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Equitable impact of an AI-driven breast 
cancer screening workflow in real-world  
US-wide deployment
 

Leeann D. Louis    1, Edgar A. Wakelin    1  , Matthew P. McCabe    1, 
Annie Y. Ng    1, Jiye G. Kim1, Christoph I. Lee    2, Diana S. M. Buist    3, 
A. Gregory Sorensen    1 & Bryan Haslam1

Artificial intelligence (AI) shows promising results for improving early 
breast cancer detection and overall screening outcomes, particularly in 
European studies. Breast cancer screening in the USA is unique owing to its 
technology (digital breast tomosynthesis), single-reading paradigm, annual 
cadence and diverse population, including increased risk groups. Therefore, 
evaluating AI workflows for scalable and equitable impact is needed. Here 
the AI-Supported Safeguard Review Evaluation (ASSURE) study evaluates 
an AI workflow on digital breast tomosynthesis exams from women across 
four states to optimize early cancer detection. This workflow integrated an 
AI-based computer-aided detection and diagnosis tool with an AI-driven 
safeguard review, where at-risk cases received additional review by a breast 
imaging radiologist. Comparing the AI-driven workflow (N = 208,891) with 
the prior standard of care (N = 370,692) resulted in a +21.6% increase in 
cancer detection rate (CDR; 5.6 versus 4.6 per 1,000), +5.7% recall rate  
(RR; 11.1% versus 10.6%) and +15.0% positive predictive value (PPV1; 5.0% 
versus 4.4%). The CDR increased between 20.4% and 22.7%, and no CDR,  
RR or PPV1 disparities were found across racial and density subpopulations 
with the AI workflow. Implementation of the AI workflow improved 
screening effectiveness with equitable benefits.

Breast cancer is the most commonly diagnosed cancer worldwide, 
representing a major public health challenge1. Population-based mam-
mography screening has proven to be the most effective way to detect 
breast cancer early and reduce mortality2,3. Yet disparities in patient out-
comes persist—women with dense breast tissue that can mask cancer 
lesions in mammograms face higher cancer risk and greater likelihood 
of missed cancer diagnoses; and Black women in the USA experience 
significantly higher breast cancer mortality, despite a lower incidence 
compared with white women. This racial disparity is linked to not only 
differences in tumour biology but also systemic barriers that result in 
reduced access, follow-up and delayed diagnoses for Black women4. 

Differences in outcomes based on race and breast density have led 
the US Preventive Services Task Force to call for more inclusive and 
effective screening strategies for these increased risk groups. Artifi-
cial intelligence (AI) has shown strong potential to improve screening 
outcomes including increases to the cancer detection rate (CDR) with 
no increase or a decrease in the recall rate (RR)5–10, and positive indica-
tions of improved outcomes generalizing to limited subpopulations11. 
However, such large-scale evaluations have exclusively been conducted 
in European settings with bi- or tri-ennial population-based invitations 
to screening and double reading9,10 of full-field digital mammogra-
phy. This paradigm substantially differs from US practice with annual, 
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and diagnosis (CADe/x) device (DeepHealth Breast AI version 2.x) and 
second by an AI-supported safeguard review (SafeGuard Review). The 
CADe/x device provides an overall four-level category (minimal, low, 
intermediate and high) of suspicion for cancer and localized bounding 
boxes for suspicious lesions14. The SafeGuard Review routes exams 
above a predetermined DeepHealth Breast AI threshold that were not 
recalled by the interpreting radiologist for review by a breast imaging 
specialist (reviewer). Reviewers were selected by the breast imaging 
practice leadership based on experience and clinical performance 
record. If the reviewer agreed with the AI and found the exam suspi-
cious, they provided feedback on the exam to the interpreting radiolo-
gist, who made the final recall decision. The standard-of-care workflow 
consisted of single reading of DBT exams without the use of the multi-
stage AI-driven workflow.

Data from the multistage AI-driven workflow was included from  
3 August 2022 to 31 December 2022 after a 2-month training period,  
and compared with a standard-of-care cohort before deployment,  
from 1 September 2021 to 19 May 2022 (Fig. 1b). In both cohorts, radio
logists had access to non-AI-based computer-aided detection outputs. 
A prospective consecutive case series study design was selected for this 
investigation for two reasons: (1) to capture the real-world impact of 
the device when used for routine reading in a clinical setting; and (2) a 

opportunistic screening and single-reading workflows with digital 
breast tomosynthesis (DBT).

