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1 | INTRODUCTION

according to the evolution of the disease. In state-of-the art methods, the risks
of transition between the states are modeled via (semi-) Markov processes and
transition-specific Cox proportional hazard (P.H.) models. The Cox P.H. model
assumes that each variable makes a linear contribution to the model, but the
relationship between covariates and risks can be more complex in clinical situa-
tions. To address this challenge, we propose a neural network architecture called
illness-death network (IDNetwork) that relaxes the linear Cox P.H. assumption
within an illness-death process. IDNetwork employs a multi-task architecture
and uses a set of fully connected subnetworks in order to learn the probabili-
ties of transition. Through simulations, we explore different configurations of
the architecture and demonstrate the added value of our model. IDNetwork
significantly improves the predictive performance compared to state-of-the-art
methods on a simulated data set, on two clinical trials for patients with colon
cancer and on a real-world data set in breast cancer.
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Disease prognosis is of major importance for physicians when making medical decisions and requires specialized algo-
rithms to estimate the risks of a patient. In this line of work and within event history analysis, we propose a novel algorithm
for individual prognostication in a three-state illness-death model.

Event history analysis, also known as survival analysis, aims at predicting the time until the occurrence of a future
event(s) of interest and is used in multiple areas including healthcare, economy, finance, and engineering. In particular,
survival analysis is widely used in healthcare to model patient survival outcome in order to understand disease progres-
sion. In clinical practice, clinicians may be more interested in the complete evolution of a disease and not only in a unique
or composite event. The multi-state! approach has been developed as a generalization of survival analysis when multiple
events can occur successively over time. In the present work, we focus on the illness-death model which is a multi-state

9,

model composed of three states: “healthy”; “relapsed” or “diseased”; “dead.” Illness-death model is the most frequent
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structure used to follow the evolution of cancer patients through an intermediate non-fatal relapse state and a death state
as in ovarian cancer? or in chronic myeloid leukemia.? Other applications of the illness-death model include Alzheimer’s
disease* and cardiovascular disease.’

There are two main literature streams of event history analysis. The first is based on traditional statistic theo-
ries including three approaches. (i) The nonparametric approaches include the Kaplan Meier® and the Nelson-Aalen’
estimators and do not enable individual prediction. (ii) The parametric models impose a precise form of the haz-
ard rate and the influence of covariates on it but allow individual prediction. (iii) Finally, semi-parametric models
can be viewed as a compromise between nonparametric and parametric approaches. They include the widely used
Cox® proportional hazard (P.H.) model and have been extended to multi-state analysis.” However, these models style
assume strong assumptions on the relation between the covariates and the event times distribution. These assump-
tions have shown limitations in many real-world applications and have been found to be violated especially in clinical
areas.

To address these challenges, a second variety of literature proposes new machine learning algorithms. In particular,
neural networks have been developed to extend the Cox P.H. model in a statistical assumption-free framework. One of
the advantages of neural networks is that they can fit highly nonlinear patterns in the data by using multiple layers
and nonlinear activation functions. In addition, the use of fully connected networks allows to take into consideration
possible interactions between covariates with no prior assumption. Hence, traditional artificial neural networks have
been successfully introduced for survival analysis by Faraggi and Simon.'? More recently, deep neural networks have been
extended by Luck et al,!! Katzman et al,'? Fotso,!3 Kvamme et al,'* among others.!>17 By employing best state-of-the-art
deep learning methods and larger clinical data sets, they show significant improvements in predicting patients’ survival
as compared to the Cox P.H. model. Regardless, their approaches are still limited to the case of a unique clinical event.
Lee et al'® extended deep neural networks to handle competing events.!® To the best of our knowledge, no nonlinear
methods, especially deep neural networks, have been explicitly extended for multi-state analysis and in particular for
an illness-death process. Thus, addressing the linear limitation of the Cox P.H. model within the illness-death modeling
framework is one of the focuses of this work.

While the Faraggi and Simon!® approach uses neural networks to parameterize the Cox’s linear regression
function, most of the recent methods directly predict a discrete-time distribution of the event times as an out-
put of the neural network. As an approximation for continuous-time survival data, they all perform a division of
the continuous time scale into discrete-time intervals. Alternatively to discrete-time approach, piecewise survival
models?® perform a discretization of the time scale but each subject’s duration of exposure during the interval
is taken into account. Hence, the approximation error that arises when a discrete-time method is used can be
reduced with piecewise approximations. See the work of Kvamme and Borgan?! for more details. Thus, develop-
ing a well approximated continuous-time method instead of a discrete-time method is the second objective of this
article.

