 Prob > chi2 = 0.0000

(Std. Err. adjusted for 4,204 clusters in id)

Robust
_t SHR Std. Err. z P>|z| [95% Conf. Interval]

stage
Regional 4.783974 .4414379 16.96 0.000 3.992499 5.732352

. stset surv_mm, failure(status2 == 2) scale(12) id(id) exit(time 180)

(output omitted )

. stcrreg i.stage, compete(status2 == 1)

failure _d: status2 == 2
analysis time _t: surv_mm/12

exit on or before: time 180
id: id

Iteration 0: log pseudolikelihood = -4565.6556
Iteration 1: log pseudolikelihood = -4556.6879
Iteration 2: log pseudolikelihood = -4556.6578
Iteration 3: log pseudolikelihood = -4556.6578
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Competing-risks regression No. of obs = 4,204
No. of subjects = 4,204

Failure event : status2 == 2 No. failed = 583
Competing event: status2 == 1 No. competing = 937

No. censored = 2,684

Wald chi2(1) = 0.31
Log pseudolikelihood = -4556.6578 Prob > chi2 = 0.5790

(Std. Err. adjusted for 4,204 clusters in id)

Robust
_t SHR Std. Err. z P>|z| [95% Conf. Interval]

stage
Regional .9080851 .1577827 -0.55 0.579 .6459927 1.276514

The subdistribution hazard ratio for cancer gives the association between stage at
diagnosis and the cancer-specific CIF. A subdistribution hazard ratio of 4.78 indicates
that those with a more severe stage at diagnosis are associated with an increased risk
of dying from cancer. However, because of the awkward definition in the risk set,
it is difficult to make inferences on quantitative effects. Although insignificant, the
subdistribution hazard ratio from the Fine and Gray model for other causes shows that
those with a more severe stage at diagnosis are associated with a decreased risk of dying
from other causes. This is because patients at an earlier stage at diagnosis are healthier
and therefore more likely to live longer and die from other causes before their cancer.
On the other hand, patients at a later stage are unlikely to live as long and die from
other causes.

After fitting each cause-specific Fine and Gray model, we can use stcurve to predict
and store the cause-specific CIFs.

5.4 Log-cumulative subdistribution hazard models

Using the full likelihood in (2), we can fit direct flexible parametric regression models for
the cause-specific CIF. Rather than fitting a model to each cause-specific CIF separately,
we can instead model all cause-specific CIFs simultaneously. This is shown below with
the assumption of proportionality for all causes:
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. stset surv_mm, failure(status==1, 2) scale(12) id(id) noshow exit(time 180)

(output omitted )

. stpm2cr [cancer: stage2, scale(hazard) df(5)]
> [other: stage2, scale(hazard) df(5)],
> events(status) cause(1 2) cens(0) eform nolog

(output omitted )

Log likelihood = -4901.0253 Number of obs = 4,204

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

cancer
stage2 4.673522 .3973545 18.14 0.000 3.956153 5.520973

_rcs_c1_1 2.371601 .0642335 31.88 0.000 2.248989 2.500897
_rcs_c1_2 1.40679 .0445023 10.79 0.000 1.322216 1.496774
_rcs_c1_3 1.061522 .0237518 2.67 0.008 1.015975 1.109111
_rcs_c1_4 .9889806 .0103402 -1.06 0.289 .9689204 1.009456
_rcs_c1_5 1.002836 .005948 0.48 0.633 .9912455 1.014562

_cons .1390518 .0053603 -51.18 0.000 .1289329 .1499648

other
stage2 .6867003 .115223 -2.24 0.025 .4942449 .9540964

_rcs_c2_1 2.564841 .0949475 25.44 0.000 2.385338 2.757852
_rcs_c2_2 1.058082 .0298144 2.00 0.045 1.001231 1.118161
_rcs_c2_3 .9541731 .0196412 -2.28 0.023 .9164434 .9934562
_rcs_c2_4 .9843678 .0125716 -1.23 0.217 .9600337 1.009319
_rcs_c2_5 .9917352 .0082375 -1.00 0.318 .9757208 1.008012

_cons .0800586 .0040859 -49.47 0.000 .0724379 .088481

An equation is specified for each cause within the square brackets along with their
respective options. These are similar to those used for stpm2 where df(5) implies four
internal knots at default locations. The estimated subdistribution hazard ratios are
displayed for each cause and their 95% confidence intervals. From the subdistribution
hazard ratios for both causes, we can infer that patients with regional stage cancer at
diagnosis have an increased risk of dying from cancer and a decreased risk of dying
from other causes compared with those with localized stage cancer at diagnosis. The
advantage of using the parametric approach is that it is easy to obtain other useful
predictions to aid interpretation, because, as mentioned previously, it is difficult to
interpret the subdistribution hazard ratios in terms of quantitative effects. The following
code obtains the cause-specific CIFs, subdistribution hazard functions for each cause,
and cause-specific hazard functions. Confidence intervals are obtained using the ci

option.

. range temptime 0 15 1000
(3,204 missing values generated)

. predict cif1, cif at(stage1 1 stage2 0) timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict cif2, cif at(stage1 0 stage2 1) timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict sdh1, subhazard at(stage1 1 stage2 0) timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict sdh2, subhazard at(stage1 0 stage2 1) timevar(temptime)
Calculating predictions for the following causes: 1 2
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. predict csh1, csh at(stage1 1 stage2 0) timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict csh2, csh at(stage1 0 stage2 1) timevar(temptime)
Calculating predictions for the following causes: 1 2

The top row in figure 2 plots the predicted subdistribution hazard function for each
cause, and the bottom row illustrates the predicted cause-specific hazard function by
stage at diagnosis. The subdistribution hazard gives the association on the effect of
stage at diagnosis on risk, and the cause-specific hazard is the association on the effect
of stage at diagnosis on the hazard rate.
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Figure 2. Subdistribution hazards predicted for each cause and cause-specific hazard
predictions by stage at diagnosis for patients 40 to 80 years old from a log cumulative-
proportional subdistribution hazard model for melanoma data.
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Figure 3 compares the cause-specific CIFs obtained from the Fine and Gray models
for each cause fit in section 5.3 with those obtained from the log cumulative-proportional
subdistribution hazards model and shows sensible agreement between the two (see
Mozumder, Rutherford, and Lambert [2016] for more details on the disagreement in
the cause-specific CIF for death from other causes).
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Figure 3. A comparison of cause-specific cumulative incidence functions for death from
cancer or death from other causes predicted simultaneously from a log cumulative-
subdistribution hazard model and from separate Fine and Gray models for each cause
by stage at diagnosis for patients 40 to 80 years old.
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In figure 4, the Aalen–Johansen estimates are compared with the cause-specific
CIFs obtained from the log cumulative-proportional subdistribution hazard model. The
estimates are reasonably similar. However, we can achieve a better fit by relaxing the
assumption of proportionality through including time-dependent effects using restricted
cubic splines.
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Figure 4. A comparison of cause-specific cumulative incidence functions for death from
cancer or death from other causes predicted simultaneously from a log cumulative-
subdistribution hazard model assuming proportionality and using the Aalen–Johansen
empirical estimates for each cause by stage at diagnosis for patients 40 to 80 years old.
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5.5 Time-dependent effects

Time-dependent effects can be easily incorporated by specifying the dftvc() and tvc()

equation-specific options as shown in the following code:

. stpm2cr [cancer: stage2, scale(hazard) df(5) tvc(stage2) dftvc(3)]
> [other: stage2, scale(hazard) df(5) tvc(stage2) dftvc(3)],
> events(status) cause(1 2) cens(0) eform nolog

(output omitted )

Log likelihood = -4877.5917 Number of obs = 4,204

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

cancer
stage2 5.225629 .4543429 19.02 0.000 4.406875 6.196499

_rcs_c1_1 2.570244 .089602 27.08 0.000 2.400493 2.752
_rcs_c1_2 1.440213 .0605618 8.68 0.000 1.326274 1.56394
_rcs_c1_3 1.076737 .0280174 2.84 0.004 1.023201 1.133074
_rcs_c1_4 .9907888 .0106845 -0.86 0.391 .9700674 1.011953
_rcs_c1_5 .9997375 .0058897 -0.04 0.964 .9882603 1.011348

