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Quick Overview

« Properly coded medical information is vital for Clinical Note N Diagnosis Code
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* Current Procedural Terminology (CPT) \ , endotracheal tube

» Automated medical code assignment uses rule-based, machine learning (ML), or deep learning (DL)
« See Shaoxiong et al (2024) for a unified review?

» Large language models (LLMs) have shown remarkable text processing and reasoning capabilities
« Recent studies show that LLMs extract fewer correct medical codess.
« LLMs are highly error-prone when mapping clinical codes3*.

[1] Park, J. K., Kim, K. S., Lee, T. Y... & Kim, C. B. (2000). The accuracy of ICD codes for cerebrovascular diseases in medical insurance claims. Journal of Preventive Medicine and Public Health, 33(1), 76-82.

[2] Burks, K., Shields, J., Evans, J., Plumley, J., Gerlach, J., & Flesher, S. (2022). A systematic review of outpatient billing practices. SAGE Open Medicine, 10, 20503121221099021.

[3]3i, S., Li, X, Sun, W., Dong, H., Taalas, A., Zhang, Y., ... & Marttinen, P. (2024). A unified review of deep learning for automated medical coding. ACM Computing Surveys, 56(12), 1-41.

[4] Simmons, A., Takkavatakarn, K., McDougal, M., Dilcher, B., Pincavitch, J., Meadows, L., ... & Sakhuja, A. (2024). Benchmarking Large Language Models for Extraction of International Classification of Diseases Codes from Clinical
Documentation. medRxiv, 2024-04.
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Objectives

 Can popular LLMs (GPT-3.5, GPT-4, Gemini Pro, Llama2-70b Chat) reliably query medical
billing codes from clinical text?

» To quantify and benchmark the performance of GPT-3.5 Turbo, GPT-4, Gemini Pro, and Llama2-70b
Chat in querying medical codes from clinical data.

» Evaluate how well these models generate correct ICD-9-CM, ICD-10-CM, and CPT codes
based on exact match accuracy.

Clinical Note - ~ Diagnosis Code
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hypertension end > hypertension
stage oxygen Medical 496 Chronic airway
dependent chronic > | Codin o obstruction
obstructive
pulmonary disease Model
...... was intubated on > lhtesllie L
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Code Datasets

« Extracted IC9-CM, ICD-10-CM, and CPT billing codes from Mount Sinai Data Warehouse
« Used a REST API to interface with the data warehouse, enabling efficient extraction of data

 Code Datasets
« ICD-9-CM, ICD-10-CM, and CPT

« The extracted data (medical codes) were mapped and standardized using the Unified Medical
Language System (UMLS) Metathesaurus
 UMLS - a comprehensive biomedical terminology resource
« Used UMLS to obtain the preferred description for each code.
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[1] Icahn School of Medicine at Mount Sinai. (2023). Mount Sinai Data Warehouse (MSDW). Research Roadmap. Retrieved February 19, 2025, from https://researchroadmap.mssm.edu/reference/systems/msdw/
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Methodological Framework
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LLM Code Generation

» Once the codes are harmonized through the UMLS, clinical descriptions are fed into the LLMs.

* Four LLMs were utilized

GPT3.5 Turbo (March 2023, June 2023, & November 2023 versions)
GPT4 (March 2023, June 2023, & November 2023 versions)

Gemini Pro

Llama2-70b Chat

* Primary task: Generate the medical code when given the preferred code description

» LangChain was used to standardize LLM API calls
» Tested temperatures of 0.2, 0.4, 0.6, 0.8, and 1.0
* No meaningful difference in overall accuracy
» Selected 0.2 as final temperature
 No LLMs were truncated
» All models were set to 50 maximum output tokens
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Prompt Development

+ Selected a random sample of 100 codes from each coding system (ICD9, ICD10, and CPT).
« Tested various wordings and structures to reliably generate valid codes.
 lteratively refined the prompt until it consistently produced correctly formatted outputs
without errors.
* The iterative process was qualitative
» No specific number of development rounds mentioned.

‘What is the most correct <code system> billing code for this description:
<description>.