There are few recommendations for dividing intervals and selecting the interval cutpoints in piecewise survival mod-
els. This has a significant impact on the model performance and can cause either over-fitting (for a larger number of
intervals) or under-fitting. However, Kvamme and Borgan?!' conduct a simulation study by varying the interval cutpoints
determination method in a discrete time approach. Inspired by their work, we discuss some methods for determining the
optimal interval cutpoints. In addition, we propose a regularization method in order to minimize the risk of over-fitting
related to the number of intervals.

In the present work, we propose a deep learning architecture, illness-death network (IDNetwork), for illness-death
model that encompasses a multi-task neural network including one subnetwork shared for all the transitions and
three transition-specific subnetworks. After a presentation of the classical illness-death model, we (i) derive a new
form of the log-likelihood of a piecewise constant illness-death process, (ii) build the network architecture IDNetwork,
(iii) implement in Python the pipeline of our method including performances criteria evaluation. We finally conduct
experiments on a simulated nonlinear data set and on real data sets of patients with colon cancer and with breast
cancer.

2 | THE ILLNESS-DEATH MODEL

In this section, we introduce the traditional illness-death model, see the work of Andersen et al*?> for a complete
presentation.
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2.1 | Notation

Multi-state models are a generalization of survival models when multiple events of interest can occur over time. A
multi-state process (E(f),0 < t < +o00) is a continuous-time stochastic process that describes the states occupied by a
patient over time. In this article, we consider an illness-death multi-state process with three states: state 0 is the initial
state “Event-free,” state 1 is an intermediate state “Relapse,” state 2 is an absorbing state “Death.” The illness-death pro-
cess is characterized by three irreversible transitions: from 0 to 1 (0 — 1), from 0 to 2 (0 — 2), from 1 to 2 (1 — 2), where
transitions from state 0 are competing, transitions 0 — 1 and 1 — 2 are successive. It assumes that all subjects are in state
0 attimet =0 (ie, P(E(0) = 0) = 1).

The evolution of an illness-death process can be characterized by three random variables (r.v.) Tq, for (q,0) €
{(0,1),(0,2),(1,2)}, associated with each of the three transitions. They represent the transition times from state q to state
I (q # ). A subject leaving state 0 will enter either state 1 at time Ty; or state 2 at time Ty,. A subject having state 1 at Ty,
will enter in state 2 at time To; + T1,. This can be summarized as follows. T, the exit time from state 0 is

To = i[ng {E(®) # 0} = min (To1, Toz)
>
and is recorded together with Dy € {1,2} which indicates the entered state. T, the entry time to state 2
T, = ltng {E(t) = 2} = TO +1 {DO = 1} T,
>

and characterizes the total survival time.

In clinical settings, the true transition times are commonly partially observed because of right-censoring. To model
this phenomenon, we introduce C a non-negative censoring r.v. that precludes its observation. Let Ty = min (T,, C) and
T, = min (T,, C) be the observed event times. Together with these event times, we observe a vector of covariates X of
dimension P and we assume that C 1L (Ty, T,) |X. We also observe the binary labels 6oy = 1 {Dy =1[,Ty < C} (I =1,2),
612 = 6m 1 {T» < C} that indicate the status of the transitions, where 65 = 1 indicates an entry in state [ from g and 6, = 0
indicates a censored transition.

2.2 | Transition intensities and the Cox P.H. model

Illness-death processes are traditionally described with counting processes.?? In an illness-death model, the observation
of process E is equivalent to the observation of the three-variate process t > 0 — N(t) = (No1(t), No2(t), N12(t)). where

Ng(t) =card {0 <s <t : E(s—) =q,E(s) =1}, for (q,]) € {(0,1),(0,2),(1,2)},

the transition from g to [ happened before ¢. To take into account the presence of censoring, we define in addition two
previsible processes Y, and Y; as

Y,() =1{E(t-)=q}, for ¢g=0,1, >0,

they indicate if the patient is in state q before time ¢.