_rcs_stag~1_1 .7353858 .0413674 -5.46 0.000 .658617 .8211029
_rcs_stag~1_2 .9750149 .0568817 -0.43 0.664 .8696665 1.093125
_rcs_stag~1_3 .9458115 .0303569 -1.74 0.083 .8881458 1.007221

_cons .1328929 .0053238 -50.38 0.000 .1228576 .143748

other
stage2 1.18831 .2267027 0.90 0.366 .8175976 1.727109

_rcs_c2_1 2.658485 .1059802 24.53 0.000 2.458675 2.874533
_rcs_c2_2 1.062388 .0328778 1.96 0.051 .999864 1.128822
_rcs_c2_3 .9584928 .0206057 -1.97 0.049 .9189454 .9997422
_rcs_c2_4 .9841378 .0124521 -1.26 0.206 .9600322 1.008849
_rcs_c2_5 .9926364 .0081918 -0.90 0.370 .9767099 1.008823

_rcs_stag~2_1 .68066 .0697333 -3.75 0.000 .5568331 .8320231
_rcs_stag~2_2 1.007956 .0739275 0.11 0.914 .8729933 1.163783
_rcs_stag~2_3 .9515855 .0501094 -0.94 0.346 .8582712 1.055045

_cons .0775996 .0040571 -48.89 0.000 .0700417 .0859732

The tvc(stage2) and dftvc(3) options state that the stage2 variable is to be time
dependent using restricted cubic splines with two internal knots (that is, three degrees
of freedom). Overall, 10 parameters are estimated for each cause in the model. For
example, for cancer, there are five derived variables for the baseline log cumulative-
subdistribution hazard ( rcs c1 1- rcs c1 5) and three derived splines for the time-
dependent effect stage2 ( rcs stage2 c1 1- rcs stage2 c1 3).

In a time-dependent model, parameter estimates become more complex and less
useful when interpreted on their own. Instead, it is better to obtain predictions between
groups for specific covariate patterns as relative or absolute differences over time using
predict. Note that the coding is the same to generate the same predictions:
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. range temptime 0 15 1000
(3,204 missing values generated)

. predict cif_tvc1, cif at(stage1 1 stage2 0) ci timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict cif_tvc2, cif at(stage1 0 stage2 1) ci timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict cifdiff, cifdiff1(stage1 0 stage2 1) cifdiff2(stage1 1 stage2 0) ci
> timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict shr, shrn(stage1 0 stage2 1) shrd(stage1 1 stage2 0) ci
> timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict chr, chrn(stage1 0 stage2 1) chrd(stage1 1 stage2 0) ci
> timevar(temptime)
Calculating predictions for the following causes: 1 2

Figure 5 now shows a better fit of the model-estimated cause-specific CIFs, partic-
ularly with regional stage patients, compared with the nonparametric Aalen–Johansen
estimates with very good agreement.
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Figure 5. A comparison of cause-specific cumulative incidence functions for death from
cancer or death from other causes predicted simultaneously from a log cumulative-
nonproportional subdistribution hazard model and using the Aalen–Johansen empirical
estimates for each cause by stage at diagnosis for patients 40 to 80 years old.

We can obtain absolute differences with 95% confidence intervals between the re-
gional and localized stage groups over time for each cause-specific CIF. Differences are
calculated using the cifdiff1() and cifdiff2() options. The obtained predictions
are illustrated in figure 6, which shows us that those with a more severe stage of cancer
at diagnosis are more likely to die from cancer. The difference is smaller for other causes
for the first six years since diagnosis. In the later years, the cause-specific CIF for other
causes is larger for localized stage patients.
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Figure 6. Predicted absolute differences (Regional − Localized) in cause-specific cu-
mulative incidence functions with 95% confidence intervals from a log cumulative-
nonproportional subdistribution hazard model.

Time-dependent subdistribution and cause-specific hazard ratios are obtained us-
ing the options shrnumerator() and shrdenominator(), and chrnumerator() and
chrdenominator(), respectively. Using these options, we can obtain ratios for any
two covariate patterns. Figure 7 shows the time-dependent subdistribution and cause-
specific hazard ratios and compares regional stage patients with localized stage patients
at diagnosis. At the start of follow-up, for both cancer-specific hazard ratios, regional
stage patients have a mortality rate 17 times that of localized stage patients that de-
creases over follow-up time. The mortality rate of other causes on both scales for
regional stage patients at the start of follow-up time is approximately 4.5 times that of
localized stage patients. Beyond two years since diagnosis, the subdistribution hazard
rate of other causes for regional stage patients is lower than the localized stage patients
because the ratio is less than 1. This is expected because those at a later stage will
die earlier from the cancer before they die from other causes. The cause-specific hazard
ratios give us the association of stage at diagnosis on the rate and show a different effect
on death from other causes, because patients at a later stage tend to be more sick and
generally are at a higher risk of dying. This translates to a positive association between
more distant stage patients and mortality rate for other causes.
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Figure 7. Predicted subdistribution and cause-specific hazard ratios for each cause
from a log cumulative-nonproportional subdistribution hazard model. Ratios compare
regional stage with localized stage patients at diagnosis. Dotted line is a reference line
when the rate is equal to 1, that is, no difference.

5.6 Cure model

Cure models for any cause can be fit by adding the equation option cure. However, we
highly recommend that this be done only for one cause, usually the event of interest.
Predictions can be made after fitting a cure model with predict using the cured and
uncured options. Specifying the cured option will calculate the cure proportion for the
cause that cured was specified for and a variable with the suffix btd that partitions
those that are still alive into two groups: patients bound to die from cancer and not
bound to die from cancer. The code for fitting a cure model and predictions is shown
below:
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. stpm2cr [cancer: , scale(hazard) df(5) cure]
> [other: , scale(hazard) df(5)],
> events(status) cause(1 2) cens(0) eform nolog

(output omitted )

Log likelihood = -1742.7601 Number of obs = 1,692

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

cancer
_rcs_c1_1 2.168448 .0851865 19.70 0.000 2.007752 2.342007
_rcs_c1_2 .9134977 .0245224 -3.37 0.001 .8666772 .9628475
_rcs_c1_3 .9989706 .0182824 -0.06 0.955 .9637729 1.035454
_rcs_c1_4 .9775022 .0134488 -1.65 0.098 .9514954 1.00422
_rcs_c1_5 1 (omitted)

_cons .348136 .0181445 -20.25 0.000 .3143294 .3855784

other
_rcs_c2_1 2.645041 .3083898 8.34 0.000 2.104696 3.324111
_rcs_c2_2 .9981758 .0919501 -0.02 0.984 .8332895 1.195689
_rcs_c2_3 .9368575 .0517331 -1.18 0.238 .8407566 1.043943
_rcs_c2_4 1.013603 .037129 0.37 0.712 .9433826 1.089051
_rcs_c2_5 .9643029 .0211338 -1.66 0.097 .9237584 1.006627

_cons .0220712 .0032665 -25.77 0.000 .0165139 .0294985

. range temptime 0 15 1000
(692 missing values generated)

. predict cif, cif timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict cure, cured timevar(temptime)
Calculating predictions for the following causes: 1 2

. generate cif_tot = cif_c1 + cif_c2
(693 missing values generated)

In section 2.8, we showed that to fit cure models, we constrained the last knot to
be zero to force a plateau. This is shown in the output above, where the parameter
for rcs c1 5 is equal to one. Analysis is restricted to localized stage patients 40 to
54 years old, where a cure is found to be reasonable. To check this, we note that the
plot to the left in figure 8 compares the estimated cancer-specific CIF from the model
with the Aalen–Johansen estimate and shows extremely good agreement with the cure
proportion estimated at approximately 30% after 12 years since diagnosis where the
cancer-specific CIF plateaus. On the right-hand side of figure 8, the cause-specific CIFs
are stacked, and the dashed line is the partitioning of alive patients that are bound to
or not bound to die into two groups. This estimate is provided as part of the cured

option with the suffix btd. Eloranta et al. (2014) introduce this quantity to aid better
risk communication, and it is calculated as follows,

Palive,can(t) = πc − F1(t)

Palive,oth(t) = 1− F2(t)− · · · − FK(t)− πc

where πc is the proportion of those bound to die from cancer on which a cure is assumed.
For k = 1, Palive,can(t) represents patients who will ultimately die from their cancer, and
Palive,oth(t) represents those who will die from competing causes where k = 2, . . . ,K.
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In our example, from the stacked probabilities in figure 8, at 6 years after diagnosis,
approximately 25% have died, 6% are alive yet bound to die from cancer, and 69% are
alive and not bound to die from cancer.