With the USA representing one of the largest and most diverse 
screening populations, and performing approximately 40% of world-
wide screening mammograms each year12,13, this study, called AI-Sup-
ported Safeguard Review Evaluation (ASSURE), addresses an important 
evidence gap. We evaluate the real-world deployment and clinical 
use of a validated14 DBT-compatible AI-driven workflow, tailored for 
single-reading paradigms, at scale for over half a million women across  
109 sites. Clinical outcomes were stratified by breast density and racial 
subgroups to assess whether outcomes were equitable across groups 
at increased risk of their cancer being missed (for example, women 
with dense breasts) or at increased risk of poor cancer outcomes  
(for example, Black women).

Results
Real-world deployment of the multistage AI-driven workflow was 
conducted at 5 practices across the USA (109 sites, 96 radiologists) 
in a diverse, nationally distributed (California, Delaware, Maryland 
and New York) outpatient imaging setting. The multistage AI-driven 
workflow aids the radiologist at two points in the workflow (Fig. 1a). 
First by interpreting the mammogram with a computer-aided detection 
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Fig. 1 | Details of study design and timeframe. a, During the standard-of-care 
period, patients followed a typical screening workflow; during the multistage  
AI-driven workflow period, a CADe/x device (DeepHealth Breast AI) was added 
for the initial reader and, if routed by SafeGuard Review, a safeguard review  

was performed by a breast imaging specialist to detect possible missed  
cancers. b, Times during which exams were collected during the standard-of- 
care and multistage AI-driven workflow periods. BCSC, Breast Cancer 
Surveillance Consortium.
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double-blind randomized control trial was not possible as the reading 
radiologists could not use the device while blinded.

The primary outcomes of the ASSURE study were unadjusted 
CDRs, RRs and positive predictive value of recalls (PPV1) before and 
after deployment of the multistage AI-driven workflow for the overall 
screening population, and prespecified subpopulations of women 
with dense breasts and Black, non-Hispanic women. Secondarily, 
unadjusted and adjusted CDR, RR and PPV1 were investigated before 
and after AI deployment for the whole population and all subpopu-
lations. Adjusted analyses utilized generalized linear models with 
generalized estimating equations controlling for race and ethnicity, 
breast density, and age, as well as grouping by interpreting radiologist 
as performed in previous studies15–17. The study was powered to detect 
a change in the CDR and in PPV1 in the whole population and to detect 
a change in the CDR in all prespecified racial and ethnic and density 
subpopulations of interest.

Patient characteristics
This study included 579,583 exams: 370,692 (64%) in standard of 
care and 208,891 (36%) in the multistage AI-driven workflow. Exams 
were included only if they were bilateral, DBT, and were from an eli-
gible manufacturer. A flow chart of exam exclusions based on study 
and product exclusion and inclusion criteria is shown in Fig. 2. The 
same exclusion criteria were applied to both cohorts despite the AI 
algorithm not processing the standard-of-care cohort exams. Only 
a small number of DBT exams did not meet the device inclusion cri-
teria (standard of care, 6,772 (1.5%); multistage AI-driven workflow, 
2,678 (1.1%)). Population demographics, including patient age, race 
and ethnicity, and breast density, were similar between the cohorts 
(Table 1). Out of the 208,891 exams that went through the multistage 
AI-driven workflow, 16,763 underwent an additional safeguard review 
(8.0% of all exams). Zero adverse events were reported during the 
study period. Practice specific clinical performance and differences 
in demographics between practices are presented in Supplementary 
Tables 4 and 5, respectively.

Screening performance of the multistage AI-driven workflow
In the whole population, compared with the standard of care, the mul-
tistage AI-driven workflow cohort was associated with an absolute 
increase in the CDR (Δ0.99 cancers per 1,000 exams = 21.6%, 95% con-
fidence interval (CI) 12.9–31.0%, P < 0.001), RR (Δ0.60 recalls per 100 
exams = 5.7%, 95% CI 4.1–7.3%, P < 0.001) and PPV1 (Δ0.66 cancers per 
100 recalls = 15.0%, 95% CI 7.0–23.7%, P < 0.001) (Fig. 3 and Table 2).  
All prespecified subpopulations had a higher CDR (Δ0.73–1.23 cancers 
per 1,000 exams = 20.4–22.7%, P ≤ 0.045) associated with the mul-
tistage AI-driven workflow (see Table 2 for values for prespecified 
subpopulations and Supplementary Table 1 for values for additional 
subpopulations). All prespecified subpopulations also had a higher 
RR (Δ0.48–0.99 recalls per 100 exams = 5.0–9.2%, P ≤ 0.001), except 
women in the ‘other race’ category (Δ0.31 recalls per 100 exams = 2.6%, 
P = 0.135). CDR increases were greater than RR increases in all cases, 
resulting in a significant improvement in PPV1 in 4 out of the 7 sub-
populations of interest (whole population; white, non-Hispanic women 
(Δ0.95 cancers per 100 recalls = 16.0%, 95% CI 3.7–29.7%, P = 0.010); 
women with non-dense breasts (Δ0.74 cancers per 100 recalls = 13.8%, 
95% CI 2.8–26.1%, P = 0.014); and women with dense breasts (Δ0.56 
cancers per 100 recalls = 15.3%, 95% CI 3.9–27.8%, P = 0.008)). In the 
other three subpopulations (Black, non-Hispanic women, Hispanic 
women, and women in the ‘other race’ category of race and ethnicity), 
a similar trend was observed with a non-significantly higher PPV1 for 
the multistage AI-driven workflow cohort; however, the study was not 
powered to detect an increase in PPV1 in any of the subpopulations. 
The distribution of cancers across AI suspicion levels did not change 
between cohorts (Supplementary Table 2).

