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Background. Network meta-analysis (NMA) synthesizes direct and indirect evidence on multiple treatments to esti-
mate their relative effectiveness. However, comparisons between disconnected treatments are not possible without
making strong assumptions. When studies including multiple doses of the same drug are available, model-based
NMA (MBNMA) presents a novel solution to this problem by modeling a parametric dose-response relationship
within an NMA framework. In this article, we illustrate several scenarios in which dose-response MBNMA can con-
nect and strengthen evidence networks. Methods. We created illustrative data sets by removing studies or treatments
from an NMA of triptans for migraine relief. We fitted MBNMA models with different dose-response relationships.
For connected networks, we compared MBNMA estimates with NMA estimates. For disconnected networks, we
compared MBNMA estimates with NMA estimates from an “augmented” network connected by adding studies or
treatments back into the data set. Results. In connected networks, relative effect estimates from MBNMA were more
precise than those from NMA models (ratio of posterior SDs NMA v. MBNMA: median = 1.13; range = 1.04—
1.68). In disconnected networks, MBNMA provided estimates for all treatments where NMA could not and were
consistent with NMA estimates from augmented networks for 15 of 18 data sets. In the remaining 3 of 18 data sets,
a more complex dose-response relationship was required than could be fitted with the available evidence.
Conclusions. Where information on multiple doses is available, MBNMA can connect disconnected networks and
increase precision while making less strong assumptions than alternative approaches. MBNMA relies on correct spe-
cification of the dose-response relationship, which requires sufficient data at different doses to allow reliable estima-
tion. We recommend that systematic reviews for NMA search for and include evidence (including phase II trials) on
multiple doses of agents where available.
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Health care policy decisions increasingly use cost-
effectiveness analysis to support decision making by
health care professionals, a key element of which involves
estimating the relative clinical effectiveness of multiple
treatment options. This is typically done using network
meta-analysis (NMA), which pools the results of rando-
mized controlled trials (RCTs), enabling a comparison of
multiple treatments simultaneously, provided they form
a connected network of treatment comparisons.'* A con-
nected network is one in which there is a path of RCT

comparisons that can be followed between any pair of
treatments in the network. For example, Figure la illus-
trates a connected network, whereas Figure 1b illustrates
a network where treatments A and X are not connected
to treatments B and Y. It is not possible to obtain a
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Figure 1 Network diagrams of potential network structures. Each node represents a different treatment, and each solid
connecting line represents a head-to-head comparison for which evidence is available in a data set. A and B represent agents,
whereas P represents placebo (equivalent to dose = 0 for any agent in the model-based network meta-analysis [MBNMA]
modeling framework). Subscript numbers represent hypothetical doses. X and Y represent clustered “subnetworks” of
treatments, which could be of any size but are only connected to other shown treatments via A and B, respectively. (a) All
treatments are connected, and NMA can be used to estimate relative effects between any treatments. (b) Placebo data connecting
treatments A and B are missing, meaning that they are disconnected and relative effects cannot be estimated for them or for any
treatments in X versus Y. (c, d) Relative effects between A and B at any doses (or subsequently between treatments in X v. Y)
cannot be estimated using NMA as they are not connected, but they can be estimated by using MBNMA to model the dose-

response relationship.

relative effect estimate for pairs of treatments that are
not connected, for example B versus A in the network in
Figure 1b, using standard NMA methods.

In health technology assessment (HTA) it is common
for networks of evidence to be disconnected or weakly
connected, so that relative effects are either not estimable
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or very imprecisely estimated. This is in part due to new
drugs obtaining marketing authorization before mature
phase III RCT evidence has become available, partly
because of the different comparator treatments being
needed for marketing approval than by reimbursement
agencies and also because of drugs being marketed in
precisely defined patient populations, limiting the avail-
able evidence on comparator treatments.>*

Various methods have been proposed to deal with dis-
connected networks in NMA.> These include using obser-
vational or registry data,® evidence in other populations,’
expert opinion,® '* population adjustment methods,'' "3
hierarchical models,'* and modeling intervention compo-
nents'>!® to connect networks. For example, in an HTA
comparing treatments for plaque psoriasis in children
and young people,” adalimumab was disconnected from
the network, and evidence from an adult trial was used to
enable an NMA comparing the treatments of interest. In
another HTA on follicular lymphoma, different therapies
with or without rituximab were compared, resulting in no
common comparators'’; however, by assuming the effects
of the components in the combination therapies to be
additive (with no interactions), the effects of the therapy
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given in both arms “cancels out,” so that each trial pro-
vides information on rituximab as an adjunct versus no
adjunct, and the network connects.

A third example is an HTA for relapsed and refrac-
tory multiple myeloma,'® where there was no RCT evi-
dence connecting pomalidomide with comparators
panobinostat or bendamustine. Analysis of individual
patient data from single arms and population adjustment
methods were used to connect the network. However, all
of these methods make strong and typically untestable
assumptions.

Model-based network meta-analysis (MBNMA) is a
new methodology that has the potential to connect net-
works of evidence in situations in which there is evidence
on multiple doses of 1 or more agents, or observations at
multiple follow-up times, by combining parametric mod-
els of dose response'” or time course® with NMA in a
statistically robust way that preserves randomization in
included RCTs. One advantage of this approach is that
it allows inclusion of trials from earlier phases of drug
development into the network so that evidence on agents
at unlicensed doses, or evidence at a variety of time
points can be used to strengthen the evidence on the
licensed treatments and time points that are of interest.
For example, in the plaque psoriasis example,” phase II
dose-response information may be available on children
for each treatment, which could connect the network
without needing to rely on evidence in a different popu-
lation (adults). Similarly, for the multiple myeloma
example,'® there was evidence on multiple doses of bend-
amustine, which could potentially connect the network.
Subsequent appraisals of newer drugs for multiple mye-
loma have compared multiple doses.>!