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e 
in

ci
de

nc
e

0 3 6 9 12 15
Years since diagnosis

Cancer (A−J)

Cancer (model)

Cure Proportion (model)

Aalen−Johansen versus log−CSDH cure model

Alive but BTD

from cancer

Alive and not BTD from cancer

0.0

0.2

0.4

0.6

0.8

1.0

0 3 6 9 12 15
Years since diagnosis

Death from other causes

Death from cancer

Localized stage patients 40 to 54 yrs old

Figure 8. Left: Comparison of predicted cancer-specific CIFs obtained from the log
cumulative-subdistribution hazard cure model and using the Aalen–Johansen method
for localized stage patients 40 to 54 years old. Right: Stacked cause-specific CIFs ob-
tained from a log cumulative-subdistribution hazard cure model. Dashed-line partitions
living patients into those bound to die from cancer and not bound to die from cancer.

5.7 Conclusions

Competing-risks models are being widely applied in research, and fitting regression
models on the subdistribution hazard scale is encouraged for researchers to make infer-
ences on prognosis and understand the association of a covariate on risk. Analysis from
within the flexible parametric modeling framework using the direct likelihood approach
for the cause-specific CIF has several advantages. For example, the method saves com-
putational time because numerical integration is not required to model the baseline log
cumulative-subdistribution hazard function. All causes are modeled simultaneously, so
there is no need to fit separate models for each cause. This is implemented in the new
stpm2cr command, an adaptation of the stpm2 command. Other useful predictions
can be obtained using predict after fitting a model using stpm2cr. This complements
flexible parametric regression models for competing risks on the cause-specific hazard
scale and allows researchers to gain a more complete understanding on the impact of
the event of interest on outcome. However, a well-known problem of direct regression
models for the cause-specific CIF is that the sum of all probabilities may exceed 1 for
certain covariate patterns. This is particularly problematic in the oldest age groups,
where patients are at a higher risk of dying from competing events, which leads to
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very high overall probability of death. This is also the case in our approach, and it
is sometimes avoided if models are not misspecified, for example, by adjusting for all
appropriate covariates with any potential interactions and by including time-dependent
effects. In some situations, models may fail to converge when specified correctly, but
this will depend on the use of better initial values for the optimizer so that it is not
searching in the wrong direction. Therefore, future work may involve implementing an
appropriate constraint on the models to avoid issues in convergence.

6 References
Andersen, P. K., R. B. Geskus, T. de Witte, and H. Putter. 2012. Competing risks
in epidemiology: Possibilities and pitfalls. International Journal of Epidemiology 41:
861–870.

Andersson, T. M.-L., P. W. Dickman, S. Eloranta, and P. C. Lambert. 2011. Estimating
and modelling cure in population-based cancer studies within the framework of flexible
parametric survival models. BMC Medical Research Methodology 11: 96.

Coviello, V., and M. Boggess. 2004. Cumulative incidence estimation in the presence of
competing risks. Stata Journal 4: 103–112.

Dickman, P. W., and E. Coviello. 2015. Estimating and modeling relative survival.
Stata Journal 15: 186–215.

Durrleman, S., and R. Simon. 1989. Flexible regression models with cubic splines.
Statistics in Medicine 8: 551–561.

Eloranta, S., P. C. Lambert, T. M.-L. Andersson, M. Björkholm, and P. W. Dickman.
2014. The application of cure models in the presence of competing risks: A tool for
improved risk communication in population-based cancer patient survival. Epidemi-
ology 25: 742–748.

Fine, J. P., and R. J. Gray. 1999. A proportional hazards model for the subdistribution
of a competing risk. Journal of the American Statistical Association 94: 496–509.

Gerds, T. A., T. H. Scheike, and P. K. Andersen. 2012. Absolute risk regression for
competing risks: Interpretation, link functions, and prediction. Statistics in Medicine
31: 3921–3930.

Gray, R. J. 1988. A class of k-sample tests for comparing the cumulative incidence of a
competing risk. Annals of Statistics 16: 1141–1154.

Hinchliffe, S. R., and P. C. Lambert. 2013. Flexible parametric modelling of cause-
specific hazards to estimate cumulative incidence functions. BMC Medical Research
Methodology 13: 13.

Jeong, J.-H., and J. Fine. 2006. Direct parametric inference for the cumulative incidence
function. Journal of the Royal Statistical Society, Series C 55: 187–200.



488 Direct likelihood inference on the CIF

Koller, M. T., H. Raatz, E. W. Steyerberg, and M. Wolbers. 2012. Competing risks
and the clinical community: Irrelevance or ignorance? Statistics in Medicine 31:
1089–1097.

Lambert, P. C. Forthcoming. The estimation and modeling of cause-specific cumulative
incidence functions using time-dependent weights. Stata Journal .

Lambert, P. C., L. Holmberg, F. Sandin, F. Bray, K. M. Linklater, A. Purushotham,
D. Robinson, and H. Møller. 2011. Quantifying differences in breast cancer survival
between England and Norway. Cancer Epidemiology 35: 526–533.

Lambert, P. C., and P. Royston. 2009. Further development of flexible parametric
models for survival analysis. Stata Journal 9: 265–290.

Lambert, P. C., S. R. Wilkes, and M. J. Crowther. Forthcoming. Flexible parametric
modelling of the cause-specific cumulative incidence function. Statistics in Medicine.

Latouche, A., V. Boisson, S. Chevret, and R. Porcher. 2007. Misspecified regression
model for the subdistribution hazard of a competing risk. Statistics in medicine 26:
965–974.

Lau, B., S. R. Cole, and S. J. Gange. 2009. Competing risk regression models for
epidemiologic data. American Journal of Epidemiology 170: 244–256.

Mozumder, S. I., M. J. Rutherford, and P. C. Lambert. 2016. Direct likelihood inference
on the cause-specific cumulative incidence function: A flexible parametric regression
modelling approach.
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Abstract. Social, behavioral, and health scientists frequently decompose changes
or differences in outcome variables into components of change and assess their
relative importance. Many Stata commands facilitate this exercise using unit-
level data, notably by applying the Blinder–Oaxaca approach. However, none
of the comparable user-written commands decompose changes or differences in
aggregate data despite their availability and the widespread use of corresponding
decomposition techniques. In this article, I present the user-written command
rdecompose, which decomposes aggregate or cross-classified data based on Das
Gupta’s (1993, Standardization and Decomposition of Rates: A User’s Manual,
Volume 1) approach, and demonstrate its application in multiple settings. This
command extends the original method by allowing multiple factors and flexible
functional specifications.

Keywords: st0483, rdecompose, decomposition, cross-classified, Das Gupta method

1 Introduction

Numeric values such as rates, means, percentages, and proportions are instrumental
in measuring social, economic, health, and demographic outcomes. Researchers often
study measures such as birth rates, prevalences of diseases, or income inequality and
analyze differences between populations or changes over time; such factors reflect dif-
ferences in relevant population characteristics that may directly or indirectly influence
outcomes. Demographers, economists, and public health scientists traditionally ap-
ply standardization and decomposition techniques to distinguish real “rate” differences
from the effects of compositional factors on measured outcomes. These techniques are
used throughout the social sciences to determine why rates differ among populations
(Guo et al. 2012; Wang et al. 2000; Yamaguchi 2011).