Only generate a single, VALID <code system> billing code. Do not explain.
ALWAYS respond in the following format:

Code: <code system>: <sample code>".
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Performance Metrics

1. Exact match: compares each generated code with its corresponding reference code
» Determine the percentage of pairs that are identical

Reference: [(A123Y, [B456!, [GHS8I, 'D012!, [ESES1)
Predicted: [[A123!, [B4586!, S8, [D012!, [ESHEI]

= 3/5 = 60%
Exact Match

2. METEOR: comparison through exact matches, stemming, synonyms, and word order

Reference: ['diabetes [HIGIINE without EOMPICAtION
Predicted: ['diabetes without _']

» Both text share the words ‘diabetes’ and ‘without’ (2 matches)
* Predicted add ‘s’ at the end of vs no ‘s’ has the same root meaning
« Range: 0.0 — 1.0 (higher, better)

3. BERTScore: computes cosine similarity using contextual embeddings rather than token matches
« Captures contextual meaning and semantic relationship
« Range: 0.0 — 1.0 (higher, better)

[1] METEOR: Metric for Evaluation of Translation with Explicit Ordering; [2] BERT: Bidirectional Encoder Representations from Transformers
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Performance Evaluation — Exact Match

GPT-4 had the highest exact match rates and Llama2-70b Chat scored the lowest

Both GPT-3.5 and GPT-4 demonstrated improved exact match performance with each
successive model (March to November).

Model

ICD-9-CM

ICD-10-CM

CPT

GPT-3.5 Turbo (Mar)

GPT-3.5 Turbo (June)

GPT-3.5 Turbo (Nov)
GPT-4 (Mar)

GPT-4 (June)

GPT-4 (Nov)

Gemini Pro
Llama2-70b Chat

26.6% (25.6—27.6%)
26.7% (25.7—27.7%)
28.9% (27.9-29.9%)
42.3% (41.2-43.4%)
44.1% (43.0-45.2%)
45.9% (44.8—47.0%)
10.7% (10.0-11.4%)

1.2% (1.0-1.5%)

17.1% (16.5-17.7%)
17.8% (17.2—18.4%)
18.2% (17.6—18.8%)
27.5% (26.8-28.1%)
28.4% (27.7—29.1%)
33.9% (33.2-34.6%)

4.8% (4.5-5.1%)

1.5% (1.4-1.7%)

28.4% (27.0—29.9%)
26.2% (24.7—27.6%)
31.9% (30.4-33.4%)
44.0% (42.4—45.6%)
42.6% (41.0-44.2%
49.8% (48.2-51.5%)
11.4% (10.3-12.4%)

2.6% (2.1-3.1%)

At the code system level, ICD-9-CM and CPT codes had more exact matches than ICD-10-CM,

except for Llama2-70b Chat, which had the lowest match rate with ICD-9-CM.

Results: Code Generation Performance Evaluation
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Performance Evaluation —= METEOR & BERTScore

» Using LLM-generated codes, they retrieved its medical description from UMLS
« Compare the medical descriptions of LLM-generated codes and original code using METEOR
and BERTScores

Vodel METEOR BERTScore
ode

ICD-9-CM ICD-10-CM CPT ICD-9-CM ICD-10-CM CPT
GPT-3.5 Turbo (Mar) 0.415 (0.406-0.424)  0.399 (0.393-0.407) 0.461 (0.448-0.474)|  0.857 (0.855-0.860)  0.866 (0.864-0.868) 0.868 (0.864-0.871)

(
GPT-3.5 Turbo (June) 0.414 (0.405-0.422)  0.405 (0.398-0.412) 0.433 (0.421-0.446)|  0.856 (0.854-0.859)  0.870 (0.868-0.871) 0.859 (0.855-0.863)
GPT-3.5 Turbo (Nov) 0.437 (0.428-0.445)  0.400 (0.394-0.406) 0.495 (0.485-0.507)|  0.863 (0.861-0.866)  0.866 (0.864-0.868) 0.878 (0.874-0.882)
GPT-4 (Mar) 0.564 (0.555-0.573)  0.510 (0.504-0.516) 0.596 (0.583-0.609)|  0.899 (0.896-0.901)  0.899 (0.897-0.900) 0.904 (0.901-0.908)
GPT-4 (June) 0.579 (0.569-0.588)  0.522 (0.516-0.528) 0.586 (0.573-0.599)|  0.903 (0.901-0.906)  0.902 (0.901-0.904) 0.901 (0.897-0.904)

Gemini Pro 0.245 (0.240-0.250) 0.250 (0.245-0.254) 0.295 (0.284-0.306) 0.812 (0.809-0.814) 0.824 (0.822-0.826) 0.816 (0.813-0.820)
Llama2-70b Chat 0.100 (0.094-0.106) 0.129 (0.125-0.132) | 0.182 (0.172-0.192) 0.749 (0.747-0.751) 0.774 (0.773-0.776) | 0.770 (0.766-0.773)

* GPT-4 (Nov) achieved a METEOR score of 0.593 and a BERTScore of 0.907, indicating a very close
match between the generated code description and the original.