The three-variate counting process N is conventionally associated with a set of transition intensities, or
transition-specific hazard functions. We define the three processes by making specific assumptions on cancer evolution
over time.?* For the transitions 0 — 1 and 0 — 2, we consider time nonhomogeneous Markovian processes. For transition
1 — 2, we perform a time transformation, following Anderson et al,?2 and we consider a time homogeneous
semi-Markovian process (the probability of transiting from state 1 to state 2 at time ¢ depends only on the duration t — T
already spent in 1). Wherever convenient, we use the duration variable d = t — T instead of the time variable ¢ for the
transition 1 — 2. Hence, we define

o (t1X) = limP (Bt + h) = | | E(t—) = 1,X), for [=1,2,
h—0h

& (d|X) = }li_rg%IP’(E(d +h)=1|Ed-)=1,X),
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that express the instantaneous risk to transit from a state to another at a specific time for the covariates X.

Transition specific Cox P.H. models have been proposed to model multi-state processes in order to evaluate covari-
ates effects on each transition.” Covariates effects are introduced in the transition intensities by means of log linear risk
function as follows:

s (t1X) = o)’ () exp (Xp7) . for [=1,2, €))

@, (dIX) = al(d) exp (XB],) ()

where, for (q,1) € {(0,1),(0,2),(1,2)}, a*io is the unknown baseline transition intensity related to the transition g — [
(ie, the underlying hazard when all the covariates are equal to zero) and ﬂ;‘l is the vector of regression coefficients to be
estimated.

In general, the process associated with each of the three transitions may depend on the time ¢ of arrival in the state
(Markov process) or on the time d since the entry to the state (semi-Markov process). The choice of the time scale? is an
important step in disease modeling because it will induct how the disease will evolve over time. We discuss our choice in
Section 3.1.

2.3 | Thelog-likelihood
The log-likelihood associated with the observation of the three-dimensional censored counting process ¢t — N(t A C) =
(No1(t A C), Npa(t A C),N12(t A C)) on [0, 7], where 7 is the horizon time, is given by the log product of the three
transition-specific likelihoods:

log£ =log (L°7'x £ x £ 7?),

where £071, £0-2 £1-2 are the likelihoods associated with each transition, see Andersen et al,>? and the covariates X.
They are given, for the proposals ag; and a2, for I = 1,2, by the following equations:

log £°~! = / Tlog (aoi(t1X)) Yo(O)1{C > t}dNo(t) — / TaOI(t|X)Y0(t)]l{C2 t}dt, for 1=1,2, (3)
0 0

log£17? = / T log (a12(d|X)) Y1()1L{C > d}dNyx(t) — / an@X)YOLIC > d)dd. 4)
0 0

The log-likelihood of Equation (3) is traditionally used to estimate the coefficients ﬂ;l while the unknown functions

*,0
a

ql
tion intensities,?® the simplest assuming constant transition intensities a;l(t) = a;‘l. Finally, models with time varying

can be estimated with Nelson-Aalen® or spline estimators.?’> Other models have been proposed for the transi-

coefficients, with proposals defined in Equations (1) and (2), have been studied, see Martinussen and Scheike?” for a
complete review. Among these proposals, Murphy and Sen?® considered piecewise constant estimators that allow for
time-dependent covariate effects.

Under the assumption of a piecewise constant model, the optimization of the log-likelihood is facilitated. Indeed,
they allow to perform a continuous model that would have necessitated the use of the Cox partial log-likelihood® and
significantly impact on the computational cost when using classical stochastic gradient descent algorithm because of the
presence of two cumulative sums.'*? Whereas a discrete-time model approximates the full log-likelihood by dividing
the time axis into discrete time intervals. Piecewise constant approaches are a compromise to reduce the approximation
error that arise when a discrete-time method is used by computing the cumulative functions by taking into account
the subject’s duration of exposure in the intervals, with no supplementary computational cost, see the Supplementary
materials (Section 3) for details.
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foi(t)
State 0 \ State 1
Event-free Relapse
f02 (t) State 2

fi2(t =Ty | Ty, Do = 1)
Death

FIGURE 1 [Illustration of our illness-death process

3 | OURMETHODOLOGY

In this section, we present our approach to model an illness-death process.

3.1 | Functions of interest and data
Instead of considering the transition intensities, we will write the log-likelihood in terms of transition probabilities fq*l(. 1X),
that we define in this paragraph. See an illustration in Figure 1.