The literature uses decomposition techniques that fall broadly into two categories
based on data requirements. The first category uses unit record data along with a mul-
tivariate regression-based technique known as the Blinder–Oaxaca approach (Blinder
1973). This approach has multiple Stata implementations, including the linear ver-
sion from Jann (2008) and nonlinear extensions from Sinning, Hahn, and Bauer (2008)
and Powers, Yoshioka, and Yun (2011). This approach relies on the availability of

c© 2017 StataCorp LLC st0483
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individual-level data. The second approach is designed for cross-classified data or con-
tingency tables and often uses algebraic relationships rather than econometric estima-
tions (Chevan and Sutherland 2009; Das Gupta 1993).

Although some Stata commands apply unit record-based Blinder–Oaxaca decompo-
sition, no comparable user-written commands implement existing decomposition tech-
niques for aggregate data,1 despite wide availability of aggregate data and use of corre-
sponding aggregate data-based decomposition methods in the literature. In this article,
I introduce a new user-written command, rdecompose, for a variant of such methods
known as Das Gupta’s reformulation and demonstrate potential applications from a
range of settings, including demography, public health, and economics.

Das Gupta’s method for cross-classified data is based on incremental methodologi-
cal developments in standardization and decomposition techniques that have occurred
over several decades. Wolfbein and Jaffe (1946) were among the first to demonstrate
the importance of decomposition by applying a double standardization technique, but
Kitagawa (1955) developed a formal procedure for decomposing cross-classified data.
Her work led to the simultaneous identification of separate but additive composition
and rate components that summed to rate differences. In a series of articles, Das Gupta
took a symmetric approach to the interaction component and developed functional re-
lationships that allow deterministic allocation of the interaction components among
cross-classified variables. This approach led to integration of the interaction between
component effects into the additive main effects and facilitated interpretation of results.
Das Gupta’s approach also imposed few constraints on the nature of the variable and
its distribution or on the specification of relationships for the outcome of interest. Thus
the method can be applied flexibly to most cross-classified aggregate data.

2 Method
2.1 Standard rate decomposition with multiplicative factors

Demographers, health researchers, and social scientists must sometimes interpret dif-
ferences between two crude rates of the same or comparable population. For instance,
researchers may want to understand what drives differences in rates of death today
versus 20 years ago. Differences between death rates may be decomposed into multiple
confounding factors such as differences in age-specific death rates and age structures.
Kitagawa’s (1955) approach initially decomposed differences in job mobility rates be-
tween two cities into migrant status and time spent in the labor force. Das Gupta (1978,
1991, 1993) generalized the method, and Chevan and Sutherland (2009) made improve-
ments so that the approach can be applied to any type and number of factors.2 Unlike
other decomposition methods that allow nonlinear specification of rates, Das Gupta’s
method yields stable results independent of the order in which factors are introduced
and needs no special treatment for interaction terms.

1. Researchers may be able to decompose crude rate data via existing individual-record based decom-
position commands such as mvdcmp (Powers, Yoshioka, and Yun 2011) in some cases. Doing so may
involve data transformation and programming.

2. For a review of rate standardization and comparison methods, see Keiding and Clayton (2014).
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Suppose rate r can be expressed by k multiplicative factors x1 . . . xk. Rate r can be
a death rate, fertility rate, or any aggregate measures of interest. x1 . . . xk are k factors
(for example, age structure in the case of death rates) driving changes in the rate.

r(x1 . . . xk) =

k∑
i=1

xi

If superscript a is used to denote the first population and superscript b the second
population, the (unstandardized) contribution of two factors C(x1) and C(x2) to the
difference of ra and rb in the case of two factors can be expressed mathematically as
below, following Das Gupta (1991, 1993):{

C(x1) = 1
2 (x

a
2 + xb

2)(x
a
1 − xb

1)

C(x2) = 1
2 (x

a
1 + xb

1)(x
a
2 − xb

2)

Intuitively, the contribution of a factor lies in its conditional effect on the mean values of
other factors. The relative contribution of x1 is therefore C(x1)/{C(x1) + C(x2)}, and
the relative contribution of x2 is C(x2)/{C(x1) + C(x2)}. This approach is generally
straightforward when there are few factors. However, calculations become cumbersome
as k increases because of the need to compute all possible counterfactuals (2k) and
aggregate the result. Mathematically, the contribution of the ith factor to the rate is

C(xi) =

k−1∑
j=1

R(j − 1, i)

k
(

k−1
j−1

) (xa
i − xb

i )

where R(j, i) is the sum of all possible values of the product of k− 1 factors (excluding
xi), from which j factors are from population a and all other factors are from population
b. The number of possible values can be large when there are many factors because the
number of permutations increases faster than k.

One advantage of this type of decomposition is the consideration of all possible
replacements of the elementary rates of the first population with the corresponding rates
of the second, thus avoiding path dependency. Das Gupta’s method essentially assigns
a weight to each possible path where the importance of the specific factor gradually
fades when further changes to other factors are introduced in the counterfactual. This
assumption differs from Shapley’s decomposition approach, where all paths are treated
equally (Sastre and Trannoy 2002).

The result of Das Gupta’s decomposition can be presented intuitively, where ob-
served rate differences are decomposed into different component effects with the relative
contribution summing to 100%. This method can be applied to a wide range of research,
such as differences in sociodemographic attributes, income inequality, and disparities in
health outcome.
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2.2 Generalized rate decomposition

In some cases, the crude rate cannot be represented by a series of multiplicative factors.
Instead, more complex computations might be involved. In the case of death rates, for
instance, researchers might need to use only summative and multiplicative operators
to control for deaths attributable to different potential mechanisms and age structure.
In other cases, rate functions can be more complicated. Consider, for example, r =
x1e

x2 ln(x3 +x4). In such cases, the calculation of r can be presented in a more generic
form,

r(x1 . . . xk) = f(x1, . . . , xk)

where f(·) is the rate function instead of a simple multiplicative equation as before.
Although the principle remains the same, the calculation of the rate must be replaced
by a more generic function. This necessity often increases technical complexity in prac-
tical implementation, especially when k is large. The rdecompose command assists
researchers with such issues.

3 The rdecompose command

The rdecompose command implements Das Gupta’s style decomposition where the
aggregate rate r is calculated based on k factors and aggregated over s in the following
manner:

r =
∑
s

f(x1 . . . xk)

3.1 Syntax

The syntax of rdecompose is

rdecompose varlist
[
if
]
, group(varname)

[
sum(varname) detail reverse

function(string) transform(varname) multi baseline(#)
]

rdecompose should be immediately followed by the names of the variables (factors)
that contribute to the rates. The population group indicator also must be included in
the group() option. An if condition can be used in combination with rdecompose if
required.

3.2 Options

group(varname) specifies the group indicator of the two populations that will be com-
pared. varname can be in numeric or string format. group() is required.

sum(varlist) indicates the population rate is an aggregated value summation over each
distinct value of this variable or variables (for example, age or location).

detail gives more detailed output when the sum() option is specified.
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reverse reverses the order of the two compared groups.

function(string) specifies the function form of the rate. For example, the user may
specify ln(factor1+factor2)*exp(factor3) to be used as a function. Most Stata-
supported functions can be used here. rdecompose assumes multiplicative operations
if a function is not specified. An error message will appear if the specified function
is invalid or cannot be evaluated.

transform(varname) converts absolute numbers into proportions within the popula-
tion.

multi indicates there are more than two populations in the group() option. Specifying
this option results in multiple comparisons against the baseline population, which
can be specified in the baseline() option.

baseline(#) specifies the value of the group variable for the baseline population.

3.3 Output and stored results

The typical output of rdecompose resembles what is presented in output 1. The output
reports the names of variables and rates corresponding to the two compared populations,
the functional form assumed in the computation, and a table listing factors and their
contributions. rdecompose also standardizes the total contribution into 100% for the
convenience of interpretation.