Adjusted results, which simultaneously accounted for age, race 
and ethnicity, breast density, and the radiologist reading the study, 
showed an overall marginal effect for the CDR of 1.29 cancers per 1,000 
exams (95% CI 0.35–2.23, P = 0.007), for RR of 0.72 recalls per 100 exams 
(CI 0.03–1.41, P = 0.04) and for PPV1 of 0.92 cancers per 100 recalls (95% 
CI 0.07–1.78, P = 0.03). The consistency of these adjusted effects with 
the unadjusted findings indicates that the improved CDR and cancer 
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Fig. 2 | Case collection and exclusion diagram showing counts of exams and 
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criteria. Exclusion because an exam was not or would not be accepted by 
DeepHealth Breast AI included product-level requirements (see Supplementary 
Note 1 for more detail).
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detection efficiency observed are robust, even after controlling for 
potential confounding variables such as patient age, race and ethnicity, 
breast density, and the reading radiologist. This result further supports 
comparable performance of the multistage AI-driven workflow across 
all patient subpopulations. In addition, interaction terms between the 
multistage AI-driven workflow and patient factors such as age, race and 
ethnicity, and breast density were not statistically significant, with the 
exception of the term for multistage AI-driven workflow in ≥80 years; 
however, the population of women ≥80 was small (N = 15,550). This sug-
gests comparable performance of the multistage AI-driven workflow 
across all patient subpopulations. See Supplementary Table 3 for full 
details on all terms in the adjusted models.

Discussion
This large real-world study demonstrated that a multistage AI-driven 
workflow for screening mammography deployed across several diverse 
US screening practices was associated with improved CDR across all 
prespecified breast density and race and ethnicity subpopulations. For 
the overall population, the CDR increased by 0.99 per 1,000 screens 
(4.59 to 5.58, P < 0.001). PPV1 also improved for the whole population 
and all powered subpopulations of interest in both the unadjusted and 
adjusted analysis. While RR increased by 5.7% (10.6 to 11.1, P = 0.015) 
overall, the increase in PPV1 suggests that additional recalls and diag-
nostic evaluations were appropriate because they led to a higher rate 
of additional cancer diagnoses. Increases in CDR held for women 
with dense and non-dense breasts, as well as for Black, non-Hispanic; 
Hispanic; and white, non-Hispanic women. Our results suggest that 
the multistage AI-driven workflow would not widen existing dispari-
ties in US screening outcomes, but rather could provide equitable 

benefits across key subpopulations of women. This level of increase 
in the CDR represents a potential additional 34,097 cancers found 
through early breast cancer screening over the 43 million mammo-
grams performed in the USA each year, assuming that 80% of these 
are screening mammograms13.

The overall CDR increase observed here of 21.6% is greater than 
estimates of increased CDR (11%) associated with double reading 
100% of exams in the USA18, highlighting the efficiency of combining 
a CADe/x device with a safeguard review in which only 8% of cases 
required a second review. This CDR increase is in addition to that 
already expected from a transition from full-field digital mammog-
raphy to DBT of approximately 36% (ref. 19). Finally, the CDR increase 
was greater than that reported in ref. 5, which found an increase of 0.7 
cancers per 1,000 screens, or ref. 9, which found a 17% increase in CDR 
in a double-reading standard-of-care cohort. The study in ref. 5 was of 
a prospective trial of 16,000 exams implementing an additional review 
process, analogous to the SafeGuard Review presented here, but in a 
European screening setting with double reading of full-field digital 
mammograms in women with 2-year screening intervals. References 9,10 
demonstrated that, in the European double-reading setting, replacing 
one of the two readers with AI can achieve an increase in CDR or non-
inferior CDR, respectively, alongside a decrease in the RR. However, 
double reading is not standard in the USA, so it is difficult to directly 
compare results in Europe with the USA. These different results high-
light the importance of demonstrating the effectiveness of AI-assisted 
screening across varied populations and within the context of different 
workflows, screening paradigms and algorithm versions.