 Gemini Pro and Llama2-70b Chat demonstrated substantially lower textual similarity scores—with
METEOR scores roughly around 0.245 and 0.100, and BERTScores approximately 0.812 and 0.743
respectively
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Code Generation: Error Analysis

Error Analysis Metrics:
* Incorrect code: LLM-generated code does not match the correct reference code.

Reference: [[82:4091] (acute embolism and thrombosis)

Predicted: [[182:49']

« Valid code: LLM-generated code exists in the UMLS Metathesaurus, regardless of whether it
exactly matches the reference code.
Predicted: [[I82:409'] (valid as long as it appears in UMLS)

« Fabricated code: LLM-generated code that does not exist in the UMLS at all.
« Code generation frequency: Average number of codes the model outputs per prompt.

« LLM outputs three codes, e.q., [[sPAE0 N[N PR-EN] indicating over-generation.
« Matched length: Average number of codes the model outputs per prompt.

* LLM outputs three codes

Matched digits: how many digits align with the correct code

Error Analysis: Error Metrics Used Clinical Epidemiology and Biostatistics | Slide 11



Error Analysis: ICD-9-CM

« GPT-4 outperformed other models with the lowest incorrect code rate (53.9%) and the highest valid
code percentage (97.1%).
» Llama2-70b Chat performed poorly, with almost all generated codes being incorrect (98.8%),
only 54.1% valid codes, and the highest fabricated code rate (45.9%).

Metric GPT-3.5 GPT-4 Gemini Pro Llama2-70b Chat
Incorrect codes, n (% of total) 5467 (71.0%) 4149 (53.9%) 6869 (89.2%) 7601 (98.8%)
Valid code, % (95% CI) 96.1% (95.6%-96.6%) ' 97.1% (96.6%—-97.5%) 88.9% (88.1%—-89.6%) 54.1% (53.0%-55.2%)
Fabricated code, % (95% ClI) 3.9% (3.4%—-4.4%) 2.9% (2.4%-3.5%) 11.1% (10.4%-11.8%) 45.9% (44.8%—-47.0%)
Code frequency, mean (95% CI) 4.9 (4.7-5.0) 3.0 (3.0-3.1) 6.5 (6.3-6.6) 17.5 (16.9-18.1)
Matched length, % (95% CI) 71.8% (70.6%—-73.0%) | 73.9% (72.5%—75.2%) 62.7% (61.5%—63.8%) 58.1% (57.0%-59.2%)

Matched digits, % (95% Cl) 56.3% (55.6%-57.0%) | 63.3% (62.6%—64.0%) 53.2% (52.6%-53.8%) I N (WA E LTS

« GPT-4’s low code generation frequency (mean 3.0) implies it generates a focused output, while
Llama2-70b Chat’s high frequency (mean 17.5) suggests over-generation that could be associated
with hallucination.

* GPT-4 has better structural alignment, which reduces fabricated codes
« Higher matched length and digits percentages for GPT-4 (73.9% and 63.3%, respectively)
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Error Analysis: ICD-10-CM

« All models, except GPT-4, struggle with ICD-10-CM code generation
« GPT-4 is comparatively more reliable and less prone to hallucination, whereas the others tend
to generate more errors and extraneous output.
 GPT-3.5 showed a high incorrect codes (81.7%), which has high difference to its GPT-4

counterpart (65.8%).
Metric GPT-3.5 GPT-4 Gemini Pro Llama2-70b Chat
Incorrect codes, n (% of total) 13,025 (81.7%) 10,492 (65.8%) 15,170 (95.1%)
Valid code, % (95% CI) 82.7% (82.0%-83.3%) 81.5% (80.7%—-82.2%) 62.6% (61.8%—63.4%)
Fabricated code, % (95% ClI) 17.3% (16.7%-18.0%) 18.5% (17.8%—-19.2%) 30.3% (29.6%-31.0%)
Code frequency, mean (95% CI) 93.6 (88.6-98.7) 3.7 (3.7-3.8) 46.2 (44.0-48.4)
Matched length, % (95% Cl) 57.4% (56.6%-58.3%) ' 64.7% (63.8%—65.7%) 58.9% (58.1%-59.7%)
Matched digits, % (95% CI) 57.0% (56.6%-57.4%) ' 67.6% (67.2%—68.0%) 51.6% (51.3%-52.0%)