Output 1: An example of the rdecompose command

. rdecompose size rate, sum(agegroup) group(pop)

Decomposition between pop == 1 (9800.09)
and pop == 2 (55800.13)

Func Form = sum(agegroup)size*rate

Component Absolute Difference Proportion (%)

size 15839 34.43
rate 30161 65.57

Overall 46000 100.00

Besides table output, rdecompose returns some estimation results as scalars, macros,
and matrices. The most notable include

Scalars
e(rate1) contains the rate calculated for the first group
e(rate2) contains the rate calculated for the second group
e(diff) shows total differences between two groups

Macros
e(basegroup value) stores the value of the group variable for the baseline population

Matrices
e(b) contains total contributions for each factor



J. Li 495

4 Examples

This section demonstrates the use of rdecompose for a range of decomposable factors
and data types. The first two examples are mostly for validation because they replicate
known examples from Bongaarts (1978) and Clogg and Eliason (1988). These exam-
ples draw data from the discipline of demography and decompose changes in parity
progression and total fertility rates (TFRs). Both examples are cited and discussed by
Das Gupta (1993). The third example uses health expenditure data from China from
1993 to 2012 and attempts to decompose growth in health expenditures into five major
factors. The fourth example shows rdecompose’s use in economics through an exer-
cise of income inequality decomposition. The final example demonstrates how standard
errors of decomposition results can be derived with bootstrapping.

4.1 Example 1: Explaining changes in fertility rates over time

Table 1 presents the TFR in South Korea from 1960–1970. It also shows data on
proportions of married women (Cm), women not using contraception (Cc), prevalence
of abortion (Ca), lactational infecundability (Ci), and total fecundity (TF) rate. The
last is the level of natural fertility that the population would have attained if all women
had married at an early age, practiced neither contraception nor abortion, and did not
have long gestation periods during lactation. In demographic literature, these variables
are collectively known as proximate determinants of fertility. TFR is expressed as a
product of these five factors (that is, TFR = TF× Cm × Cc × Ca × Ci).

Table 1. TFRs and proximate determinants of fertility

South Korea (1960–1970)
Fertility measures 1960 1970

(population 1) (population 2)

TF rate 16.158 16.573
Index of proportion married (Cm) 0.72 0.58
Index of noncontraception (Cc) 0.97 0.76
Index of induced abortion (Ca) 0.97 0.84
Index of lactational infecundability (Ci) 0.56 0.66
TFR 6.13 4.05

Source: Bongaarts (1978)

As table 1 shows, between 1960 and 1970, the TFR in South Korea declined 2.08
points from 6.13 in 1960 to 4.05 in 1970. rdecompose can be applied as follows to
determine relative contributions of each proximate determinant factor to changes in
TFR observed:
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Output 2: Stata code and command output of example 1

. use example1-bongaarts

. rdecompose marriage noncontracept abortion lactation fecundity, group(year)

Decomposition between year == 1960 (6.13)
and year == 1970 (4.05)

Func Form = marriage*noncontracept*abortion*lactation*fecundity

Component Absolute Difference Proportion (%)

marriage -1.09 52.46
noncontracept -1.23 59.13

abortion -.728 35.00
lactation .84 -40.38
fecundity .129 -6.20

Overall -2.08 100.00

The first column in output 2 shows the factor names, and the second column reports
absolute contributions of each factor to the decline in recorded fertility rates. Regarding
the reduction of 2.08 children per woman between 1960 and 1970, contraception and
marriage contributed to a decline of about one child each. Abortion contributed about
0.73 to the total reduction of 2.08. The last column shows relative contributions of each
factor as a percent of the total difference. Here 59.1% of the decline in TFRs during
the decade can be attributed to increased use of contraception. During the same time,
however, the duration of lactation declined and contributed to an increase in fertility.
Results derived from rdecompose match the outcomes reported in the original article.

4.2 Example 2: Explaining differences in desire for more children

The second example is adapted from Clogg and Eliason (1988), who examine the desire
to bear more children. It illustrates decomposition using cross-classified data. Table 2
compares desire for more children in two groups of women: those with 4 or more children
(represented by parity 4+) and those with 1 child (represented as parity 1). Given that
age is an important determinant of fertility and that most parity 1 women are likely
younger than women with 4 or more children, the question is how to isolate the effect
of age composition differences in the two parity groups. rdecompose can be applied to
isolate the effect of age composition from actual differences in rates between the two
groups of women.
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Table 2. Population size and percent desiring more children (rate) by age

Parity 4+ (population 1) Parity 1 (population 2)
Age groups Size (Ni) Rate (T i) Size (Ni) Rate (T i)

20 to 24 27 37.037 363 90.083
25 to 29 152 19.079 208 76.923
30 to 34 224 15.179 96 56.25
35 to 39 239 5.021 59 20.339
40 to 44 211 6.161 48 10.417
All ages 853 11.489 774 72.093

Source: Clogg and Eliason (1988)

As shown, this example uses the transform() option to convert the absolute number
for size into proportions within the population group. The result suggests that the rate
effect contributes about 62% of the difference, whereas the size effect (size of each age
group) contributes about 38% of the differences.

Output 3: Stata code and command output of example 2

. use example2-clogg

. rdecompose Size Rate, group(Parity) transform(Size) sum(age_group)

Decomposition between Parity == 1 (11.49)
and Parity == 4 (72.09)

Func Form = \sum(age_group){Size*Rate}

Component Absolute Difference Proportion (%)

Size(*) 23.1 38.07
Rate 37.5 61.93

Overall 60.6 100.00

(*) indicates transformed variables

Source: Zhai, Goss, and Li (2017)

4.3 Example 3: Explaining drivers of health expenditures in China

The third example is from Zhai, Goss, and Li (2017), which examines the factors driving
rising health expenditures in China. Using published National Health Accounts reports
and disease prevalence data from the Global Burden of Disease 2013 Study from the
Institute for Health Metrics and Evaluation (2015), this example decomposes the growth
of health expenditure between 1993 and 2012 in China into five factors: population
increase, changes in disease prevalence rates, shifts in age structure of the population,
excessive health price inflation, and changes in treatment cost per case. This example
showcases a more complex decomposition with multiple factors and the detail option.
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rdecompose allows users to aggregate results from multiple subgroups—disease and
age groups in this example. The detail option allows the program to display more
detailed decomposition results normally hidden by the sum process. As seen in output 4,
the detail option shows the contribution to health expenditures by disease and age
group. Given page limits, only partial results are presented.

The decomposition suggests that real expenditure per case (exp percase), excess
health price inflation (ehpi), and aging (aging) drove increased health expenditures
in China between 1993 and 2012. Population growth (population) was a secondary
factor. Reductions in disease prevalence rates (prevalence rate) only slightly slowed
the growth in expenditures. Moreover, the result suggests that more than 70% of the
difference in health expenditures on neoplasms and circulatory, respiratory, endocrine,
nutritional, metabolic, and digestive diseases over the period was caused by changes
in expenditures per case and the excess health price inflation. Examining results in
the “detail” section reveals that aging of the population contributes more to growth
of expenditures on neoplasms and circulatory, endocrine, nutritional, metabolic, and
digestive diseases versus other diseases.

Output 4: Stata code and command output of example 3

. use example3-zhai

. rdecompose prevalence_rate population ageing exp_percase ehpi, group(year)
> sum(disease age_group) detail

Decomposition between year == 1993 (124535.24)
and year == 2012 (1000586.64)

Func Form = \sum(disease)\sum(age_group){prevalence_rate*population*
> ageing*exp_percase*ehpi}

Component Absolute Difference Proportion (%)

prevalence_rate -18982 -2.17
population 59535 6.80

ageing 98405 11.23
exp_percase 635946 72.59

ehpi 101148 11.55

Value of disease and Components Detailed Contributions

Blood prevalence_rate -507 -0.06
population 500 0.06

ageing 426 0.05
exp_percase 4183 0.48

ehpi 851 0.10
Circulatory prevalence_rate -6919 -0.79

(output omitted )

Overall 876051 100.00
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4.4 Example 4: Income equality decomposition

The rate decomposition method also applies to other fields such as economics. A series
of studies (for example, Bargain and Callan [2010]) decomposed changes in inequali-
ties between countries using Shorrocks–Shapley decomposition (Shorrocks 2013). Such
studies often use indexes derived from counterfactual simulations to attribute the rela-
tive importance of each component. In this case, decomposing the contributing factors
to the income inequality resembles a rate decomposition.