The CDR was 22.7% higher for women with dense breasts with ver-
sus without the multistage AI-driven workflow, suggesting that it may 

Table 1 | Characteristics of 579,583 screening mammograms interpreted from September 2021 to December 2022

Overall Cohort

Standard of care Multistage AI-driven workflow

Examinations, number (%)

Whole population 579,583 (100.0) 370,692 (100.0) 208,891 (100.0)

Patient race and ethnicity, number (%)

Asian 48,552 (8.38) 30,706 (8.28) 17,846 (8.54)

Black, non-Hispanic 154,300 (26.62) 100,559 (27.13) 53,741 (25.73)

Hispanic 123,668 (21.34) 78,915 (21.29) 44,753 (21.42)

White, non-Hispanic 193,974 (33.47) 123,654 (33.36) 70,320 (33.66)

Other race 107,641 (18.57) 67,564 (18.23) 40,077 (19.19)

Breast density, number (%)

A 40,095 (6.92) 25,929 (6.99) 14,166 (6.78)

B 275,476 (47.53) 174,248 (47.01) 101,228 (48.46)

C 241,446 (41.66) 155,759 (42.02) 85,687 (41.02)

D 22,566 (3.89) 14,756 (3.98) 7,810 (3.74)

Age group, number (%)

<40 5,414 (0.93) 3,508 (0.95) 1,906 (0.91)

40–49 131,739 (22.73) 86,158 (23.24) 45,581 (21.82)

50–59 171,447 (29.58) 110,805 (29.89) 60,642 (29.03)

60–69 164,688 (28.41) 104,031 (28.06) 60,657 (29.04)

70–79 90,745 (15.66) 56,570 (15.26) 34,175 (16.36)

≥80 15,550 (2.68) 9,620 (2.60) 5,930 (2.84)

Age group additional breakdown, number (%)

<55 219,157 (37.81) 142,895 (38.55) 76,262 (36.51)

55–64 177,367 (30.60) 113,423 (30.60) 63,944 (30.61)

65+ 183,059 (31.58) 114,374 (30.85) 68,685 (32.88)
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help address concerns for missed cancers in this subpopulation. With 
new US federal mandates requiring that women be informed of their 
density category after each screening mammogram20,21, the multistage 
AI-driven workflow may represent a welcome choice for women with 
dense breasts. These results are in contrast to those recently reported 
by ref. 6, which showed a non-significant improvement of CDR in dense 
breasts over a large age-restricted (50–69 years) prospective European 
cohort; however, this study used a different AI algorithm and different 
workflow where AI assistance was added to double reading.

Black and Hispanic women showed large relative improvements 
in their CDR (20.4% and 21.8%, respectively). Absolute increases in 
CDR were smaller for Black, non-Hispanic and Hispanic women than 
for white, non-Hispanic women, which can be explained by the lower 
reported incidence of cancer in Black, non-Hispanic and in Hispanic 
than in white, non-Hispanic women22,23 that is also seen in our data  
(Fig. 3). One of the driving forces for the recent revisions to the US 

Preventive Services Task Force screening recommendations for start-
ing age of 40 years rather than 50 years was to improve health equity in 
breast cancer outcomes, especially for Black women24. By increasing 
the CDR, our study suggests that the multistage AI-driven workflow may 
facilitate the detection of cancers in earlier screening exams for racial 
and ethnic minorities, a population that has historically faced breast 
cancer diagnosis at later stages with worse morbidity and mortality24.

The clinically meaningful and statistically significant increase in 
PPV1 in the whole population and trend observed across all subpopula-
tions of interest indicate that the additional recalls made with the mul-
tistage AI-driven workflow resulted in detecting additional cancers at 
a higher rate than the standard of care. Although the absolute increase 
in PPV1 was smaller for Black, non-Hispanic women than it was for white 
women (0.60 versus 0.95), the adjusted model did not demonstrate 
a statistically significant difference in the impact of the multistage  
AI-driven workflow on different racial and ethnic subpopulations.  
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Fig. 3 | Impact of the multistage AI-driven workflow on breast cancer 
screening outcomes. CDR, RR and PPV1 in the standard of care versus the 
multistage AI-driven workflow cohort across the whole population, in individual 
race and ethnicity subpopulations, and divided up by breast density. See Table 2  
for numerator and denominator values. Data are presented as the unadjusted 

rate, and lines are the 95% Agresti and Coull CIs. All standard of care (grey) and 
multistage AI-driven workflow (purple) paired comparisons indicated with an 
asterisk are significant (*P < 0.05) under an unadjusted one-sided chi-squared 
comparison (see Table 2 for exact P values). See Supplementary Table 1 for details 
of CDR, RR and PPV1 and comparisons for other demographic groups.
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This suggests that, when demographic and radiologist-level factors are 
controlled, the relationship between the multistage AI-driven workflow 
and CDR, RR and PPV1 is similar for all subpopulations.