« Gemini Pro & Llama2-70b exhibit high incorrect codes (95.1% and 98.4%, respectively)
» Fabricated codes (37.4% for Gemini Pro) and (30.3% for Llama2-70b Chat)
« Gemini Pro & Llama2-70b have significant challenges in accurately capturing ICD-10-CM
codes.
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Error Analysis: CPT

« GPT-4 outperformed other models with the lowest incorrect code rate (53.9%) and the highest valid
code percentage (97.1%).
» Llama2-70b Chat performed poorly, with almost all generated codes being incorrect (98.8%),
only 54.1% valid codes, and the highest fabricated code rate (45.9%).

Metric GPT-3.5 GPT-4 Gemini Pro Llama2-70b Chat
Incorrect codes, n (% of total) 2502 (68.1%) 1843 (50.2%) 3225 (88.6%)
Valid code, % (95% CI) 94.0% (93.0%-94.9%) 93.9% (92.8%-95.0%) 84.1% (82.8%-85.3%)
Fabricated code, % (95% ClI) 6.0% (5.1%-7.0%) 6.1% (5.0%-7.2%) 15.9% (14.7%-17.2%)
Code frequency, mean (95% CI) 8.4 (7.5-9.3) 2.6 (2.5-2.7) 15.3 (14.0-16.7)
Matched length, % (95% Cl) 99.7% (99.4%—-99.9%) 98.5% (98.0%-99.1%)
Matched digits, % (95% CI) 59.5% (58.7%—-60.4%) ' 63.3% (62.3%—64.2%)

98.8% (98.4%-99.1%)

53.7% (53.0%-54.5%)

» All models generate outputs of the correct overall length (matched lengths = around 98-99%)
» Percentage of matched digits is considerably lower for Llama2-70b Chat (40.8%)—inaccurate
coding.
« Gemini Pro and Llama-2-70 Chat (base forms) are not yet reliable medical coders
* High rates of incorrect and fabricated codes
» Excessive output frequencies
* Not yet reliable medical coders without further fine-tuning or tool integration.
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Discussion: Are LLMs poor medical coders?

« None of the evaluated models achieved a high exact match rate overall, with even the best model
(GPT-4) reaching only about 46% for ICD-9-CM, 34% for ICD-10-CM, and 50% for CPT codes.
« GPT-4 performed the best in terms of exact match rates and multiple measures of conceptual
similarity.
» GPT-4 had the lowest rate of fabricated codes (ICD-9-CM, ICD-10-CM, and CPT)

* LLM-generated CPT and ICD-9-CM codes are more accurate than ICD-10-CM codes.
« ICD-10-CM codes are longer, alphanumeric, and more granular.
» LLMs frequently produced overgeneralized or entirely incorrect codes
« Unable to fully comprehend the detailed alphanumeric structure of medical billing codes.

» Error patterns (e.g., missing digits, extra characters, or fabricated codes) suggest LLMs do not have
complete internal representation of medical coding rules.
« Base LLMs struggle with matching alphanumeric codes (e.g., ICD-10-CM) to their descriptions.
» LLMs can correctly generate the initial three digits but fail to accurately extend the code
* LLMs does not fully internalize the precise formatting rules.
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Discussion: Are LLMs poor medical coders?

« Tokenization Challenges
« LLMs break into subword units, which can obscure precise structure of medical codes
« Loss of critical information regarding exact character order and composition

ICD-10-CM code: [[ET1:9"] diabetes mellitus without complications
Tokenization: ['E11, '.) '9']
» Sensitivity of medical codes
« Medical codes require strict adherence to specific formatting

« Minor deviations can result to incorrect or fabricated codes
« The sensitivity to exact characters is neglected by LLMs trained on general language

* LLM Training Limitations
* Models are trained on natural language, resulting in overgeneralized and frequently imprecise

« Potential solutions
* Fine-tuning, RAG frameworks

Discussion: Are LLMs poor medical coders? Clinical Epidemiology and Biostatistics | Slide 16



Discussion: How about previous studies?

