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Recent developments in linkage procedures and exposure modelling offer great prospects for cohort analyses on the health
risks of environmental factors. However, assigning individual-level exposures to large population-based cohorts poses
methodological and practical problems. In this contribution, we illustrate a linkage framework to reconstruct environmental
exposures for individual-level epidemiological analyses, discussing methodological and practical issues such as residential
mobility and privacy concerns. The framework outlined here requires the availability of individual residential histories with
related time periods, as well as high-resolution spatio-temporal maps of environmental exposures. The linkage process is carried
out in three steps: (1) spatial alignment of the exposure maps and residential locations to extract address-specific exposure
series; (2) reconstruction of individual-level exposure histories accounting for residential changes during the follow-up; (3)
flexible definition of exposure summaries consistent with alternative research questions and epidemiological designs. The
procedure is exemplified by the linkage and processing of daily averages of air pollution for the UK Biobank cohort using
gridded spatio-temporal maps across Great Britain. This results in the extraction of exposure summaries suitable for
epidemiological analyses of both short and long-term risk associations and, in general, for the investigation of temporal
dependencies. The linkage framework presented here is generally applicable to multiple environmental stressors and can be
extended beyond the reconstruction of residential exposures.

IMPACT: This contribution describes a linkage framework to assign individual-level environmental exposures to population-based
cohorts using high-resolution spatio-temporal exposure. The framework can be used to address current limitations of exposure
assessment for the analysis of health risks associated with environmental stressors. The linkage of detailed exposure information at
the individual level offers the opportunity to define flexible exposure summaries tailored to specific study designs and research
questions. The application of the framework is exemplified by the linkage of fine particulate matter (PM,s) exposures to the UK

Biobank cohort.
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INTRODUCTION
The role of environmental factors as determinants of health has
gained importance in the last decades. Early epidemiological
studies have investigated the health impacts of environmental
stressors, in particular assessing the mortality risks associated with
exposure to air pollutants such as particulate matter [1]. The
evidence has been subsequently strengthened and extended to a
variety of other exposures and outcomes [2, 3]. Emergent research
also suggests health risks associated with other environmental
exposures, such as other pollutants such as nitrogen oxides,
temperature, pollen, and other chemicals [2, 4], as well as for a
variety of health outcomes, including communicable and non-
communicable disease [5].

A known problem in this research area is that most environmental
stressors, while affecting entire populations and generating

considerable health burdens, are usually associated with relatively
low health risks at the individual level. Estimating such associations
therefore requires large epidemiological studies. With few excep-
tions [6], early investigations relied on administrative databases with
limited individual information and were often based on ecological
designs [7]. Nowadays, new opportunities are offered by the
availability of large population-based cohorts that match the
recruitment of a high number of participants with the detailed
reconstruction of individual information through linkage across
multiple databases. Recent endeavours, such as the European EPIC
study, the UK Biobank [8], and the Japanese JECS include the
collection of detailed questionnaires and physical measurements,
through which it is possible to explore small variations in
susceptibility due to lifestyles, genetic traits, and other individual
and contextual characteristics.
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A related problem is represented by the exposure assessment.
Direct personal monitoring of environmental exposures is
unfeasible for large-scale studies across long periods of time,
and therefore outdoor levels at residential locations are typically
used as a proxy for personal exposure. Early cohort studies made
use of data from sparse monitoring stations, which can result in
misclassification and reduced exposure contrasts [1, 9], more so
for exposure that features high spatial and/or temporal variability
such as air pollution. Nowadays, exposure modelling techniques
offer valuable solutions with improved prediction accuracy and
coverage. For instance, modern methodologies can combine
multi-domain predictors in sophisticated analytical models to
derive high-resolution spatio-temporal maps over large regions
[10]. These methods have been previously used to harmonise the
exposure assignment to large population-based cohorts in North
America [11] and Europe [12].

Such models nonetheless do not always produce temporally
disaggregated measures [13], required for assessing short-term
risks. Other studies have assigned annual exposure averages, but
without accounting for residential changes and potential long-
lagged associations with past exposures [6]. More informative and
accurate exposure summaries can be defined by reconstructing the
complete exposure history for each cohort participant. This
extension offers the possibility to examine other aspects such as
multiple association timescales and windows of susceptibility.
However, this extension presents important methodological,
logistical, and practical issues.