The strengths of our study include that this is one of the largest 
real-world US studies evaluating mammography screening with AI so far 
and includes data across 4 states, 109 individual sites and 96 individual 
radiologists. Most previous studies measuring CDR with DBT have been 
small and performed predominantly in academic research centres2,3. 
In contrast, our study represents real-world evidence collected from 
a large number of geographically diverse outpatient imaging centres 
and may better reflect the average US patient experience. The combina-
tion of (1) a CADe/x device on all cases and (2) a safeguard review by an 
expert reviewer for high-suspicion cases interpreted as normal by the 
initial radiologist is unique, particularly in a single-reading paradigm. 
The second-stage SafeGuard Review provides a process analogous 
to the consensus review in double-reading screening programmes in 
which all exams are read by at least two radiologists. However, in our 
workflow, only a small set of patients (8%) at highest risk for having 
cancer are double read. This enables nearly the full cancer detection 
benefits of double reading for <10% of the added effort and the cost 
of the software. To reduce radiologist-level factors, only radiologists 
who interpreted a minimum number of exams in both cohorts and only 
exams from sites that were present in both cohorts were included. As 
such, the sites, interpreting radiologists and patient characteristics are 
comparable in the two cohorts. Furthermore, a 2-month learning curve 

period before starting the post-intervention period was used, similar to 
previous studies25. Finally, we observe similar changes in CDR, RR and 
PPV1 across the radiology practices (Supplementary Table 4) indicating 
that the AI algorithm and SafeGuard Review workflow are generalizable 
across the diverse set of practices investigated.

There are also several limitations to our study. First, there were 
insufficient follow-up data after screening to report sensitivity, speci-
ficity, false-negative rates, interval cancers or cancer stage at diag-
nosis. However, previous work comparing radiologist performance 
with versus without this CADe/x device (in both cases without the 
SafeGuard Review component) showed that radiologists improved 
sensitivity (80.8% without versus 89.6% with the device, P < 0.01) 
and did not reduce specificity (75.1% without versus 76.0% with the 
device, P = 0.65)14. In addition, the same study showed that radiologists 
reading with DeepHealth Breast AI had improved sensitivity across 
all lesion sizes and pathologies (invasive versus non-invasive), and  
ref. 26 reported similar distributions of invasive and triple negative 
cancers using the SafeGuard Review workflow described here com-
pared with cancers identified without AI assistance. Second, it was 
not possible to extract the clinical impact of the CADe/x device from 
the SafeGuard Review owing to the unique aspects of the AI-driven 
workflow (for example, integration with existing imaging viewing 
software; workflow paths that include both the CADe/x and SafeGuard 
Review devices on a single exam; and user training and knowledge 
of both devices). Our results are therefore applicable to only the 

Table 2 | Outcome metrics for standard of care versus the multistage AI-driven workflow, and unadjusted estimates of the 
percentage change

Standard of care Multistage AI-driven workflow Percent change (95% CIb) P valuec

Num/Denoma Value Num/Denoma Value

CDR (number of cancers per 1,000 exams)

Whole population 1,702/370,692 4.59 1,166/208,891 5.58 21.6% (12.9–31.0%) <0.001

Black, non-Hispanic 449/100,559 4.47 289/53,741 5.38 20.4% (3.9–39.6%) 0.015

Hispanic 265/78,915 3.36 183/44,753 4.09 21.8% (0.9–47.0%) 0.045

White, non-Hispanic 699/123,654 5.65 484/70,320 6.88 21.8% (8.5–36.7%) <0.001

Other race 289/67,564 4.28 210/40,077 5.24 22.5% (2.6–46.3%) 0.028

Non-dense 843/200,177 4.21 588/115,394 5.10 21.0% (8.9–34.4%) <0.001

Dense 859/170,515 5.04 578/93,497 6.18 22.7% (10.5–36.3%) <0.001

RR (number of recalls per 100 exams, %)

Whole population 39,091/370,692 10.6 23,278/208,891 11.1 5.7% (4.1–7.3%) <0.001

Black, non-Hispanic 10,517/100,559 10.5 5,938/53,741 11.1 5.6% (2.5–8.9%) <0.001

Hispanic 8,504/78,915 10.8 5,265/44,753 11.8 9.2% (5.7–12.8%) <0.001

White, non-Hispanic 11,811/123,654 9.6 7,051/70,320 10.0 5.0% (2.1–8.0%) <0.001

Other race 8,259/67,564 12.22 5,024/40,077 12.54 2.6% (−0.8–6.0%) 0.135

Non-dense 15,771/200,177 7.9 9,663/115,394 8.4 6.3% (3.7–8.9%) <0.001

Dense 23,320/170,515 13.7 13,615/93,497 14.6 6.5% (4.4–8.6%) <0.001

PPV1 (number of cancers per recalls made, %)