Let f5, and f;, be the infinitesimal probabilities of experiencing, respectively, transitions 0 — 1 and 0 — 2,
defined as

§ | T | B
F01%) = lim = P (E(t + ) = LE(t=) = 01X) = im 2 P (¢ < Ty < t + h. Dy = 1|X).

and Fy, and Fy, their camulative counterparts,
t
Fy(t|X) = P(E(®) # ,Do = [|X) = P(To < t,Dp = [|X) = /fo"‘l(le)ds, for I=1,2 and t >0
0

expresses the probability that a transition 0 — [ occurs on or before time ¢. With these definitions, we define
Jo (t1X) = foy (t1X) + i, (81X)
as the infinitesimal probability of exiting state 0 at time ¢ and
Fy(t]X) = Fg, (t1X) + Fg,(t|X)
as the probability of having exited state 0 before time ¢.
For the transition 1 — 2, the functions of interest are defined conditionally to Ty, Dy = 1. To simplify the notations,
we drop this conditioning in the definitions. We define [}, as the infinitesimal probability of experiencing transition
1 — 2 such that,

FLAIX) i=F5(d |To. Dy =1, X) = }111%%1?(15@ +h)=2,Ed-)=1]X) = }lir%%]P’(d <T,—Ty<d+hX),

and F;‘z as its cumulative counterpart such that,

d
Fi(dIX) := F,(d |To, Do =1, X) = P(E(d) = 2|X) = P(Ty — T, < d|X) = / fi(s1X)ds, for d <o.
0
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Fy,, Fy,, and Fy, are commonly referred to cumulative incidence functions (CIFs) in the literature®® and are our main
functions of interest. Indeed, for a patient with covariates X, if he/she still is state, the physician will need to estimate
precisely the values Fy, (£|X) and Fy, (t)|X) where f, is a certain horizon time, chosen according to the pathology. Even
if they are formula linking the transition intensities?? to these probabilities, see Supplementary materials (Section 1), we
chose to work with transition probabilities.

Our data consist in the observation of n independent and identically distributed r.v. in R” x R, x {0,1} x {0,1} X

R, x {0,1} such that
D; = {X;, (To, 8, 64,), (T2, 81,) hi<in,
where X; = (Xi1, ..., Xip )T is a vector of P covariates observed at baseline. From these observations and for each subject

i, we aim to estimate the true transition specific density probabilities conditionally to the clinical features X; in order to
predict the individual CIFs defined in Equations (9) and (10).

3.2 | Writing of the log-likelihood in terms of the functions of interest
We show that the conventional illness-death log-likelihood defined in Equation (3) can be rewritten in terms of the density

probability functions introduced in Section 3.1, see the Supplementary materials (Section 2) for a formal proof.
We define the log-likelihood ¢, by dividing the contributions in three distinct parts:

fn=log Ly =log£3™" +log L3 +log £, )
1 n
:EZ [l/ﬂl()—>1+f:)—>2+fll—>2]’ (6)

i=1

where f? -y f? ~2 s the log contribution of patient i from state 0. From state 0, patient i with an event a Tf, can contribute
in three ways. He (i) can experience a transition 0 — 1; (ii) can experience a transition 0 — 2; (iii) can be censored at Té.
Thus ff) is given, for proposals fo1, fo2, Fo, and binary labels o1, 8o, that indicate an entry in another state or a censored
transition, by

207+ 2072 = Y (6 log(foTo X))} + (1 — (8), + 65,)) log(1 — Fo(To |X). (7)
1=1,2

On the other hand, fl.l ~2 is the log contribution of patient i from the time he has entered state 1 (only for i such that

531 = 1). Following the previous reasoning, patient i can contribute in two ways at time T, — To. He (i) can experience a

transition 1 — 2; (ii) can be censored. Thus fil ~2 is given, for proposals fi,, F1,, and the binary label 6;, that indicate an
entry in state 2 or a censored transition, by

£1 7% = 5,81, log(fia(T2 = To X)) + 65, (1 = 8,) log(1 — Fio(T5 = To 1X0)). ®)

The log-likelihood in Equation (5) has been derived under a time nonhomogeneous Markovian assumption

for transitions 0 — 1 and 0 — 2, and a time homogeneous semi-Markovian assumption for transition 1 — 2.

Depending on the application, time assumptions can be reformulated, it would change the log likelihood
above.

3.3 | Rewriting of the log-likelihood for piecewise constant proposals
We propose in the present article to consider the class of piecewise constant transition-specific probabilities following

the ideas of Murphy and Sen.?® More specifically candidate estimators will be assumed to be constant on K time inter-
vals. We define 7 as the maximum horizon time window and we divide the time axis into K disjoint time intervals:
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V1 = [ap, 1), ...,k = [ak_1,ak), with ay = 0 and ax = 7 . For any time s € [0, z[, we denote by vy, the time interval to

which s belongs. so that :

Ja(t1X) = faie |X), for I=1,2,
Sr2t1X) = faia 1X).