The contribution of a factor to income inequality sometimes is determined based on
Shapley values, which are computed by averaging the effects of all possible permuta-
tions before and after the factor of interest is substituted. This approach avoids path
dependency (Devicienti 2010; Okamoto 2011) but treats the first-order effect with the
same weight as mixed effects where multiple input factors have been substituted. Al-
ternatively, the estimation of a factor’s contribution can follow Das Gupta’s approach,
where weights are normalized, giving greater weight to direct effects. rdecompose can
be used for such analyses.

Because the outcome value cannot be described as a simple function, specific values
can be passed via the function() option of the command. For instance, to assess the
contribution to Gini from two factors (for example, the population structure and the
tax system as in table 3), one can use rdecompose as demonstrated in output 5.

Table 3. Estimated Gini coefficient with two factors

Gini Factor 1 (for example, population)
1 2

Factor 2 (for example, tax system) 1 0.31 0.39
2 0.48 0.52

Output 5: Decompose contributions to Gini based on two factors

. rdecompose factor1 factor2, group(group)
> function(cond(factor1==1, cond(factor2==1,0.31,0.48),
> cond(factor2==1,0.39,0.52)))

Decomposition between group == 1 (0.31)
and group == 2 (0.52)

Func Form = cond(factor1==1, cond(factor2==1,0.31,0.48),
> cond(factor2==1,0.39,0.52))

Component Absolute Difference Proportion (%)

factor1 .06 28.57
factor2 .15 71.43

Overall .21 100.00
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4.5 Example 5: Bootstrap with rdecompose

rdecompose does not have the native support of standard-error estimations in its current
version because sources of sampling and nonsampling errors could vary substantially
for each case. Standard errors in some cases might be meaningless if population-level
data are applied or possibly inaccurate because of data confidentialization processes.
However, should uncertainties of input data be mathematically described, it may be
possible to derive the standard errors of the estimators. One way to do this is to use
the bootstrap technique (Wang et al. 2000), which can be programmed in combination
with rdecompose.

For example, to consider the sampling errors in example 2, one may bootstrap the
underlying sample, which can be presented as a unit record dataset. A short customized
program can be written in Stata to extract the rdecompose output for each iteration of
the bootstrapping process.

Output 6: A customized rdecompose program for bootstrapping

program mydecompose, eclass
preserve
collapse (count) Size= d (mean) Rate = d, by(age_group Parity)
quietly rdecompose Size Rate, group(Parity) transform(Size) sum(age_group)
matrix b = e(b) * 100
ereturn post b
restore

end

The dataset from example 2 needs to be transformed for the bootstrap command as
shown in output 7, which includes both the commands and the results of this example.

Output 7: Results from bootstrapping

. use example2-clogg

. expand Size
(1,617 observations created)

. by age_group Parity, sort: generate d = _n<=round(Rate*Size/100)

. bootstrap, nowarn nodots reps(1000): mydecompose

Bootstrap results Number of obs = 1,627
Replications = 1,000

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Size(*) 23.07168 2.459112 9.38 0.000 18.25191 27.89145
Rate 37.53248 3.136146 11.97 0.000 31.38575 43.67922

As shown, this short program returns the standard errors of estimated rate contri-
butions via bootstrapping. With minor changes to the program, one can estimate the
standard error of the percentage values if needed.
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5 Concluding remarks

This article presents a user-written command, rdecompose, that replicates and extends
the popular rate decomposition method presented by Das Gupta (1993). This command
provides researchers a user-friendly tool to decompose changes in populations, which is
a task common to research in demography, health, and economics. This tool reduces
the tediousness of programming large numbers of factors and relaxes the functional
requirement of the original method. rdecompose normally assumes that the underlying
relations of the rate calculation are known; however, some or all permutations can be
overridden via the function() option. The command currently has no native support
for standard-error estimation because each case may contain vastly different sources
of sampling and nonsampling errors. It may be possible, however, to use bootstrap
techniques to derive standard errors of the estimates.
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Abstract. In cluster-randomized trials, groups or clusters of individuals, rather
than individuals themselves, are randomly allocated to intervention or control. In
this article, we describe a new command, ccrand, that implements a covariate-
constrained randomization procedure for cluster-randomized trials. It can ensure
balance of one or more baseline covariates between trial arms by restriction to
allocations that meet specified balance criteria. We provide a brief overview of the
theoretical background, describe ccrand and its options, and illustrate it using an
example.
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1 Introduction

In cluster-randomized trials, groups or clusters of individuals, rather than individuals
themselves, are randomly allocated to intervention or control (Donner and Klar 2000).
Provided the sample size is large, randomization will ensure comparable arms in terms of
the distribution of known and, more importantly, unknown factors that may influence
the outcome (Dos Santos Silva 1999). The number of clusters in cluster-randomized
trials is often limited. Therefore, one cannot rely on chance alone to ensure balance
of important covariates (including the baseline value of the outcome) and sample size
between arms (Moulton 2004). Achieving baseline balance of important covariates not
only avoids the need to adjust for them in the final analysis but also is important for a
trial’s credibility. Furthermore, it increases statistical power and precision (Ivers et al.
2012).

In a recent methodological review, Ivers et al. (2012) discussed several techniques to
balance baseline covariates in cluster-randomized trials along with their advantages and
limitations, including stratification, matching, minimization, and covariate-constrained

c© 2017 StataCorp LLC st0484
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randomization. The last is often the method of choice when baseline data are available
but has rarely been used because of the need for statistical support and specialized com-
puter software to implement it (Ivers et al. 2012). Moulton (2004) proposed a method
for implementing covariate-constrained randomization, and Chaudhary and Moulton
(2006) wrote a SAS command and tutorial. Carter and Hood (2008) implemented a
covariate-constrained randomization tool in R.

Our aim is to make covariate-constrained randomization more accessible to non-
statisticians by providing Stata code and demonstrating its use in a simple example. In
this article, we give a brief overview of the covariate-constrained randomization proce-
dure, including notation, key definitions, and concepts. Then, we describe the ccrand

command and its implementation in Stata. Finally, we illustrate the command using an
example dataset. We provide the code for the example in the supporting information
(available from the journal’s web page).

Stratified randomization can be useful when there is substantial variability in the
outcome of interest between clusters. This means that strata are formed and clusters are
randomized separately in each relatively homogeneous stratum. While stratification can
also help balance on a limited number of covariates, it is recommended mainly for im-
proving precision of estimation by reducing intracluster correlation (Hayes and Moulton
2009). Our procedure allows users to combine restricted randomization with stratifica-
tion to both ensure balance and improve efficiency.

2 The covariate-constrained randomization procedure

2.1 The basic idea

The purpose of covariate-constrained randomization is to achieve balance between arms
on one or more important baseline covariates that are thought to be predictive of the
outcome of the trial, often including the baseline values of the primary endpoint itself
(Moulton 2004). This requires that covariate data be available for all clusters prior to
allocation. The main method for covariate-constrained randomization implies that all
possible allocations of dividing the clusters into two arms are simulated, and differences
in covariates between arms are calculated for each and checked against prespecified
balance criteria. For example, for the continuous covariate education, one could specify
the difference in group means between arms to be no greater than one year’s difference
in mean school attendance. The final set of allocations is then limited to those that meet
the prespecified balance criteria, and the actual allocation is chosen randomly from this
acceptable set.

2.2 Validity

If the constraints are too strict, it may be that two clusters are always or never in the
same arm in all the acceptable allocations because the balance criteria can be fulfilled
only this way. This challenges the validity of the design because then it would not hold
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true that “every pair of clusters has the same probability of being allocated to the same
treatment”, which “violates the assumption of independence between clusters in each
arm” and could potentially change the type I error (Hayes and Moulton 2009). These
situations can be identified by counting the number of times any given pair of clusters
has the same treatment allocation. Examining under- or overrepresented pairs can then
reveal the balance constraints responsible, which need to be relaxed (Moulton 2004).
However, relaxing the balancing constraints implies a reduction of covariate balance
between study arms.