Whole population 1,702/39,091 4.35 1,166/23,278 5.01 15.0% (7.0–23.7%) <0.001

Black, non-Hispanic 449/10,517 4.27 289/5,938 4.87 14.0% (−1.3–31.7%) 0.082

Hispanic 265/8,504 3.12 183/5,265 3.48 11.5% (−7.3–34.2%) 0.269

White, non-Hispanic 699/11,811 5.92 484/7,051 6.86 16.0% (3.7–29.7%) 0.010

Other race 289/8,259 3.50 210/5,024 4.18 19.5% (0.4–42.2%) 0.051

Non-dense 843/15,771 5.35 588/9,663 6.09 13.8% (2.8–26.1%) 0.014

Dense 859/23,320 3.68 578/13,615 4.25 15.3% (3.9–27.8%) 0.008
aNum/Denom indicates the numerator and denominator that produced the value in the adjacent ‘Value’ column. For CDR, Num is the number of cancers detected and Denom is the number 
of exams; for RR, Num is the number of recalls made and Denom is the number of exams; for PPV1, Num is the number of cancers detected and Denom is the number of recalls made. b95% CI 
calculated using the Katz method. cP value calculated using a chi-squared test.
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device under investigation. Third, we chose not to correct for multi-
ple comparisons because our outcomes were highly correlated (for 
example, Black, non-Hispanic women were also included in the whole 
population; CDR, RR and PPV1 are related by radiologist behaviour and  
so on). However, we do account for correlation in the data through the 
adjusted generalized estimating equations models, and these adjusted 
results support the conclusions drawn from the unadjusted results. 
Finally, the cohorts were divided into two sequential groups in this 
real-world observational study, which does not control for unknown 
biases and confounders in the patient groups as a randomized trial 
would. However, the study prioritized external generalizability by 
assessing the AI workflow in a real-world clinical setting, thus avoiding 
biases that could arise from a highly controlled interventional study. 
Comparison between demographics, however, showed similar patient 
characteristics between groups, and these main confounders were 
controlled in the adjusted analysis.

In summary, the ASSURE study presents large-scale, real-world 
evidence that using a multistage AI-driven workflow is associated with 
improved mammography screening performance for the population as 
a whole and across density and key race and ethnicity subpopulations. 
These results demonstrate that the multistage AI-driven workflow can 
provide significant and equitable cancer detection benefits to women.

Methods
Data were collected in compliance with the Health Insurance Port-
ability and Accountability Act and under Advarra institutional review 
board approval (DH-ACC-001-030623) with a waiver of consent. A 
multistage AI-driven workflow for breast cancer screening was prospec-
tively deployed in the USA at 5 practices (109 sites, 96 radiologists) in 
a diverse, nationally distributed (California, Delaware, Maryland and 
New York) outpatient imaging setting. All radiologists were board 
certified and Mammography Quality Standards Act (MQSA) quali-
fied, and no trainees were included in this study. A mixture of breast 
imaging specialists and general radiologists were investigated. Our 
primary outcomes were unadjusted CDR, RR and PPV1 before and 
after deployment of the multistage AI-driven workflow for the overall 
screening population, and for the key subpopulations of women with 
dense breasts and Black, non-Hispanic women. Secondarily, adjusted 
and unadjusted CDR, RR and PPV1 were investigated before and after AI 
deployment for all subpopulations including women with non-dense 
breasts; Hispanic women; white, non-Hispanic women; and women 
whose race and ethnicity was not Black, non-Hispanic; Hispanic; or 
white, non-Hispanic (other race); and obtained multivariable adjusted 
CDR, RR and PPV1 estimates.

Multistage AI-driven workflow
The multistage AI-driven workflow consists of two components  
(Fig. 1a): interpreting the mammogram with a computer-aided detec-
tion and diagnosis (CADe/x) device (DeepHealth Breast AI version 2.x, 
DeepHealth) and an AI-supported SafeGuard Review. The previously 
validated CADe/x device showed improved performance for both gen-
eral radiologists and breast imaging specialists in a reader study14. The 
SafeGuard Review routes exams above a predetermined DeepHealth 
Breast AI threshold that were not recalled by the interpreting radiolo-
gist for review by a breast imaging specialist (reviewer). Reviewers were 
selected by the breast imaging practice leadership based on experience 
and clinical performance record. If the reviewer agreed with the AI and 
found the exam suspicious, they discussed the exam with the interpret-
ing radiologist, who made the final recall decision.