Figures 1c and 1d illustrate 2 scenarios in which there
are studies of A versus X and B, versus Y (where treat-
ments are defined by agent, A, B, X, Y, with subscript
indicating dose, where dose = 1 is the licensed dose). A
and B, are disconnected, but there is evidence for a range
of doses for at least 1 of the agents. In Figure lc, by
explicitly modeling the dose-response relationship using
MBNMA, a placebo response (i.e., at dose = 0, where
Ay = By) is estimated for both agents (even agent A, for
which a placebo has not been included in any trial). This
connects the network, and a relative effect estimate
between A; and B; can be obtained. In Figure 1d, A; is
connected only to B at a suboptimal dose and is not con-
nected to placebo. However, by using MBNMA to
model the dose-response relationship, By s can be con-
nected to other doses of B by interpolation, thus con-
necting the network and allowing for a comparison of
A versus B;.

In this article, we aim to illustrate the potential of
dose-response MBNMA to connect and strengthen evi-
dence networks in a range of different scenarios. We
begin by describing the MBNMA method.'® We then
introduce a network of triptans for migraine relief and
describe how we manipulate this data set to obtain a
set of scenario networks with different features with
which to illustrate the performance of the MBNMA
method. We then present and compare results from
MBNMA and NMA of the scenarios and end with a
discussion.

Methods

We first describe standard NMA, then the extension to
dose-response MBNMA, and then how we generated a
range of scenarios from the triptans data sets on which
the methods are illustrated.

Network Meta-Analysis

Following the methods of Lu and Ades,' we define
NMA as follows. For each study i, the aggregated data
for arm k provides information on some parameter 0; x
(e.g., probability, mean outcome), which is modeled
using a generalized linear model**:

L w; whenk =1
2(0;.1) {u,-+5i,k whenk > 2 )

where g is a link function that transforms the outcome
onto an appropriate scale (e.g., a logistic function for
binary outcomes or an identity function for continuous
outcomes), u; is the control arm (reference) treatment of
study i, which is modeled as a nuisance parameter and
given a vague prior, and §; 4 is the study-specific relative
treatment effect for the treatment used in arm k relative
to the reference treatment in arm 1 of study i. In a ran-
dom effects model, these are assumed to be normally dis-
tributed around a mean treatment effect that adheres to
consistency relationships, with between-study variance 72
that is common across treatment comparisons:

6i,k ~ N(dll;k - dl‘i.l > 72) (2)

where d,,, is the mean treatment effect of treatment # x
compared with the network reference treatment. The
consistency relationships reflect the comparison made
between the treatment 7 ; used on arm k and the treat-
ment ¢ ; used on arm 1 of each study. A common effects
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model that assumes no between-study heterogeneity can
be obtained by setting 7> =

Dose-Response MBNM A

The dose-response MBNMA model extends the standard
NMA model to incorporate a dose-response relationship. '’

We define a treatment in arm & of study i as a specific
dose, x; x, of a specific agent, a; . The model is exactly as
for the NMA equation (1) above, but equation (2) is
replaced with

8ik ~ N(f(xikrai k) — f(xi1,ai1), ™) (3)

where f(x; x, a; 1) 1S a dose-response function for dose x; .,
agent a; ;, and 72 is the between-study heterogeneity (set
to zero for a common effects model). Multi-arm trials are
dealt with in the same way as in standard NMA.>

Any dose-response function could be fitted, although
this will be limited by the number of doses of an agent
included in RCTs in the network. For example, for an
exponential model,

Sk aik) = Eoi + B, (1 — e

where Ej ; is the placebo response at x; ; = 0 in study i,
and B, , is the rate parameter for the agent in arm k of
study i. The consistency equation in equation (3) means
that the Ey ; terms cancel out when forming the relative
effects, so Ey,; is not explicitly estimated within the model.
In the exponential model, there is a single dose-response
parameter to be estimated for each agent, meaning that
studies with at least 2 doses (one of which could be pla-
cebo) of each agent are required to estimate 3,,.

Another commonly used dose-response model is the
Emax function,”® which estimates the maximum response
relative to placebo (Enax,») and the dose at which half the
maximum response can be achieved (EDs ,):

Emax, a; 1 Xi,k

Xiks@ip) = Eo; + —/—————
f( ik l.k) 0,1 EDSO,a,-_k +xi,k

4)

Again, we do not explicitly estimate Ey ;, as these terms
cancel out when equation (4) is inserted into equation
(3). The Emax.« and EDs , parameters may be correlated,
and this correlation can be estimated by specifying a
bivariate normal distribution with a Wishart prior on the
covariance matrix (see the Analyses and Implementation
section and equation [5]). This extends to models with
more than 2 parameters, in which a multivariate normal
distribution can be specified.

To estimate both parameters of the Emax function,
studies with at least 3 doses of a specific agent are
required.