In this contribution, we present a currently applied framework
for the linkage of highly resolved outdoor environmental
exposures to large cohorts using individual residential informa-
tion. The illustration provides the opportunity to discuss
methodological aspects and technical requirements, as well as
specific problems such as privacy constraints. We exemplify this
process by assigning exposures to air pollution to the UK Biobank
cohort, a large prospective study involving more than half a
million participants. The article outlines a number of steps needed
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to generate individual-level exposure profiles, and finally to derive
exposure summaries consistent with alternative study designs and
research questions.

MATERIALS AND METHODS

UK Biobank

The UK Biobank cohort is a longitudinal study that has involved
adults aged 40-69 at recruitment in the United Kingdom between
2006 and 2010 [8]. Overall, 503,325 participants were recruited
and each of them attended an assessment centre and completed
questionnaires on their socio-economic aspects, lifestyle factors,
and medical history, among other information. They also under-
went a wide range of physical measures, as well as the collection
of biological samples. The study is periodically enriched with
follow-up assessments, new sources of data originating from
research projects, and updates from external databases. These
comprise the linkage with electronic health records (EHR) and
national health system registers, including death and cancer
occurrences, hospitalisations and primary care visits. Information
on environmental exposures currently available in the UK Biobank
is represented by annual averages of air pollutants and noise for
single years between 2006 and 2010. Air pollution measures are
limited to a sub-group of participants and obtained from Europe-
wide land-use regression models [14].

The linkage of new environmental data to cohort participants
necessitates three sources of information, exemplified by the
pseudo-data illustrated in Table 1. These simulated data are used
in this and the next sections to describe the linkage process and
epidemiological analyses. The first piece of information is about
the baseline cohort information, illustrated in Table 1a. These data
are represented here by the enrolment and last follow-up dates
for each participant, identified by a pseudo-code. This usually
is linked to other information collected at the baseline or
during follow-up assessments, such as personal characteristics
and socio-economic factors, which are not shown here. The

Table 1.

(a) Cohort info

Example of pseudo cohort data, including a baseline cohort information, b health outcomes, and c residential histories.

Subject ID Enrolment date Last follow-up date
1 May 1, 2007 March 12, 2017

2 April, 14, 2009 September 25, 2019
3 November 23, 2006 Present

(b) Inpatient visit outcomes table by subject

Subject ID ICD Date

1 E11 April 23, 2012

1 120 July 4, 2013

1 121 September 30, 2016
2 C34 February 24, 2010

3 J4o March 14, 2007

3 Ja1 April 11, 2008

3 J43 May 22, 2009

(c) Residential histories

Subject ID Location ID Start date End date Easting Northing
1 Loc_12 April 1, 2005 May 22, 2012 515,200 184,800

1 Loc_43 May 23, 2012 March 12, 2017 384,800 394,100
2 Loc_92 December 18, 2007 September 3, 2009 342,700 387,100
2 Loc_6 September 4, 2009 April 3, 2017 528,100 105,600
2 Loc_24 April 4, 2017 September 25, 2019 459,900 450,700
3 Loc_87 November 20, 1994 Present 177,500 314,500
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second piece of information concerns the health data, some of
which is accessible to UK Biobank researchers through a standard
application. For instance, the main database includes inpatient
records of the first occurrences of a series of clinical adverse
events. An example with pseudo-data is provided in Table 1b,
including the same pseudo-IDs of the subject, as well as the ICD-
10 codes and dates of the events.

The final piece of information is the residential histories of the
subjects. In the UK Biobank, these are limited-access data,
represented by the dates and locations of the participants’
residential addresses, where the location represents the centroid
of a Tkm and 100 m buffer that contains the exact location.
These data were collected during the baseline interview and
are ongoingly updated via self-report or new registration to
general practices of the National Health Service (NHS). Residential
pseudo-data are shown in Table 1c, including pseudo-IDs for
subjects and locations, and start/end dates of the period the
subject stayed at each address, alongside the corresponding
geographical coordinates (in Northing-Eastings values of the
British National Grid).

Spatio-temporal exposure maps

Advances in exposure assessment have been achieved through
important developments in two areas. First, the increasing
availability of data resources with high spatial and temporal
resolution and extended coverage, in particular from remote
sensing sources. Second, the provision of innovative analytical
techniques, for instance, machine learning algorithms or atmo-
spheric and climate models with increasingly better performance
and reliability. These technological advancements make it possible
to produce fine-scale spatio-temporal maps of environmental
exposures applicable in population-based epidemiological studies
[15]. These state-of-the-art tools have rapidly substituted classical
exposure assessment methods, such as the assignment to the
closest monitoring station or traditional land-use regression
models, as the latter fail to provide accurate estimates for large
areas and over long periods of time [16].