Study design
All screening exams at the five practices during the study period were 
eligible for inclusion in the study. Exams between 1 September 2021 
and 19 May 2022 did not receive the multistage AI-driven workflow 
and formed the standard-of-care comparison cohort. The multistage 

AI-driven workflow was deployed on all exams satisfying the product 
instructions for use from 20 May 2022 to 31 December 2022 (Fig. 1b). 
Data were collected from 3 August 2022 to 31 December 2022, starting 
2 months after deployment to allow radiologists to adapt to the new 
technology (multistage AI-driven workflow cohort). Radiologists in 
both cohorts had access to non-AI-based computer-aided detection 
outputs (ImageChecker, Hologic). AI suspicion levels were determined 
for screening exams resulting in a cancer finding for both periods using 
DeepHealth Breast AI 2.x.

Exam eligibility
Exams were included if they met all exam, patient and radiologist cri-
teria (Fig. 2). Exam criteria included: bilateral screening DBT without 
implants or additional diagnostic imaging; American College of Radiol-
ogy Breast Imaging Reporting and Data System (BI-RADS) interpreta-
tion of 0, 1 or 2; valid breast density; compatibility with DeepHealth 
Breast AI 2.x; and met DeepHealth Breast AI 2.x input requirements 
(see Supplementary Note 1 for details). Patient criteria: ≥35 years old 
and self-reported as female. Radiologist criteria: interpreted screening 
mammograms during both study periods based on the MQSA required 
minimum of 960 every 2 years17 (for example, 372 exams during the 
standard-of-care period and 175 exams during the multistage AI-driven 
workflow period) resulting in excluding 83 radiologists and the 14,472 
(5.7%) exams they read.

Data collection
Examination-level, patient-level and outcome-level data were col-
lected from screening mammograms during both study periods. 
Exam data collected included screening BI-RADS assessment and 
breast density (non-dense: BI-RADS A, fatty or B, scattered fibroglan-
dular; versus dense: C, heterogeneously dense or D, extremely dense) 
as reported by the interpreting radiologist. Patient data collected 
included self-reported sex, age at exam, and self-reported race and eth-
nicity (Asian; Black, non-Hispanic; Hispanic; Native American; Pacific 
Islander; white, non-Hispanic; multiracial (listed ≥1 race) or other; or 
declined to specify). Owing to limitations on sample size, women who 
identified as Asian; Native American; Pacific Islander; multiracial or 
other; or who declined to specify were combined for some analyses 
into a category called other race. Four exams missing breast density 
were excluded. Adverse events were monitored as part of post-market 
surveillance activities.

Metrics
Metrics were calculated based on the Breast Cancer Surveillance Con-
sortium Standard Definitions v3.1 and the BI-RADS Atlas 5th edition, 
and included CDR, RR and PPV1 (refs. 27,28). The CDR was defined as the 
number of BI-RADS 0 (positive) exams with a malignant biopsy (invasive 
lobular carcinoma, invasive ductal carcinoma, ductal carcinoma in situ) 
divided by the total number of exams multiplied by 1,000. The RR was 
defined as the percentage of screening exams that were positive. The 
PPV1 was defined as the percentage of positive exams that resulted in 
a malignant biopsy.

Statistical analysis
Descriptive statistics (unadjusted mean and 95% CI29) were used to 
evaluate the CDR, RR and PPV1 in both cohorts for the whole popu-
lation and for all subpopulations. Chi-squared tests were used for 
unadjusted CDR, RR and PPV1 estimates for the multistage AI-driven 
workflow across the whole population and in the subpopulations of 
interest (Black, non-Hispanic women; Hispanic women; white, non-
Hispanic women; women with non-dense breasts; and women with 
dense breasts). As these are real-world data, and because all the results 
are correlated and not independent, we did not correct for multiple 
comparisons. To account for the correlated nature of the data and to 
test whether the multistage AI-driven workflow showed differences 
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in mammography screening for breast cancer. Radiology 311, 
e232479 (2024).

10.	 Dembrower, K., Crippa, A., Colón, E., Eklund, M. & Strand, F. 
Artificial intelligence for breast cancer detection in screening 
mammography in Sweden: a prospective, population-based, 
paired-reader, non-inferiority study. Lancet Digit. Health 5, 
E703–E711 (2023).

11.	 Oberije, C. J. G. et al. Assessing artificial intelligence in breast 
screening with stratified results on 306 839 mammograms  
across geographic regions, age, breast density and ethnicity:  
A Retrospective Investigation Evaluating Screening (ARIES) study. 
BMJ Health Care Inform. 32, e101318 (2025).