Example Data Sets

A data set of published RCTs for the efficacy of triptans
in migraine relief** was used to illustrate the analyses.
The outcome measured was the proportion of patients
who were headache free at 2 h. This data set contains 22
treatments, 7 agents, and a placebo and was investigated
in 70 studies. Doses are standardized to multiples of each
agent’s “common” dose.**

From this complete data set, we generated manipu-
lated data sets by removing specific treatments and stud-
ies to represent several scenarios that might be found in
practice to compare the performance of NMA and
MBNMA methods. If only a single arm remained in a
study after excluding treatments, then that study was
excluded. Complete and manipulated data sets generated
for all scenarios can be found in the Supplementary
Materials.

Scenario 1: Connected network. In scenario 1, data sets
illustrate the use of MBNMA in connected networks
with different amounts of dose-response information. Com-
parisons of interest are at the common dose (dose = 1).

Scenario 1A. Scenario 1A is a manipulated data set
composed of only a single common dose of each agent
and placebo in the triptans data set (Figure 2A), which left
59 studies, 7 treatments (all common doses of different
agents), and a placebo. This scenario may be similar to
data sets found in HTAs or clinical guidelines, in which
only comparisons between licensed doses of each agent are
of interest and included in the evidence network.

Scenario 1B. Scenario 1B is the complete triptans
data set including all doses and agents. This includes 70
studies, investigating 22 treatments, 7 agents, and a pla-
cebo (Figure 2B).

Scenarios 2 and 3: Disconnected networks. For simpli-
city, we suppose the objective is to compare 2 treatments
of interest (agents of interest at the common dose). We
take each pair of agents in turn and remove evidence on
all other agents from the network, leaving only different
doses of each agent of interest. These data sets are then
manipulated further to obtain disconnected networks for
scenarios 2 and 3 (see below). Manipulating the original
data set in this way provides us with a number of differ-
ent, simpler data sets that can be used to examine how
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Figure 2

Network plots at the treatment level illustrating data sets in scenario 1A (A) and 1B (B). Each node represents a

different treatment, and each solid connecting line represents a comparison for which evidence is available in the data set. The
thickness of the connecting lines is proportional to the number of studies that compare the connected treatments. A treatment is
defined as a specific dose of a specific agent. Treatments are named by the first letter of their agent and their dose, standardized

to the common dose for each agent.

the reliability of MBNMA changes depending on the
agents and doses included.

We follow the approach taken by Beliveau et al.>> to
compare MBNMA models fitted to disconnected net-
works with NMA models fitted to connected networks.
We first fit MBNMA models to disconnected networks
and calculated relative effects for the treatment compari-
son of interest in the network. Then we added in data to
connect the networks, generating “augmented” data sets
on which it was possible to fit NMA models. The relative
effects calculated between the 2 sets of data were com-
pared to assess the level of agreement.

Scenario 2: Disconnected due to absence of common
comparator (e.g., placebo). This illustrates a situation in
which there is evidence on different doses for an agent of
interest (e.g., from early-phase drug development trials)
but there is no common comparator (Figure 1c¢).

To explore this, we generated a disconnected data set
by removing all placebo arms from the data sets for each
pair of agents (having already removed agents not of
interest). For each of these networks, we also constructed
an “augmented” data set by including comparisons
between any doses of the included agents versus placebo
so that the networks were fully connected and both
MBNMA and NMA models could be fitted.

Scenario 3: Disconnected due to comparison with a dose
that has not been evaluated in other trials. This illustrates a
scenario shown in Figure 1d in which the treatment of inter-
est (A;) has been investigated only in a study comparing a
nonlicensed or nonoptimal dose of a comparator (B, s) that
is not connected to the dose of interest (B;) via any pathway
of head-to-head evidence. In practice, this nonlicensed
comparison might occur with a suboptimal dose of a com-
parator, such as in the GALLIUM trial comparing obinu-
tuzumab for untreated advanced follicular lymphoma to
rituximab administered for a shorter series of doses.*®

Disconnected data sets were therefore generated such
that studies comparing a common dose of one agent ver-
sus a nonoptimal dose of another were not connected to
studies comparing other doses. Augmented data sets were
then generated, which included comparisons between all
doses of both agents, including the common dose, so that
the networks were fully connected.

Analyses and Implementation

All models were implemented using the package
MBNMAdose version 0.2.7*" in R version 3.6.1 with a seed
of 210489. Models were run until convergence was reached
for all monitored parameters, as assessed by the Gelman-
Rubin statistic®® and visual inspection of the chains.



Pedder et al.

199

Table 1 Model Fit Statistics for All Models Investigated in Scenario 1A and 1B Data Sets

No. of Residual Dose-Response Treatment Between-Study
Data Set Data Points Deviance DIC? pDP Model Function Effects SD (95% Crl)
Scenario 1A 122 202.3 66.6 268.9 NMA NA Common NA
Scenario 1A 122 124.0 96.3 220.3 NMA NA Random 0.36 (0.25, 0.50)
Scenario 1A 122 201.7 66.1 267.8 MBNMA Exponential Common NA
Scenario 1A 122 124.0 96.2 220.2 MBNMA Exponential Random 0.36 (0.25, 0.50)
Scenario 1A 122 NC NC NC MBNMA Emax Common NA
Scenario 1A 122 NC NC NC MBNMA Emax Random NC
Scenario 1B 182 269.0 93.3 362.3 NMA NA Common NA
Scenario 1B 182 190.6 131.6 322.2 NMA NA Random 0.27 (0.18, 0.37)
Scenario 1B 182 296.5 77.1 373.6 MBNMA Exponential Common NA
Scenario 1B 182 189.4 125.1 314.5 MBNMA Exponential Random 0.28 (0.20, 0.37)
Scenario 1B 182 266.8 80.9 347.7 MBNMA Emax Common NA
Scenario 1B 182 191.7 121.6 121.6 MBNMA Emax Random 0.24 (0.16, 0.34)

4DIC: deviance information criterion = pD + residual deviance.