In this contribution, we consider a dataset that is currently used
to assign daily exposures to fine particulate matter (PM,, in pg/
m°) to the participants locations of the UK Biobank. This product
was generated by a multi-stage machine learning model that was
applied to predict daily PM,5 concentrations in a 1x1km grid
across Great Britain during the period 2008-2018. The model was
trained using data from 581 monitoring stations, using a long list
of spatial and spatio-temporal predictors including remote
sensing satellite observations, traffic data, weather simulations,
road characteristics, and land-use information, among others. The
model had a good overall performance, with a cross-validated R?
of 0.767. Details are provided elsewhere [16].

This resource is used in the next sections to exemplify the
linkage process of PM,s measures to participants of the UK
Biobank.

Spatial linkage (Step 1)

Geographical information systems (GIS) have become a staple
technique for constructing environmental databases. In this
context, GIS provide a binding framework between environmental
measures and cohort data collected at the individual level,
combining different layers of information to a single point in
space [17]. These techniques are employed in epidemiological
analyses by overlying geographical reference grids over which the
investigators can jointly map exposure information with individual
or area-level variables. This allows maximising the available
information by downscaling or upscaling measurements across
levels of aggregation, as well as combining measurements across
space and time.

SPRINGER NATURE

We discuss the application of GIS techniques and related
problems by illustrating the linkage of environmental exposures to
the UK Biobank. The cohort database includes the locations of the
residential addresses of each participant. An example is provided
in Fig. 1, which shows the PM,s levels for one day from the
1% 1km gridded spatio-temporal map presented in the previous
section. The map also includes the three residential addresses for
Subject 1 listed in Table 1b, and for one address, it adds a
magnified detail of the 1x 1 km cells surrounding the location.

A simple linkage option is to assign the value of the grid cell
containing the location. However, this option has two main
drawbacks. First, it does not account for the information of the
neighbouring cells, which can complement the cell-level measure-
ment with details on the small-scale variability and improve the
exposure assignment. Second, and more importantly, the direct
linkage of cell-specific values can result in potential privacy
breaches described above by allowing back-tracing of the location
using geographic information from the original gridded environ-
mental data, if this is publicly available and at sufficiently high
resolution.

In lieu of the simple linkage approach described above, other
methods of varying complexity can be used and the choice
depends on the type of exposure data and the underlying

pg/m3

4 6 8 10 12 14 16 18 20

Fig. 1 The maps display PM, s levels on a specific day over Great
Britain, with three locations (large black dots) that represent the
residential addresses of a specific subject (ID 2 in Table 1). The
magnified area on top represents the exact location at higher
resolution, surrounded by the four nearest centroids (small indigo
dots) of the overlaid PM,s grid. Without interpolation, the
residential exposure value (small black dot) would be represented
by the value of the nearest centroid. The magnified area below
illustrates the process of reconstructing the residential value as a
bilinear interpolation of the four nearest centroids.
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objective of data linkage. For example, in the presence of ground
monitor data, a simple strategy would be to assign exposure as
the inverse-distance weighted average of the nearby monitors. For
gridded exposure data, established routines such as simple spatial
averaging, bilinear and kriging interpolation exist in the two-
dimensional case, while more specific methods have been
investigated more recently as a consequence of the raise of new
forms of spatial data [18]. Here, we propose the use of the bilinear
interpolation, which consists of a repeated linear interpolation
across the two geographical dimensions and it is graphically
represented in Fig. 1. We deem this method to be an effective but
simple option, among the others, for several reasons. The process
addresses the two drawbacks of the simpler linkage described
above: first, it preserves the exposure information by spatially
combining measurements across multiple grid cells. Second, and
more importantly, it generates a continuous exposure field with
values that cannot be linked back to the original sources,
preventing the identification of the residential locations even
when using highly resolved and public exposure databases.
Compared to other interpolation methods, bilinear interpolation
does not require a choice of the parameters (e.g., search radius or
number of neighbours) and it is more accurate than simple spatial
averaging as it accounts for the distances among the points in the
computation of the interpolated value [19]. Moreover, its
deterministic nature makes it computationally inexpensive even
for very large datasets, for instance in comparison to kriging [20].
Finally, bilinear interpolation is commonly implemented in data
analysis and geographical software and therefore easy to apply. It
must be highlighted that, regardless of the method, the accuracy
of this linkage would depend on the spatial resolution of the
original exposure data, and the precision of the coordinates for
the locations.