Piecewise constant models allow to keep constant the probabilities within observed time intervals. In this model,
effects of the covariates are time-dependent.3!

We rewrite the log-likelihood of an illness-death process for piecewise constant proposals. It has to be understood as
an approximation and it is well-established that the approximation error can be bounded when the true functions are
smooth.3?

Assuming a piecewise constant model allows to consider a nonhomogeneous model (see Section 3.1) while retaining
the hypothesis of homogeneity within the same time interval, following the lines of Kvamme and Borgan,?! Friedman
et al.?® Its means that the density probabilities are constant within each interval but covariates effects are parameterized
to be different in each interval (see Section 2.2). Hence, we can express f;; (g = 0,1 and [ = 1,2) as step functions such
that fi( . 1X) = fu(vi) |1X) that depend on the covariates and on time. Equivalently, since the density probabilities are
assumed to be piecewise constant, their corresponding cumulative counterparts Fy; (I = 1,2) and F;, are piecewise linear:

k(-1

Fou(t 1X) = fouic 1X)Iviel + (& = aro-1)foricry 1X), ©)
k=1
k(d)-1
Fiod 1X) = ) fai 1X)Ivel + (d = aka-1)fi2 i) 1X), (10)
k=1

where |vk| is the length of interval v;. In Equations (9) and (10), we see that each duration of exposure dur-
ing the intervals is taken into account. In comparison, only whether an event occurred or not in a given time
interval is taken into account in discrete-time models, disregarding the duration of exposure in the given time
interval.

In real clinical data, the r.v. Ty, T, can take values after = (a patient can leave state 0 or state 1 after 7). Hence, under
the piecewise constant assumption, the following equations are satisfied:

K

D foi X0l +1 = Fo(zlX) = 1,

k=1

K

D fa@lX) vl +1 = Fra(e]X) = 1, an
k=1

where |vg| is the length of interval vg. See Lee et al'® and Kvamme and Borgan?! for similar remarks.

Regarding the constraint of Equation (11), we consider a supplementary interval vk, = [z, +0). Consequently, we
fulfill the constraint by defining 1 — Fo(7|X) = fo(vk+11X), 1 — F12(z|X) = fi2(vk411X).

Under the assumption of a piecewise constant model, we rewrite the log-likelihood in Equation (5). We rewrite the
sum of the first two contributions in Equation (7) as follows:

20714072 = Y {84108 (fu (v, 1) ) |+ (1= (8l + 81,0 log(1 = Fo(Th 1X0).

1=1,2

We rewrite the third contribution in Equation (8) as follows:

£ =56 10g(fi2(Vype ¢ 1X0) + 8, (1 — 84 ) log(1 — Fio(T5 — To 1X).

Estimators of f; and f;, will be precisely defined in Section 4.1.
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FIGURE 2 IDNetwork architecture. “FC layer" refers to fully connected layer

4 | DESCRIPTION OFIDNETWORK

In this section, we describe how we use a new deep learning approach to parameterize the step probability functions fo1, foz,
fi2 over the interval [0, z]. Our deep learning architecture, called IDNetwork, model the relationship between covariates
and these transition probabilities with no linear assumption. Unlike classical methods,”** IDNetwork is divided into
transition-specific tasks and uses nonlinear activation functions to capture nonlinearity between covariates and transition
probabilities. We propose a loss function that encompasses the negative log-likelihood of Equation (5) and that is tuned to
automatically choose a good time division K (ie, the number of time intervals) in order to minimize the risk of over-fitting.
In addition, we propose two methods to select the interval cutpoints.

4.1 | Network architecture

Inspired by the work of Lee et al'® and Fotso,!3 we develop an architecture (see an illustration in Figure 2) with three
task-specific subnetworks that are related to the three transitions of an illness-death process. Multi-task learning is
done with hard parameter sharing® in order to extract common and specific patterns from the patient’s characteris-
tics (ie, the baseline covariates). It is composed of a first subnetwork shared between the three transitions and of three
transition-specific subnetworks. Two different softmax output layers are used to transform the transition-specific subnet-
works outputs into time-dependent probabilities. One softmax layer is related to the exit from state 0 (ie, the transitions
0 — 1 and 0 — 2), the other to the exit from state 1 (ie, the transition 1 — 2).