®oD: The effective number of parameters calculated using the Kullback-Leibler divergence®® for model-based network meta-analysis (MBNMA)

and the plugin method® for NMA.

NC, Markov chain Monte Carlo chains did not converge; model was not identifiable.

The effective number of parameters were estimated
using the plug-in method®* for NMAs and using the
Kullback-Leibler divergence®® for MBNMAs. Deviance
information criterion (DIC) was used to compare mod-
els, defined as the sum of the effective number of para-
meters added to the residual deviance.

Each data set was analyzed where possible using stan-
dard NMA and dose-response MBNMA. For both
NMA and MBNMA, common and random effects mod-
els were compared. For MBNMA, a model selection
strategy was used to determine a suitable model, in which
first all models that were within 3 DIC points of the
model with the lowest DIC were identified.’' Of these
models, the simplest was preferred: models with common
treatment effects were selected in preference to those with
random treatment effects, and models with an exponen-
tial dose-response function were selected in preference to
those with an Emax dose-response function.

This approach was used to allow selection of a dose-
response function that could potentially explain as much
heterogeneity as possible. Exponential and Emax were
the only dose-response functions examined as there was
a biological justification for their use over other possible
functions (e.g., linear, quadratic).”*

Vague normal prior distributions (N (0, 1000)) were given
to di ks My» B, - For MBNMA:S using the Emax function, a
correlation was modeled between dose-response parameters
by assigning them a multivariate normal prior:

Emax,a,»,k .
(log(EDso,a,.,k)) MVN(0,2) (5)

EDs 4, was modeled on the log scale to ensure positive
values. A minimally informative Wishart prior was used
for 37! ~ Wishart(( (1) ?),2). The between-study SD, T,
was given a half-normal prior distribution (N(0,400)).
Unless otherwise stated, results are presented as posterior
medians and 95% credible intervals (95% Crls).

Results

Scenario 14

In the network involving only licensed doses of each
agent and placebo, it was only possible to fit an
MBNMA model with a single parameter (i.e., linear or
exponential models). Based on the exponential MBNMA
model, relative effects estimated from selected NMA and
MBNMA models were very similar (Figure 3). Between-
study SD was reasonably high in both NMA (0.36; 95%
Crl: 0.25, 0.50) and MBNMA (0.36; 95% Crl: 0.25,
0.50) models, and random effects models were selected in
both instances. Model fit was similar for MBNMA and
NMA models (Table 1). Because of the lack of dose-
response information, there was no gain in precision of
the estimates in the MBNMA model as compared with
the NMA model.

Scenario 1B

In Scenario 1B, all available doses of each agent and pla-
cebo were included. Random effects models were selected
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Figure 3 Forest plot showing the relative efficacy for each agent in scenario 1A at the common dose versus placebo, estimated
from a common effects network meta-analysis (NMA) model and the selected common effects exponential model-based model.
For each estimate, central points represent posterior medians and error bars represent 95% credible intervals.

for the NMA and MBNMA models. An Emax dose-
response function was selected for the MBNMA model,
with an estimated correlation between Emax and ED50
dose-response parameters of 0.57 (95% Crl —0.53, 0.93;
Table 1).

The relative effects from both NMA and MBNMA
were more precise for all agents at the common dose
than in scenario 1A because of the inclusion of trials
comparing nonlicensed doses (Figure 4). Furthermore,
MBNMA estimates were more precise than NMA esti-
mates because of the additional information gained from
modeling the dose-response relationship (Figure 4). The
between-study SD was also slightly reduced for the
MBNMA model (0.24; 95% CrI: 0.16, 0.34) as compared
with the NMA model (0.27; 95% Crl: 0.18, 0.38).

Scenario 2

It was possible to fit MBNMA models for 15 different
agent versus agent comparisons generated in scenario 2
(Supplementary Figure S1), but this was not possible for
agent pairs that included naratriptan because removing
the placebo arms left only single arms of studies includ-
ing naratriptan.

In all disconnected data sets, an exponential dose-
response MBNMA was selected with common treatment
effects (Table 2). NMA models could not be estimated
because of the networks being disconnected.

Relative effects estimated using MBNMA had high
uncertainty (Figure 5), reflecting both the sparsity of data
in the networks (number of data points per data set:

median = 22; range = 8 to 36) and the fact that no pla-
cebo evidence was available with which to inform the
dose-response relationship at lower doses.

Augmenting the data sets by adding in placebo arms
to connect the network enabled NMA models to be esti-
mated. For MBNMA models, an Emax dose-response
function was selected for 12 of 15 data sets. Random
treatment effects were selected over common effects in
12 of 15 data sets for both NMA and MBNMA models.

For most comparisons, results in the disconnected
data sets were consistent with those in augmented data
sets (Figure 5). However, for comparisons of almotrip-
tan, rizatriptan, and sumatriptan with eletriptan, esti-
mates from the disconnected data sets were further away
from the posterior medians of augmented data set esti-
mates, and results were less consistent.