Reconstruction of individual-level exposure series (Step 2)
The linkage-interpolation operation in the previous section can be
performed for each residential location of each participant of the
cohort. The output data, combined with the residential histories,
allow reconstructing subject-specific series representing individual
exposure profiles.

This step is illustrated in Fig. 2 for Subject 2 in our case study.
Specifically, the residential histories of this subject reported in
Table 1¢, combined with the interpolated series for the three
residential locations obtained following the procedure in Fig. 1,
allow extracting blocks of exposure series corresponding to the
timeline of each subject’s residence at specific addresses. These
blocks are then merged into a single individual series that
represents a detailed residential exposure profile for an individual,
accounting for exposure levels experienced at different locations
during a defined time interval.

Timeline at each location for Subject 2

Address: L0c.92 1) 18/12/2007
- 08/09/2009

Loc.6 2), 04/09/2009
— 03/04/2017

Daily PM2.5 exposure series location

1 Y 2 o
ks il

Loc.92| 37 54 65 62
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Definition of individual summaries for epidemiological studies
(Step 3)

The reconstruction of exposure profiles in the previous section
offers detailed individual-level time series characterised by a fine
temporal disaggregation, allowing the definition of various
exposure summaries. In epidemiological analyses, this is of
particular relevance as such summaries can be flexibly tailored
to the specific research questions and study designs, resulting in
more informative inferential procedures and reducing exposure
misclassification.

The definition of the exposure summaries first requires
assumptions on the temporal dependency between exposure
and outcomes, determined by underlying biological mechanisms.
Two intertwined aspects are particularly relevant: the timescale of
the association and the related exposure window. The former
differentiates short-term risks associated with daily variation from
long-term effects due to chronic exposures experienced over
years or decades. The latter determines the maximal temporal
interval over which the exposure exerts its action, within a specific
timescale.

We use our case study to illustrate the definition of exposure
summaries for two different study designs for individual-level
data: a survival analysis based on Cox proportional hazard models
to assess long-term effects [21], and a case-crossover analysis to
investigate short-term associations [22]. The two examples are
represented in Fig. 3, using the pseudo-data related to specific
health events in Table 1b.

The Cox proportional hazard model is based on a between-
subject comparison, defining separate risk sets for each event.
Each risk set includes the case subject as well as a series of control
subjects who are at risk at the time of the event. An example of a
single risk set is shown at the top of Fig. 3. The composition of the
risk set depends on the time axis of interest, which in this case is
represented by the age of the subjects. The controls are therefore
sampled when they reach the same age that the case had when
experiencing the event. For each subject, we retrieve their
exposure history backwards with a lag period equal to the
exposure window, and therefore define the related exposure
summary.

A case-crossover design follows a similar extraction procedure.
However, in contrast to the survival model above, the latter is
based on a within-subject comparison, and the case and controls
are represented by different times within the follow-up period of
the same subject. Several control sampling schemes have been
proposed in the literature [23] with the most common being the
time-stratified scheme with controls sampled within pre-specified
strata. An example with three subjects representing three separate
risk sets with an exposure window of four days (lag 0-3) is
provided at the bottom of Fig. 3.

Loc.24 3), 04/04/2017

- 25/09/2019
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Y
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Fig.2 The top three series represent the sequences of daily exposures at the residential addresses of subject ID 2. At the bottom, the final
subject-specific exposure series is assembled by concatenating the three series above based on the respective residential periods.
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Extraction of exposure summaries for cohort designs

Cox PH model matched by age with lag 0-364 exposure window
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Fig. 3 The graph presents the use of the exposure data in two examples of study designs used in environmental epidemiology. The top
figure illustrates a risk set within a study on the incidence of lung cancer (ICD-10: C34) with a case (subject 2) and controls matched by age
used in a Cox proportional hazard model to estimate long-term risks. The event (aquamarine star) and control (blue star) times are used to
reconstruct backwards the exposure profiles in the three subjects, defined as 365-day (lag 0-364) averages of PM, 5 (light blue boxes). The
bottom figure displays the same process to define risk sets for a time-stratified case-crossover to estimate short-term risks. The graph shows
three separate subjects (unrelated to Table 1) with the event (aquamarine star) and controls (blue star) days matched on the day of the week
in the same month, with exposure profiles defined as averages of lag 0-3.