3 The ccrand command

Our approach is similar to the steps described by Chaudhary and Moulton (2006) for
the SAS command.

1. Separately for each stratum, we first generate all possible allocations dividing the
clusters into two arms.

2. For each allocation (in each stratum), we calculate the means of relevant covariates
in both arms and retain only the allocations meeting the balance criteria. If too
few allocations are retained in some strata, the criteria need to be relaxed. If too
many allocations are retained (which may make the subsequent computation too
heavy), the criteria should be tightened.

3. By combining the acceptable stratum-level allocations, we generate all possible
overall allocations.

4. For each overall allocation, we calculate the means of relevant covariates in both
arms and again retain only the allocations that meet the overall balance criteria.

5. Finally, we perform a validity check by calculating how often each pair of clusters
is allocated to the same arm. If n is the number of acceptable allocations, it
should occur in approximately n/2 of these. The exact value is m! × (nk ), where
m is the number of clusters in a pair of clusters (2), n is the number of clusters
per stratum, and k is the number of strata.

6. We select the final allocation at random from all acceptable overall allocations.

3.1 Syntax

The syntax of ccrand is as follows:

ccrand mainvarlist, ibc("string") obc("string")
[
seed(#) cluster(varname)

stratum(varname) validitycheck(string) selectfinal(string)
]

where mainvarlist contains all the covariates to be balanced. Arguments in squared
brackets are optional and have default values assigned as described below.
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3.2 Options

ibc("string") (initial balancing criteria) specifies a string of numeric values that is
equal to the number of covariates separated by a blank (" ") and that represents
the maximum allowable differences between arms for each covariate for allocations
within strata. All covariates must satisfy the criteria individually for an allowable
allocation. Values must be positive. ibc() is required.

obc("string") (overall balancing criteria) specifies a string of numeric values that is
equal to the number of covariates separated by a blank (" ") and that represents
the maximum allowable differences between arms for each covariate for overall alloca-
tions. All covariates must satisfy the balancing criteria individually for an allowable
allocation. Values must be positive. obc() is required.

seed(#) sets the reproducible random-number seed to # for selecting one final over-
all allocation from all acceptable overall allocations. The seed needs to be set to
reproduce the results.

cluster(varname) specifies the name of the covariate containing cluster IDs. The
default is cluster(cluster).

stratum(varname) specifies the name of the covariate containing stratum IDs. The
default is stratum(stratum).

validitycheck(string) specifies whether the validity check should be performed and
details displayed after randomization (no; default is validitycheck(yes)).

selectfinal(string) specifies whether one final overall allocation should be selected at
random from all acceptable overall allocations (no; default is selectfinal(yes)).

3.3 The data structure

ccrand requires an input Stata dataset that contains the stratum and cluster IDs. It
also requires the cluster-level covariates to be balanced on.

4 Illustration using a data example

4.1 Example: A cluster-randomized trial of a complex intervention
to reduce child undernutrition

The aim of the Food and Agricultural Approaches to Reducing Malnutrition (FAARM)
cluster-randomized controlled trial
(http://www.clinicaltrials.gov/ct2/show/NCT02505711/) is to evaluate the impact of
an integrated home gardening, nutrition, and hygiene intervention on chronic under-
nutrition in young children in a low-income setting. The intervention is delivered to
women’s groups. The trial includes 2,700 young women and their children from 96 set-
tlements within 2 subdistricts of Habiganj District in Bangladesh. Following a baseline
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survey in 2015, settlements were allocated to either intervention or control arms in a 1:1
ratio using covariate-constrained randomization. Women in the intervention arm will
receive training and support over three years. The primary endpoint is linear growth
(length for age) in children under three years old, which will be collected in 2019.

The dataset

The example dataset is a subset of the FAARM baseline survey containing 24 clusters in
3 strata and 5 covariates to balance on. A partial output of the data is shown in table 1
for illustration. Each of the three strata contains eight clusters, of which four clusters
are to be allocated to the intervention arm. The five cluster-level baseline covariates
(some converted into z scores) are the number of included women in the cluster (women),
women’s height (z wht), child length for age at baseline (z lfa), child age in months at
baseline (z age), and child diarrhea prevalence at baseline (diarrhea).

Table 1. Listing of the first five lines of the input Stata dataset sorted by cluster

obs cluster s women z wht z lfa z age diarrhea

1 1 3 37 −0.24 0.70 −0.22 0.10
2 2 1 14 −0.32 −0.05 −0.06 0.10
3 3 1 17 0.21 1.86 −0.26 0.11
4 4 3 51 −0.07 −0.61 0.52 0.07
5 5 2 29 −0.54 −1.17 0.01 0.16

As in the example, covariates of interest may be standardized before applying the
ccrand command by calculating the respective z scores. The z score measures how
many standard deviations above the mean (positive values) or below the mean (negative
values) a data point is. z scores can be calculated using the formula Z = (X − μ)/σ,
where X is the covariate of interest, μ is the mean, and σ is the standard deviation.
Constraints can then be set in terms of standard deviations instead of the original
covariate units.

The command

ccrand women diarrhea z_wht z_lfa z_age, ibc("4 0.2 0.5 0.5 0.5") ///
obc("3 0.1 0.5 0.5 0.5") seed(89574) cluster(cluster) stratum(stratum)

The output

After processing the input dataset, the program generates all possible arm 1 and arm 2
allocations separately along with the relevant covariate data. In our example, we want to
choose 4 clusters from 8 in each stratum; thus the number of combinations per stratum
is 8 choose 4 = ( 84 ) = 70. The total number of arm 1 allocations calculated by the

program for all 3 strata is the sum of the combinations in the strata ( 84 ) + ( 84 ) + ( 84 ) =



508 Covariate-constrained randomization routine

70+70+70 = 210, which yields 210×4 = 840 data rows. The number of combinations is
multiplied by 4 because there are 4 clusters stored in a separate row in each combination.
For each stratum, we compute covariate means for each allocation in each arm separately
and merge the results to compute the differences in means between the two arms. These
differences are compared with the values of the within-stratum initial balancing criteria
(ibc()). We then select the allocations that satisfy these initial criteria. In this example,
62 allocations out of a total of 210 qualify: 18 in stratum 1, 22 in stratum 2, and
22 in stratum 3. Based on these acceptable allocations in each stratum, all possible
overall allocations are generated by selecting one allocation from each stratum. In our
example, this results in a total of (18× 22× 22)× 3 = 8712× 3 = 26136 possible overall
allocations. Again, we calculate covariate means in both arms and check the difference in
means against the overall balancing criteria (obc()). In the example, 8,328 allocations
fulfilled these criteria. A listing of these allocations with the respective stratum IDs and
within-stratum allocation IDs, called rno, is saved in a dataset. Finally, we compute
the number of times a cluster appears with another cluster in the same arm as a check
for the validity of allocations. In the end, one allocation—to be used to implement
the randomization for the trial—is selected at random from those allocations qualifying
overall balancing criteria and displayed by the program. With the seed chosen in the
example, this results in allocation 498 with the “keep it simple, stupid” (KISS) random-
number generator (default until Stata 13) and allocation 283 with the Mersenne Twister
generator (new default introduced in Stata 14).

Recommendations

A prerequisite of the covariate-constrained randomization method is that recruitment
of clusters and collection of covariates for balancing must be completed prior to the
cluster allocation.

Implementing the randomization procedure supports a large number of strata with
a moderate number of clusters within strata. The initial balancing criteria should not
result in more than 25 allowable allocations per stratum, because all possible combina-
tions of clusters per strata are generated in the next step, which increases exponentially
and is computationally very intense. There are no restrictions on the maximum number
of covariates to balance on.

The program can also handle uneven numbers of clusters per stratum and will assign
the higher number of clusters to the first study arm, that is, for a stratum size of 7, 4
clusters will be assigned to the first study arm and 3 clusters will be assigned to the
second study arm.