Within augmented data sets, MBNMA estimates were
very similar to corresponding NMA estimates but with
slightly increased precision leading to narrower 95%
Crls, which were typically within those of the NMA esti-
mates. The ratio of posterior SDs for the NMA estimates
compared with the MBNMA estimates for each compar-
ison had a median of 1.13 (range, 1.04 to 1.68).

Scenario 3

Given the constraints of the original triptans data set, we
were only able to generate suitable manipulated data sets
for this scenario using higher doses of sumatriptan than
the common dose. We were able to construct 3 networks
to illustrate this scenario. Disconnected data sets
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Figure 4 Forest plot showing the relative efficacy for each agent in scenario 1B at the common dose versus placebo, estimated
from a random effects network meta-analysis (NMA) model and random effects exponential and Emax model-based NMA
models. For each estimate, central points represent posterior medians and error bars represent 95% Crls.

therefore included a study comparing a common dose
of one agent (either almotriptan/eletriptan/rizatriptan) ver-
sus twice the common dose of sumatriptan that was discon-
nected from studies comparing other doses of sumatriptan
(including placebo; Supplementary Figure S3). Augmented
data sets were similar but included comparisons between
the common dose of almotriptan/eletriptan/rizatriptan and
all doses of sumatriptan so that the network was fully con-
nected (Supplementary Figure S4).

For all data sets generated in scenario 3, exponential
MBNMA models with random treatment effects were
selected (Table 3). NMA models could not be estimated
because the networks were disconnected. Precision was
typically higher in relative effects for data sets generated
in scenario 3 than in scenario 2, although it is unclear
whether this was due to the specific inclusion of placebo
within the data set or due to the increased evidence avail-
able in scenario 3 (Tables 2 and 3). When augmenting
the data sets to enable estimation of NMA models, ran-
dom effects models were selected in all data sets for both
NMA and MBNMA models.

For all three comparisons, relative effects (either from
MBNMA or NMA) in augmented data sets were entirely
within the 95% Crls of those estimated from MBNMAs
in the disconnected data sets (Figure 6), suggesting that
results were in agreement.

For augmented data sets, MBNMA estimates were
very similar to NMA estimates. There was slightly
increased precision in MBNMA estimates, leading to
narrower 95% Crls. The ratios of the posterior SDs for
the NMA estimates compared with the corresponding

MBNMA estimates for each comparison at the common
dose were 1.03, 1.16, and 1.13 for almotriptan, eletrip-
tan, and rizatriptan, respectively, versus sumatriptan.

Discussion

This study illustrates several scenarios in which dose-
response MBNMA can add value as compared with stan-
dard NMA methods, either by improving precision or by
connecting networks to enable comparisons between
treatments of interest to be made. Connecting and
strengthening networks is enabled by including addi-
tional evidence on nonoptimal doses and via the model-
ing of a functional dose-response relationship, which can
act as a link between disconnected treatments, either
between different doses of the same agent along the dose-
response curve or between different agents via extrapola-
tion of the placebo response.

Evidence on nonlicensed doses is not typically
included in HTA submissions; however, such evidence
will often exist and, if included using MBNMA, could
add value by increasing precision even in connected net-
works. HTAs where multiple doses are of interest could
also benefit from modeling using MBNMA. Examples
include treatments for moderate-to-severe plaque psoria-
sis’*>* and retigabine for the adjunctive treatment of
partial-onset seizures in epilepsy.*”

In scenarios in which the networks were disconnected
(scenarios 2 and 3), we found that MBNMA allowed
estimation of relative effects, which were consistent with


https://journals.sagepub.com/doi/suppl/10.1177/0272989X20983315
https://journals.sagepub.com/doi/suppl/10.1177/0272989X20983315

202

Medical Decision Making 41(2)

Table 2 Model Fit Statistics for Selected Models in Each Data Set Analyzed in Scenario 2

No. of

Data Set Data  Residual Dose-Response Treatment Between-Study
Number Data Set Agent 1 Agent 2 Points Deviance DIC* pD®  Model Function Effects SD

1 Initial Almotriptan  Rizatriptan 13 12.0 20.0 8.0 MBNMA Exponential Common NA

1 Augmented Almotriptan Rizatriptan 45 48.9 81.5 32.6 MBNMA  Exponential Random 0.27 (0.09-0.5)
1 Augmented Almotriptan Rizatriptan 45 48.1 83.3 353 NMA NA Random  0.32(0.12—0.59)
2 Initial Almotriptan  Zolmitriptan 14 11.0 19.2 82 MBNMA Exponential Common NA

2 Augmented Almotriptan Zolmitriptan 44 42.1 63.0 21.0 MBNMA Emax Common NA

2 Augmented Almotriptan Zolmitriptan 44 45.3 71.6 263 NMA NA Common NA

3 Initial Eletriptan Almotriptan 22 24.0 36.3 123 MBNMA  Exponential Common NA

3 Augmented Eletriptan Almotriptan 46 48.1 81.7 33.6 MBNMA Emax Random 0.3 (0.14-0.5)

3 Augmented Eletriptan Almotriptan 46 48.3 84.5 36.3 NMA NA Random  0.34 (0.16—0.58)
4 Initial Eletriptan Frovatriptan 18 21.6 319 10.2 MBNMA  Exponential Common NA

4 Augmented Eletriptan Frovatriptan =~ 42 42.1 76.0 34.0 MBNMA Emax Random 0.4 (0.23-0.67)
4 Augmented Eletriptan Frovatriptan 42 42.8 77.0 342 NMA NA Random  0.43 (0.23-0.71)
5 Initial Eletriptan Rizatriptan 23 27.9 399 12.1 MBNMA  Exponential Common NA