* Previous studies have also reported that general-purpose (base) LLMs are suboptimal for medical
coding tasks.
« LLMs hallucinate medical codes, generating imprecise or fabricated outputs’#
« LLMs only rely on statistical patterns rather than a true understanding of the strict coding
rules, leading to significant inaccuracies.
* Fine-tuned models (Spark NLP) achieved 76% exact match compared to GPT-4 (58%) and
GPT-3.5 (40%)>

* Aside from fine-tuning, LLMs can improve its medical coding performance by:
* RAG frameworks?
« Hierarchical-aware uncertainty estimation?

[1] Simmons, A., Takkavatakarn, K., McDougal, M., Dilcher, B., Pincavitch, J., Meadows, L., ... & Sakhuja, A. (2024). Benchmarking Large Language Models for Extraction of International Classification of Diseases Codes from Clinical
Documentation. medRxiv, 2024-04.

[2] Kwan, K. (2024). Large language models are good medical coders, if provided with tools. arXiv preprint arXiv:2407.12849.

[3] Maatouk, O. (2025). Leveraging LLMs for ICD Coding and Uncertainty Estimation: Can the model's awareness of the hierarchical structureof ICD-10 codes impact its prediction performance?.

[4] Addimando, S. A. From Words to Codes: Large Language Models for ICD-9 Extraction in Clinical Documents.

[5] Kocaman, V. (2023, April 20). Comparing Spark NLP for Healthcare and ChatGPT in Extracting ICD10-CM Codes from Clinical Notes. John Snow Labs. https://www.johnsnowlabs.com/comparing-spark-nlp-for-healthcare-and-chatgpt-

in-extracting-icd10-cm-codes-from-clinical-notes/
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Conclusion

« Base LLMs alone are poorly suited for medical code mapping tasks.
* While models can approximate its meaning, LLMs display unacceptable lack of precision and
high rate for falsifying codes.

« Higher performance was observed with more frequently occurring, shorter codes and simpler
descriptions

» This study have found out that current base LLMs struggle with simple code queries
 Enhancements through fine-tuning, integration with specialized tools, or retrieval-augmented
generation could be essential for adapting LLMs to reliably perform medical code querying
tasks.
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Questions?
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Coding Structures

« ICD-9-CM
« Format: 3-5 numeric structures, with a possible decimal point after the first three digits
« Range: codes are 001-999.99 (disease classification)
* V-codes (V01-V91) and E-codes (EO000-E999) for supplementary information

« ICD-10-CM
Format: Alphanumeric (3-7 characters)
15t character: always a letter (A-Z); disease category
2nd-3rd characters: numbers (0-9); body system and disease classification
4th-7th characters: Alphanumeric and provide additional specificity
« 4" digit: condition (e.g., severity, cause)
« 5 digit: anatomical site
« 6! digit: severity or type of encounter
« 7™ digit: extension

« CPT
* 5 numeric digits, sometimes followed by modifiers
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Study Limitations

The study did not integrate additional strategies to improve LLM performance:
« Advanced prompt engineering

 Tools and frameworks

* Retrieval augmented generation
* Model fine-tuning
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Performance Metrics

1. METEOR: comparison through exact matches, stemming, synonyms, and word order

Reference: ['diabetes (TGS Without COMPHCAton |
Predicted: ['diabetes without _']

« Both text share the words ‘diabetes’ and ‘without’ (2 matches)
* Predicted add ‘s’ at the end of vs no ‘s’ has the same root meaning

2. BERTScore: computes cosine similarity using contextual embeddings rather than token matches
« Captures contextual meaning and semantic relationship

1.00 +1.00 + 0.98

Predicted Reference Cosine Precision = = 0.99
diabetes diabetes 1.00 3
without without 1.00 1.00 + 1.00 4+ 0.98 + 0.40
complications  complication 0.98 Recall = 4 =085
(missing) mellitus 0.40

(0.99 x 0.85)

~ 0.91
“10.99 + 0.85)

BERTScore(F1) = 2

[1] METEOR: Metric for Evaluation of Translation with Explicit Ordering; [2] BERT: Bidirectional Encoder Representations from Transformers
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