4.1.1 | Inputlayer

The input layer is composed of the matrix X of P baseline covariates for the n individuals.
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4.1.2 | Covariates shared subnetwork

The shared subnetwork takes as input the input layer and contains L fully connected (FC) hidden layers with [ units.
Its output is a vector z = g"P" (X) in R! that captures shared patterns between the three transitions (g"P"* is a nonlinear
activation function).

4.1.3 | Transition-specific subnetworks

Each transition-specific subnetwork takes z as input and contains L4 fully connected hidden layers with 19 units. Its out-
putisavectory, = g% (z), that is a transition-specific transformation of the shared features (g% is a nonlinear activation
function). Given the unbalanced number of observations for the three transitions that may exist in real data, the range
of model complexity is different for each of the three transitions. If the architecture is too complex for a transition, the
model will poorly be generalist on new data (over-fitting). If the architecture is not complex enough for a transition, the
model will not capture all the information in the data (under-fitting). To find the best configuration that will result in
the best model performance for each of the three transitions, we will set the structure of each subnetwork independently.
Hence, a transition with a high number of observations (oftenly the transition 0 — 1) can support more hidden layers
than a transition with less observations (oftenly the transition 0 — 2).

4.1.4 | Probabilistic output layers

The output of the network is composed of two probabilistic layers that map the transition-specific outcomes y,; into
time-dependent probabilities. Each output of the network is a fully connected layer. The first output layer is related to
transitions 0 — 1 and 0 — 2, the second output layer is related to transition 1 — 2. Each output layer is built in two steps:

1. Each uses primarily a fully connected layer with a linear activation function, noted g™, to transform the
transition-specific outputs y,; into vectors of lengths K + 1 (ie, the number of time intervals). The first output layer
(resp. the second output layer) transform the transition-specific outputs (yy;, ¥o,)! (resp. the transition-specific y;,)
into vectors (¢o1, ¢o2)T (resp. ¢12), each of length K + 1.

2. Subsequently, each output layer uses a fully connected layer with a weighted softmax activation function. The first
output layer (resp. the second output layer) uses a weighted softmax activation function oy (resp. o) to transform
(o1, @02)T (resp. ¢1,) into probabilities and provide an estimation of JorJo, (xesp. f15). The use of softmax activation
functions ensure the fulfillment of the model constraint defined in Equation (11). Each softmax function is weighted
by the length of the time intervals to provide an estimation of the density probabilities under the assumption of a
piecewise constant model.

3. Finally the output layers are characterized by the vectors:

£y = (1. 1) = 00 (8™ ((¥o1. ¥62)") ) = 00 (o1, P02)”),
=0, (8" (y1,)) = 02 (d12),

where
£ = (i 1X))ockers1, for (g.1) € {(0,1),(0,2),(1,2)},
and
exp (¢, (X)]
S (exp [,00] +exp [#,00] ) 1v]
exp [, ()]
T exp [¢§2(X )] v

, for 1=1,2,

Fov 1X) =

flz(vk IX) =
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4.2 | Lossfunction and mitigation of the number of time intervals effect via penalization

To learn IDNetwork parameters, we minimize a total loss function,
ftotal = _fK_H + P/l’ (12)

that sums the negative log-likelihood and a penalization term.

The first term —#%+! is a revising of the negative log-likelihood —# defined in Equation (5) considering a supplemen-
tary interval (K + 1) in accordance with the constraint described in Equation (11).

The second term P, is a penalization term related to #X*! allowing to smooth the effect of a non-optimal number of
time intervals (ie, a non-optimal value for K). The choice of K has a significant impact on the performance: the number
of nodes grows with K, which might cause over-fitting (for large value of K) or under-fitting. Lee et al*>®ection®) syggest
to choose a large K but prevents over-fitting by using L1 regularization over weights in the output layer. Kvamme and
Borgan?!(Sectiond.l) qugoest to fix a small value for K in order to reduce the size of the output layers as much as possible.
However, the automatic selection of K can be fixed by applying a temporal smoothing technique. Following Most*® and
Tibshirani et al,*” we apply a temporal smoothness constraint by penalizing, in the weight matrices (resp. the bias vectors)
of the output layers, the first order differences of the weights (resp. the bias) associated with two adjacent time intervals.
Let’s consider W = (W', W12)T| B = (B!, B?)T the weight and bias parameters associated with the two output layers,
with W = (WOI WOZ)T e R(l°1+102)><2(1<+1) w2 e Rllzx(K+1) and B! = (BOI BOZ)T = RZ(K+1) B2 ¢ RK+1 For k = 1,....K,
we compute
ql =pt _ bql

ql
At = Wi = Wi Bpe = by,

the weight and bias differences associated with the transition g — [, neuron j and adjacent time intervals vy, Vi4;1. Then
the penalty term of our loss function in Equation (12) has the form