5 Augmented Eletriptan Rizatriptan 61 63.1 110.2 472 MBNMA Emax Random  0.38 (0.23—-0.57)
5 Augmented Eletriptan Rizatriptan 61 63.9 112.0 48.1 NMA NA Random 0.4 (0.24—0.63)
6 Initial Eletriptan Sumatriptan 36 42.7 60.8 18.1 MBNMA  Exponential Common NA

6 Augmented Eletriptan Sumatriptan 90 92.3 157.0 64.7 MBNMA Emax Random  0.31(0.19-0.44)
6 Augmented Eletriptan Sumatriptan 90 92.4 158.3 659 NMA NA Random  0.31(0.19-0.45)
7 Initial Eletriptan Zolmitriptan 22 24.4 353 109 MBNMA  Exponential Common NA

7 Augmented Eletriptan Zolmitriptan 57 57.6 98.9 41.3 MBNMA Emax Random  0.29 (0.13—-0.48)
7 Augmented Eletriptan Zolmitriptan 57 59.1 102.1 43.0 NMA NA Random  0.32 (0.15—0.53)
8 Initial Frovatriptan Almotriptan 8 5.8 12.1. 6.3 MBNMA Exponential Common NA

8 Augmented Frovatriptan Almotriptan 26 31.6 44.7 13.1 MBNMA Exponential Common NA

8 Augmented Frovatriptan Almotriptan 26 34.7 50.8 16.2 NMA NA Common NA

9 Initial Frovatriptan Rizatriptan 9 9.7 16.1 6.5 MBNMA Exponential Common NA

9 Augmented Frovatriptan Rizatriptan 41 423 74.8 32.5 MBNMA Emax Random  0.41 (0.21-0.71)
9 Augmented Frovatriptan Rizatriptan 41 42.4 76.0 33.5 NMA NA Random  0.45(0.22—-0.8)

10 Initial Frovatriptan Zolmitriptan 10 8.6 143 57 MBNMA Exponential Common NA

10 Augmented Frovatriptan Zolmitriptan 38 44.4 62.9 18.5 MBNMA Emax Common NA

10 Augmented Frovatriptan Zolmitriptan 38 47.2 70.5 23.3 NMA NA Common NA

11 Initial Sumatriptan  Almotriptan 24 25.8 39.0 13.2 MBNMA  Exponential Common NA

11 Augmented Sumatriptan Almotriptan 77 78.4 130.3 51.9 MBNMA Emax Random  0.25(0.13-0.39)
11 Augmented Sumatriptan Almotriptan 77 79.2 1342 551 NMA NA Random  0.25(0.1—-0.41)

12 Initial Sumatriptan Frovatriptan 22 24.6 36.3 11.7 MBNMA  Exponential Common NA

12 Augmented Sumatriptan Frovatriptan 72 71.9 123.2 51.4 MBNMA  Exponential Random 0.32 (0.18—0.48)
12 Augmented Sumatriptan Frovatriptan 72 72.2 126.2 54.0 NMA NA Random  0.32(0.17—0.49)
13 Initial Sumatriptan Rizatriptan 25 28.7 414 127 MBNMA  Exponential Common NA

13 Augmented Sumatriptan Rizatriptan 93 96.7 163.5 66.8 MBNMA Emax Random 0.3 (0.18—0.43)

13 Augmented Sumatriptan Rizatriptan 93 96.6 165.0 68.4 NMA NA Random 0.3 (0.18—0.44)

14 Initial Sumatriptan  Zolmitriptan 28 29.9 437 139 MBNMA  Exponential Common NA

14 Augmented Sumatriptan Zolmitriptan 88 88.0 150.0 61.9 MBNMA Emax Random  0.26 (0.12—0.4)

14 Augmented Sumatriptan Zolmitriptan 88 89.1 151.6 62.5 NMA NA Random  0.26 (0.09—-0.41)
15 Initial Zolmitriptan Rizatriptan 15 14.9 229 8.0 MBNMA Exponential Common NA

15 Augmented Zolmitriptan Rizatriptan 56 58.9 95.0 36.1 MBNMA Emax Random  0.26 (0.07—0.47)
15 Augmented Zolmitriptan Rizatriptan 56 58.8 100.7 41.9 NMA NA Random 0.3 (0.11-0.55)

“DIC: deviance information criterion = pD + residual deviance.

°pD: The effective number of parameters calculated using the Kullback-Leibler divergence® for model-based network analysis (MBNMA) and

the plugin method® for NMA.

NMA estimates obtained in augmented data sets where
connections were added back into the network.

In the situation in which dose-response information is
available on 2 agents but there is no direct comparison

connecting the agents (scenario 2), we found that,
although MBNMA models could be estimated, there was
limited information with which to estimate a complex
dose-response function because of the comparatively few
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Figure 5 Forest plot showing the relative efficacies between focal treatments (two agents at their common dose) in each distinct
data set generated for scenario 2 (see Supplementary Figures S1 and S2), estimated from selected NMA and MBNMA models in
disconnected and augmented data sets. Relative effects cannot be estimated in NMA models for the disconnected data sets
because treatments are not connected via pathways of head-to-head evidence. For each estimate, the central points represent

posterior medians, and error bars represent 95% Crls.