The availability of finely stratified temporal profiles allows
higher precision in the definition of the exposure windows, before
any potential aggregations are performed. For instance, multiple
lag terms can be defined using daily, monthly, or yearly strata,
thus allowing the application of distributed lag models over
different timescales [24].

DISCUSSION

This article describes a framework to process and link environ-
mental exposures to cohort studies. The methodology can be
applied to retrieve detailed individual-level exposure profiles,
hence allowing the application of flexible epidemiological study
designs to investigate health risks associated with environmental
stressors. The paper conceptualises several steps and methodo-
logical aspects, with illustration in a case study featuring the UK
Biobank cohort using simplified pseudo-datasets. The framework
has broad applications and can be used to complement cohort
databases with high-resolution spatio-temporal exposure mea-
surements, enabling to investigate complex aetiological questions
between environmental factors and health.

This work can contribute to clarify and improve on current
limitations in the research field. An example is offered by recent
cohort analyses of associations between low levels of air pollution
with mortality and morbidity conducted in the USA, Canada, and
Europe [6]. These investigations applied state-of-the-art meth-
odologies to large population-based cohort databases, represent-
ing milestones in air pollution epidemiology. Specifically, the
North American studies examined health risks associated with
several air pollutants by reconstructing exposures with resolved
spatial predictions and various temporal disaggregation [11].
However, these cohort analyses often relied on administratively
collected cohort data whereby, due to privacy constraints,
exposure information could only be matched to large adminis-
trative areas. In contrast, recent multi-cohort European studies [13]
took advantage of exposure models with high spatial resolution
and linkage at residential level. However, the exposure data was
not temporally disaggregated, and the analyses relied on simple

SPRINGER NATURE

exposure summaries based on averages for specific numbers of
years, preventing the investigation of complex temporal depen-
dencies. The framework presented here, given the availability of
the data, helps addressing these limitations, providing a privacy-
protecting approach to safely link resolved spatio-temporal
exposure maps to large databases with rich individual information,
thereby improving the design of cohort studies.

The example based on the UK Biobank cohort also highlights
some practical problems. First, our choice of the interpolating
method was based on practical criteria, but in general this
decision would benefit from rigorous comparisons, for instance
based on statistical goodness of fit measures [19]. Second, the
linkage procedure exemplified necessitates information on
residential mobility. Currently, in the UK Biobank such data is
only reconstructed from participants’ self-reports and NHS
contacts. This process is error-prone and can entail exposure
misclassification. Third, the accuracy of the exposure assessment
depends on the quality and resolution of the spatio-temporal
exposure models. In our example, we demonstrated a linkage with
gridded databases of pollution derived from moderate-to-high
predictive performance, which similarly provides an imperfect
characterisation of exposure levels. Finally, even when accurately
representing residential levels, outdoor estimates are only a proxy
of the actual personal exposures.

Nonetheless, the framework described here offers a template
for future developments to address current limitations and
overcome new challenges. Most importantly the approach can
be extended beyond the linkage of residential measurements, for
instance incorporating activity-based models or personal monitor-
ing campaigns to improve individual exposure assessment in
different environments [25]. This is relevant as hyperlocal
exposure models are increasingly deployed in urban settings with
the aim of addressing environmental disparities [26] and the
environmental datasets can be made publicly available to
researchers [27]. Finally, the assignment of individual-level
exposure profiles can be replicated for multiple stressors. This
will allow the investigation of health risks associated with the bulk
of environmental exposures, consistent with the notion and

Journal of Exposure Science & Environmental Epidemiology (2024) 34:1012-1017



research paradigm of the exposome [28]. In this context, the
linkage framework we illustrated can be applied and further
developed to finely reconstruct detailed exposure information
across large cohorts and long study periods, while at the same
time preventing confidentiality breaches by providing bespoke
exposure levels that cannot be traced back to the original data.

DATA AVAILABILITY

The code and synthetic data for reproducing a simpler version of the illustrative
example is made available by the authors in a GitHub repo (https://github.com/
gasparrini/EnvExpLink). The analysis was performed in the R software environment.
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