U K

Py(B,W) = Z Aqlzz

J=1k=1

ql

k)

K

1
+ 1 ’Az
AP

where Aﬁ,l and Azl are transition-specific positive constants determining the amount of smoothing to be applied for

each transition. For /13,1 — +oo (respectively lzl — +00), all differences will be set to zero resulting in constant weights
(respectively constant bias). This penalization term allows to minimize the risk of over-fitting, for the three transitions
independently, for larger values of K.

4.3 | Selection of the interval cutpoints ay’s

Under the piecewise constant assumption (see Section 3.3), the definition of the density probabilities requires time to
be on the form 0 = ay < a; < - -+ < agx = 7. Hence, we need to perform a division of the time scale and the selection of
the interval cutpoints a;’s (k = 1, ..., K). On the one hand, we would like to select sufficiently wide interval cutpoints to
retain enough information in each interval (ie, keeping a sufficient number of observed transitions within each interval).
On the other hand, we would like to select sufficiently narrow cutpoints to ensure that significant temporal changes in
the density probabilities can be identified.

To select the cutpoints, the most obvious way would be to choose K equidistant cutpoints in [0, 7] (ie, uniform inter-
vals each of length K /7). An alternative is to select the cutpoints based on the distribution of the transition times. This
approach inducts different cutpoints a,’:’l, a,t’z for the two output layers of IDNetwork. In that case, for the first output
layer related to the transitions 0 — [ (I = 1, 2), we can select the cutpoints by estimating the K quantiles qZ’l (k=1,...,K)
of the marginal distribution of the sojourn duration in state 0 (ie, 1 — F;(.)). In the same way, for the second output layer
related to the transition 1 — 2, we can select the cutpoints based on the K quantiles q*’2 (k= 1 K) of the distribu-
tion of the sojourn duration in state 1 among patients at risk (ie, 1 — F},(.)). The quantiles qk , qk *(fork=1,...,K)
verify:
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1=1-FO) =q">q¢"> - >ql =1-F@),
1=1-F,0) =¢">q¢?> - >q’=1-FL,),

and can be found by estimating the duration distributions Fjj and F}, via the nonparametric Aalen-Johansen® estimator.
This approach ensures that each time interval has the same decrease in the duration distribution estimates, such that

(1-F;() /K,
(1-F,(0) /K.

#,1 #,1
i — 49

*,2 #,2
D1 ~ A

Finally, by denoting FQ J, F}AZJ the Aalen-Johansen estimators of Fyj, F},, the interval cutpoints are found by solving

12°
~AJ

1-Fy'(a)) = gL,

1- @) = ¢

See the work of Kvamme and Borgan?! for a similar approach in the case of a unique event.

5 | PREDICTION TASK AND BENCHMARK
5.1 | Prediction of the individual CIFs

In this subsection, we define the predictions of interest according to the time scales defined below. From the output of
our network (ie, the step functionsfm( XA =1, 2),f12( . | X)), we can derive the estimation of the CIFs.

For a new patient j with the baseline covariates Xj, we note the estimated CIFs, derived from Equations (9) and (10),
as Fo(. | X)) (I=1,2), F1»( . | X)), such that:

k(t)—1
FoX) = ) Fa@elXpIvel + (¢ = axo-)f vk |X)) for 1=1,2,
k=1
k(d)-1
Fro@X) = ) Fu@dXvil + (d = aka-1)f 10ka 1X)-
k=1

We will use the estimated CIFs to assess the predictive performance of IDNetwork.

5.2 | Predictive evaluation criteria

In event history analysis, commonly used performance measures are the time-dependent AUC (for discrimination) and
the time-dependent Brier score (BS) (for calibration). On the basis of the transition-specific time properties defined in
Section 3.1, we adapt the definitions of the time-dependent AUC* and the time-dependent Brier score.*?