Table 3 Model Fit Statistics for Selected MBNMA and NMA Models in Each Data Set Analyzed in Scenario 3

Dataset No. of Data Residual Dose-Response Treatment Between-Study
Number Data Set Agent 1 Agent 2 Points Deviance DIC* pD”  Model Function Effects SD

1 Initial Almotriptan Sumatriptan 38 37.5 66.6 29.1 MBNMA Exponential Random  0.30 (0.10—0.54)
1 Augmented Almotriptan Sumatriptan 74 74.3 127.5 53.3 MBNMA Exponential Random 0.28 (0.16—0.44)
1 Augmented Almotriptan Sumatriptan 74 75.3 128.6 53.3 NMA NA Random 0.27 (0.12—-0.42)
2 Initial Eletriptan Sumatriptan 38 37.2 66.8 29.6 MBNMA Exponential Random  0.29 (0.11-0.54)
2 Augmented Eletriptan Sumatriptan 80 81.1 141.0 59.8 MBNMA Exponential Random  0.35(0.22—0.52)
2 Augmented Eletriptan Sumatriptan 80 81.0 142.5 61.6 NMA NA Random  0.36 (0.22—0.53)
3 Initial Rizatriptan  Sumatriptan 40 38.6 69.2 30.6 MBNMA Exponential Random  0.28 (0.11-0.53)
3 Augmented Rizatriptan Sumatriptan 87 89.0 152.9 63.9 MBNMA Exponential Random  0.32 (0.21-0.48)
3 Augmented Rizatriptan Sumatriptan 87 89.5 154.1 64.6 NMA NA Random  0.32(0.20—0.47)

DIC: deviance information criterion = pD + residual deviance.

°pD: The effective number of parameters calculated using the Kullback-Leibler divergence® for model-based network meta-analysis (MBNMA)

and the plugin method® for NMA.

different doses of each agent in the triptans data set, par-
ticularly at lower doses, when there is no placebo infor-
mation. This was more problematic for eletriptan, as the
dose-response relationship was better described by an
Emax than an exponential function, which resulted in
relative effects that were typically lower as compared
with those estimated from augmented data sets for ele-
triptan versus several other agents. Although phase II

studies would typically include a placebo arm, these stud-
ies may remain unpublished, so a manufacturer may
have placebo evidence for their own agent but not neces-
sarily for that of their competitors.

In the situation in which there was a direct compari-
son of the agents of interest but the network was discon-
nected because one of the agents was trialed at a
nonoptimal dose (scenario 3), MBNMA was able to link
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Figure 6 Forest plot showing the relative efficacies between
focal treatments (2 agents at their common dose) in each
distinct data set generated for scenario 3 (see Supplementary
Figure S3 and S4), estimated from selected network meta-
analysis (NMA) and model-based NMA (MBNMA) models in
disconnected and augmented data sets. Relative effects cannot
be estimated in NMA models for the disconnected data sets
because treatments are not connected via pathways of head-to-
head evidence. For each estimate, the central points represent
posterior medians and error bars represent 95% credible
intervals.

agents at the optimal dose. Although there were only 3
possible combinations of agents in the triptans data set
for which it was possible to examine this scenario, esti-
mates from augmented and disconnected data sets were
in agreement. The reliability of the results from this sce-
nario were due to considerable information at different
doses for the agent connected via the dose-response rela-
tionship (sumatriptan in all 3 data sets). It is unclear how
frequently these evidence structures might arise in HTAs,
as submissions typically compare only licensed doses.

Comparison with Other Methods for
Disconnected Networks
Dose-response MBNMA has several advantages as

compared with other methods for linking disconnected
networks provided sufficient data are available for

estimation. In particular, the method uses only rando-
mized evidence, and the statistical approach respects the
randomization in RCTs. This means that the estimates
are unbiased provided there are no differences in treat-
ment effect modifiers between studies (the standard
assumption made in NMA) and the dose-response func-
tion is not misspecified. The assumptions made regard-
ing the dose-response relationship are also testable by
evaluating the model’s fit. Furthermore, MBNMA can
be fitted using aggregate data only, without the need for
individual patient data.

MBNMA is distinct from model-based meta-analysis
(MBMA), which models dose response but typically
pools absolute rather than relative effects.’*>* MBMA
can be used with disconnected networks and allows
inclusion of single-arm studies. However, it can produce
biased estimates because of differences between studies
in prognostic factors, as it violates randomization by
ignoring within-study comparisons.*

Another approach for dealing with disconnected net-
works is to fit a random effects model for the absolute
effects on a specific reference treatment A. This random
effects model is used to predict a treatment A effect in
any study that is disconnected from the network, thus
enabling that study to connect via treatment A.'* This
method does not require individual patient data and can
incorporate single-arm studies. However, it can introduce
important bias because it breaks randomization by allow-
ing within-study information to be influenced by infor-
mation outside the study.* It also relies on there being
sufficient studies that include treatment A to enable esti-
mation of the random effects model. If there is substan-
tial heterogeneity between studies, then the predicted A
effect in disconnected studies will be imprecisely esti-
mated, and network connections will be tenuous. The
model also assumes that the baseline model has been cor-
rectly specified, which may require adjusting for study-
level factors that affect the baseline response.® Beliveau
et al.>> applied random baseline effect NMA models to dis-
connected networks, finding that there was generally good
overlap between random baseline models and standard
NMA models in subsets of 2 different data sets. However,
White et al.** showed that bias would occur if underlying
studies had different baseline predictors,*’ and it is not clear
how frequently this might be the case in practice. There is
also no way of testing the assumption that the baseline
effect has been correctly specified, and important predictors
may not be reported in included studies.