5 Conclusions

Covariate-constrained randomization is a valuable tool for cluster-randomized trials.
However, the method was used in only 2% of 300 trials published from 2000 to 2008
(Ivers et al. 2011). This is partly because of its apparent complexity and the lack of
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software routines until the recent programs in SAS and R were available (Chaudhary
and Moulton 2006; Carter and Hood 2008). Because our program is inspired by the
SAS macro written by Chaudhary and Moulton, it covers the same functionality. Ad-
ditionally, the number of covariates is not limited in the Stata implementation and the
performance (run time) is better. The implementation in R does not provide the va-
lidity check but can be extended with knowledge of programming in R. We hope that
this routine will make the procedure more accessible to a wider audience of applied
researchers.
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1 The main idea

Do you know about the capture noisily group? It is a group of Stata commands,
starting with capture noisily { and ending with }. The commands in between are
executed as usual, producing the standard output (because of noisily). If any of these
commands fail, then execution resumes with the command immediately following the
group (because of capture). If you do not like typing capture noisily, then you can
abbreviate it to cap noi, or even to cap n.

A simple application is where the user wishes to generate a Stata log file, which
the user inspects afterward to see whether the logged commands work (and especially
if they do not). In a do-file, the user may open the log file and begin the capture

noisily block, using the commands

log using mylog.log, replace
capture noisily {

and then add a sequence of Stata commands, such as

sysuse auto, clear
regress mpg weight
predict mpghat
twoway scatter mpg weight || line mpghat weight, sort

and then end the capture noisily block and close the log file, using the commands

}
log close

The commands inside the block will then be executed until one of them fails (or
until all of them end execution, if none fail), and their output will be stored in the
file mylog.log. Whether or not any of the intervening commands fail, the log file
mylog.log will be closed by the log close command. The user may then inspect
the log file with a text editor and view the results if execution was successful or find
out what went wrong otherwise. Typically, the number of Stata commands inside the
block will be more than the four used here, and there may be program loops and other
complicated programming constructions (see [P] forvalues and [P] foreach), increasing
the probability of a failure somewhere.

c© 2017 StataCorp LLC pr0066
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2 Application in estimation command files

The capture noisily prefix is commonly used in do-files containing sequences of esti-
mation commands. If the user is worried that one or more of them might fail (possibly
because of insufficient observations), then the user may add a capture noisily pre-
fix to each estimation command so that if one estimation command fails, then Stata
will resume execution, starting with the next estimation command. If each estima-
tion command is followed by one or more postestimation commands (such as predict
or margins), then each estimation command, and its own subsequent postestimation
commands, may be placed in its own capture noisily group. That way, if either the
estimation command or the postestimation commands fail, then Stata will continue to
the next estimation command.

For instance, in auto.dta, a user might want to fit a regression model of mileage
(mpg) with respect to each of the car-size variables weight, length, and displacement,
together with the factor foreign, indicating whether a car model is made by a non-
U.S. company. After each regression model, the user might want to estimate the mean
mileages expected if all cars were U.S. models and if all cars were non-U.S. models,
assuming that the car-size variable was distributed as in the real-world sample. The
code to do this might be as follows:

sysuse auto, clear
describe, full
foreach X of var weight length displacement {

capture noisily {
regress mpg ibn.foreign `X´, noconst vce(robust)
margins i.foreign

}
}

As it happens, this code executes without any failed commands (not shown). How-
ever, if (for any reason) the analysis with respect to weight had failed, either in the
regress command or in the margins command, then Stata would have proceeded to
the analysis with respect to length. If the analysis with respect to length had failed,
then Stata would have proceeded to the analysis with respect to displacement. This
feature of capture noisily blocks can be very useful if the user is executing a long
list of multistep analyses, especially if these analyses involve commands with a higher
failure probability than regress. Note that if a multistep analysis fails at an earlier
command in a capture noisily block, then the later commands in the same capture
noisily block are not attempted. Note also that if the multiple analyses are simply
the same command executed on multiple by-groups, then the user does not need the
capture noisily block, because the user can use statsby (see [D] statsby).
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3 Application in file-generation programs

capture noisily may also be used to good effect in file-generation programs. For
example, it is used internally by the dolog, dologx, and dotex packages, which can
be downloaded from the Statistical Software Components (SSC) archive, and used to
execute a do-file while automatically generating a log file. However, more advanced users
may want to write output to an arbitrary file, using the file command documented
in [P] file. For instance, the new file may be a TEX, an HTML, an Extensible Markup
Language, or a Rich Text Format file, produced as an automatically generated report
for a reproducible-research project. The user may be using a sequence of commands to
generate this new file and may want to close the file after executing those commands,
whether or not they all work. The generated file will then be available for the user to
inspect (although it may be incomplete), and the user will not have to close it manually.
The capture block may begin with the commands

tempname buff1
file open `buff1´ using "myoutput.txt", write text replace
capture noisily {

and contain any amount of intervening code, including file write statements, such as

file write `buff1´ "Hello, world!!!!"

and end with the commands

}
file close `buff1´

In this case, a new file myoutput.txt is created with a buffer, whose name is stored
in the local macro buff1, and filled with output from the intervening file write

statements. However, if any statement in the intervening code fails, then Stata executes
the file close statement, and the new file (usually incomplete) is available for the
user to inspect.

Alternatively, the capture noisily block may be preceded and followed by file
opening and closing commands other than file open and file close. For instance, if
the user is generating an HTML file, then the file opening and closing commands might be
the htopen and htclose commands of the ht package (see Quintó et al. [2012]) or the
htmlopen and htmlclose commands of the SSC package htmlutil (see Newson [2015]).
Or if the user is generating a Rich Text Format file, then they might be the rtfopen and
rtfclose commands of the SSC package rtfutil (see Newson [2012]). And more user-
written file-generating packages are likely to be written on similar lines in the future,
possibly for generating files in Extensible Markup Language-based document formats
yet to be invented. Such future packages are likely to contain their own file-opening and
file-closing commands, suitable for use before and after a capture noisily block.
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Software Updates

dm0078 2: newspell: Easy management of complex spell data. H. Kröger. Stata Journal
16: 244; 15: 155–172.

In previous versions of the program, the newspell fillin command did not fill in
gaps correctly if the both or bothpost suboption of the fill() option was specified.
This has been fixed. Further, the newspell gap command would not find gaps in
certain situations (if the earliest spell ends on the same time point as it begins).
This has also been fixed.

gr0064 1: graphlog: Creating log files with embedded graphics. M. R. Hansen. Stata
Journal 15: 594–596.

The new version fixes several bugs and allows user control of text color and character
encoding (useful if your Stata code contains non-English characters).

st0376 1: Estimating and modeling relative survival. P. W. Dickman and E. Coviello.
Stata Journal 15: 186–215.

The new version corrects a bug (line 691) that resulted in incorrect estimates of the
Pohar Perme (actuarial) estimator when all individuals in an interval died.

st0389 4: Conducting interrupted time-series analysis for single- and multiple-group
comparisons. A. Linden. Stata Journal 17: 73–88; 16: 813–814; 16: 521–522;
15: 480–500.

The time variable ( t) was reset to start at 0 rather than 1 (as originally reflected
in update st0389 1 but lost in update st0389 2).

st0446 1: Hot and cold spot analysis using Stata. K. Kondo. Stata Journal 16: 613–631.

The following changes have been made, with further details in the help file:

1. A bug where a long variable name breaks layout has been fixed.

2. A calculation process of a large distance matrix has been improved.

3. The maximum number of iterations in the Vincenty formula has been changed
from 100 to 100,000.

4. The nomatsave option has been added to save computer memory space in the
calculation process.

5. The largesize option has been added to deal with large datasets. This new
option computes the Getis–Ord G∗

i (d) statistic faster when the dataset is quite
large.

c© 2017 StataCorp LLC up0055
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st0470 1: Spatial panel-data models using Stata. F. Belotti, G. Hughes, and A. Piano
Mortari. Stata Journal 17: 139–180.

This update fixes the xsmle command to allow for the proper use of a user-specified
weight variable, through either iweight or aweight.1

1. We thank Augusto Cerqua for pointing out this bug.
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