12.	 Logan, J., Kennedy, P. J. & Catchpoole, D. A review of the 
machine learning datasets in mammography, their adherence to 
the FAIR principles and the outlook for the future. Sci. Data 10, 
595 (2023).

13.	 Centers for Devices and Radiological Health MQSA national 
statistics. FDA https://www.fda.gov/radiation-emitting-products/
mammography-information-patients/mqsa-national-statistics 
(2025).

14.	 Kim, J. G. et al. Impact of a categorical AI system for digital breast 
tomosynthesis on breast cancer interpretation by both general 
radiologists and breast imaging specialists. Radiol. Artif. Intell. 6, 
e230137 (2024).

15.	 Kerlikowske, K. et al. Population attributable risk of advanced-
stage breast cancer by race and ethnicity. JAMA Oncol. 10, 
167–175 (2024).

16.	 Sprague, B. L. et al. Assessment of radiologist performance  
in breast cancer screening using digital breast tomosynthesis  
vs digital mammography. JAMA Netw. Open 3, e201759  
(2020).

17.	 Lawson, M. B. et al. Multilevel factors associated with time to 
biopsy after abnormal screening mammography results by race 
and ethnicity. JAMA Oncol. 8, 1115–1126 (2022).

18.	 Destounis, S. V. Computer-aided detection and second reading 
utility and implementation in a high-volume breast clinic.  
Appl. Radiol. 33, 8–12 (2004).

19.	 Alabousi, M. et al. Performance of digital breast tomosynthesis, 
synthetic mammography, and digital mammography in breast 
cancer screening: a systematic review and meta-analysis.  
J. Natl Cancer Inst. 113, 680–690 (2020).

20.	 Liao, J. M. & Lee, C. I. Strategies for mitigating consequences 
of federal breast density notifications. JAMA Health Forum 4, 
e232801 (2023).

21.	 Kressin, N. R., Slanetz, P. J. & Gunn, C. M. Ensuring clarity and 
understandability of the FDA’s breast density notifications.  
JAMA 329, 121–122 (2023).

22.	 Mandelblatt, J. S. et al. Population simulation modeling of 
disparities in US breast cancer mortality. J. Natl Cancer Inst. 
Monogr. 2023, 178–187 (2023).

23.	 DeSantis, C. E. et al. Breast cancer statistics, 2015: convergence 
of incidence rates between black and white women. CA Cancer J. 
Clin. 66, 31–42 (2016).

24.	 Elmore, J. G. & Lee, C. I. Toward more equitable breast cancer 
outcomes. JAMA 331, 1896–1897 (2024).

25.	 Miglioretti, D. L. et al. Digital breast tomosynthesis: radiologist 
learning curve. Radiology 291, 34–42 (2019).

26.	 Haslam, B., Kim, J. & Soresen, A. G. An AI-based safeguard 
process to reduce aggressive missed cancers in dense breasts 
at screening mammography. In Proc. 2023 San Antonio Breast 
Cancer Symposium 84 PO2-29–04 (AACR, 2024).

between subpopulations, generalized linear models with generalized 
estimating equations were used to predict multivariable adjusted CDR, 
RR and PPV1 fit with terms for covariates known to influence screening 
performance, including race and ethnicity, breast density, and age, and 
grouped on interpreting radiologist to account for radiologist-level fac-
tors on screening metrics15–17. To evaluate differences in the multistage 
AI-driven workflow performance across subpopulations, terms were 
included for the cohort and for the interaction between cohort and 
each of the subpopulation terms (for example, multistage AI-driven 
workflow: Black, non-Hispanic; multistage AI-driven workflow: dense). 
Number of exams undergoing the SafeGuard Review workflow and 
their outcomes were also reported. All analyses were performed with 
Python 3.10 (packages: statsmodels, scipy) with a critical P value of 0.05.

Power analysis. A post-hoc sample size calculation was completed 
based on two proportions, two-sided power analysis to determine the 
sample size required to address the primary outcome of the CDR across 
the whole population and in subpopulations of interest. Assuming a 
base CDR of 5 cancers per 1,000 exams, a 23% increase in th CDR from 
the standard of care to the multistage AI-driven workflow, α = 0.05, 
β = 0.2 and sampling ratio of 1.8 standard-of-care exams for each mul-
tistage AI-driven workflow exam, 94,822 exams were required in the 
standard of care and 52,679 exams for the multistage AI-driven work-
flow cohort. Using the same approach to determine the sample size 
required to evaluate PPV1, from a base PPV1 of 4% and a 15% increase 
between cohorts, 25,595 recalls were required in the standard of care 
and 14,219 recalls required in the multistage AI-driven workflow cohort.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study form part of DeepHealth 
Inc. intellectual property and are strictly controlled by the supervising 
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