Population adjustment methods such as matched
adjusted indirect comparisons'"'?> or simulated treat-
ment comparisons'> have also been used to link
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disconnected treatments. These methods predict an abso-
lute effect of a disconnected treatment Y in the popula-
tion of a trial including treatment X, and the prediction
is analyzed as if it were an additional arm in the trial
including X. However, the validity of comparisons relies
on the assumption that the differences in absolute effects
between studies can be fully explained by adjustment of
prognostic variables (those that affect the outcome) as
well as effect modifiers (those that alter the treatment
effect).*! This is a very strong assumption that is impos-
sible to test within the analysis, and it is unlikely that
each trial has collected information on the same set of
potential effect modifiers and prognostic factors. If this
assumption does not hold, then the resulting relative
effects between disconnected treatments will be biased.*'
These methods also require individual patient data to be
available for at least 1 RCT, although in HTA, this is
typically available for the manufacturer’s trial.

An alternative method that makes use of functional
assumptions regarding treatment definitions and can be
performed using aggregate data is component network
meta-analysis.'>!® This splits combinations of treatments
into different components, allowing for networks to be
connected if treatments in separate subnetworks share at
least 1 common component,** and it has been used for
this purpose in an analysis of cognitive behavioral thera-
pies for panic disorder.*?

Although a network may be disconnected for a partic-
ular outcome, other correlated outcomes may be avail-
able, and a joint analysis using multivariate NMA may
provide relative effect estimates between treatments that
are disconnected for a given outcome, although correla-
tions must be high to enable this.** This approach was
used to model the effects of first- and second-line thera-
pies for rheumatoid arthritis.*’

A more powerful approach is to model a structural
relationship between multiple outcomes. Lu et al.*® used
piecewise constant models to synthesize different net-
works (some of which were disconnected) at multiple
follow-up times, and fractional polynomial models have
also been used.*’ Time-course MBNMA?® provides a
general framework to fit a functional time-course rela-
tionship, which can connect networks and provide con-
siderably more precision than modeling the correlation
alone.? Time-course MBNMA could have potential ben-
efit in HT As; for example, treatments for relapsing multi-
ple sclerosis typically report at multiple time points, but
economic models are based on 6-mo follow-up, which is
not reported for all treatments.*®

Assuming a common or exchangeable effect among
similar treatments can be used as a way of connecting

networks or dealing with sparse evidence structures,*->°

for example, drugs in the same class with a similar
mechanism of action or biosimilar products. However,
assuming a common effect is a very strong assumption
that can be difficult to justify, and assuming exchange-
able effects will shrink treatment effects toward a class
mean effect, which may not be realistic.

Other approaches that have been proposed to connect
networks include incorporating nonrandomized evi-
dence® or expert opinion® '° to inform a prior distribu-
tion for the relative effect between the disconnected
treatments. However, observational evidence is vulnera-
ble to a range of biases, which may invalidate relative
effect estimates, and although expert opinion may be
useful to put some bounds on plausible effect sizes, it is
subjective and prone to bias.

Limitations

Although there are advantages of using dose-response
MBNMA, there are also some clear limitations. The
method is sensitive to misspecification of the dose-
response function, and more complex dose-response
models such as the Emax model require data on multiple
doses of different agents to be able to estimate them.
Doses that are more widely distributed will be more
informative in identifying points of curvature in the
dose-response function and are therefore likely to be
important for mitigating bias.”' This is highlighted by
the lack of placebo data in scenario 2, which generally
resulted in underestimated relative effects for eletriptan
versus other agents in disconnected data sets.

With only a single dose and placebo (or 2 doses with-
out placebo) for each agent, only simple MBNMA mod-
els can be fitted, such as linear or exponential functions.
Model fit statistics cannot help distinguish between mod-
els in this situation, although there may be some biologi-
cal justification for an exponential function.”® External
evidence may be helpful to support the choice of dose-
response function, perhaps from data on related agents,
or the same agents in different populations. Sharing
either EDsy or E,,. across agents within a class may
make the Emax model easier to fit when data are limited,
although this should be done only if there is clinical justi-
fication. Simulation studies to explore the performance
of MBNMA models for different evidence structures
would be a useful area for further work.

Conclusions

NMA relies on networks of treatments being connected.
MBNMA allows reconnecting of networks via the
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dose-response relationship when evidence on multiple
doses of agents is available. In our manipulated data
sets, MBNMA estimates were in agreement with those
from NMA, had connecting studies been available.
MBNMA makes fewer assumptions than other methods
for linking disconnected networks, with the only addi-
tional assumption over NMA being that the dose-
response relationship is correctly specified. This assump-
tion can be tested by examining the fit of the model to
the data and/or based on the agent pharmacology.
MBNMA can be performed using aggregate data and
can add precision over NMA even in connected net-
works, when multiple doses are available.

MBNMA does, however, require information on mul-
tiple doses for each agent, particularly to estimate more
complex dose-response functions. We therefore recom-
mend that systematic reviews supporting HTA should
broaden their scope to include all doses in instances in
which the use of dose-response MBNMA is expected to
be of value. We also urge manufacturers to publish their
phase II study results, so that reimbursement decisions
can make full use of the evidence available. Early-phase
evidence is taken into consideration when gaining regula-
tory approval, and incorporating this information into
HTA may help bridge the evidence gap between regula-
tors and reimbursement bodies.>*
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