To evaluate predictive performances related to transitions 0 — 1 and 0 — 2, all the patients are considered. For the
transition 1 — 2, predictions of interest are formulated conditionally to be in state 1 at time Ty and from the duration
t — Tp. Hence only the patients at risk for experiencing the transition are considered (ie, only the patients who have already
experienced a transition 0 — 1).

For two patients i and j, the transition-specific time-dependent AUC measures the probability that a patient i who
experienced the transition gl before time ¢ has greater probability of occurrence of the transition than a patient j who has
survived to the transition. For, on the one hand the transitions 0 — 1, 0 — 2, and on the other hand the transition 1 — 2,
we define

AUCY(t) = P(Fy, (¢ 1X) > Fy, (¢ 1X5) | Th <t, T) > t, Di =), for [=1,2,
AUCR(d) =P(F},(d | X) > F}, (d | X;) | T, - T} < d, T, - T) > d,D} =1, D}, = 1).
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Commonly, the AUC is defined as the integration of the ROC curve opposing specificity (Sp) and sensitivity (Se).
The transition-specific time-dependent Brier score measures the mean difference between the predicted probability
of occurrence of the transition at time ¢ and the observed status of the transition, such that:

n

1 i %
BSY(¢) = E; [L{T} >t} = Ft 1X)]” for 1=1,2,

. . 2
BSPd) = = Y [1{T}- T} > d} - Fi@d 1 X0 |

i:Di=1

where ny, is the number of patients at risk for transition 1 — 2.

Several estimators have been developed taking into account the loss of information due to censoring by using the
inverse probability of censoring weight (IPCW) methods. To evaluate predictive performances related to transitions 0 —
1 and 0 — 2, we use classical IPCW estimators already developed in the literature.3*#° For the transition 1 — 2, we rewrite
the classical estimators under the semi-Markovian assumption considering only the patients at risk for experiencing
the transition. Exact expressions of the estimators that we have implemented are given in the Supplementary materials
(Section 4).

The time-dependent AUC and the time-dependent BS can be extended to the interval ]0, 7] by computing, respectively,
the integrated AUC (iAUC) and the integrated Brier score (iBS) as follows:

iAuct =1 / AUCZ(t)dt, iBSe = L / BS?(t)d.

TJo TJo

5.3 | Softwares and benchmark

Predictive performances of IDNetwork in predicting the CIFs are compared in terms of discrimination (with the iAUC)
and calibration (with the iBS) with two state-of-the-art statistical methods: the multi-state Cox P.H model (msCox), that is
defined in Section 2.2, from the R library mst at e” and a spline-based version of the Cox multi-state model (msSplineCox)
from the R library f lexsurv.?® We also compare IDNetwork with a simplified linear version of IDNetwork (LinearID-
Network), see details in the Supplementary materials (Section 5). We implement IDNetwork and LinearIDnetwork in
Python within a Tensorflow environment.*

5.4 | Validation

We perform two sets of experiments on (1) simulated data sets and on (2) three real clinical data sets. For the two sets
of experiments, we score predictive performances of the methods through internal validation.*! We employ Monte Carlo
Simulations (MCS) to validate experiments on simulations by generating M data sets. We employ Monte Carlo Cross
Validation (MCCV) to validate model performance and estimate model variance on the real data sets by randomly splitting
M times each data set. For the two sets of experiments, we set M = 20 due to a high computational time. We validate
performance and estimate variance of IDNetwork as follows:

1. For each iteration m (m = 1, ..., M) (either the data set m for simulations, or the data set from split m for the real data
sets):

« We split the data set D, into DIin/piest/pyalidation (709 for training, 10% for early stopping and hyper-parameters
tuning, 20% for validation).

« IDNetwork hyper-parameters are tuned by performing B = 60 random searches on D' Each random set of
hyper-parameters is evaluated on the set D™,

« We choose the set of hyper-parameters maximizing the iAUCs (averaged across the three transitions) on the set D',

« With the optimal set of hyper-parameters, we estimate model parameters on D",
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« We compute model performance on the external validation set D}2.

2. We estimate model performance by computing the median (+ standard deviation (SD)) iAUC (higher the better) and
iBS (lower the better) on the validation sets D} (m = 1, ..., M).

3. We estimate predictive performance of the other methods in the same way (excluding the hyper-parameters tuning).

4. We statistically compare performances of IDNetwork over the other methods using a bilateral Wilcoxon*? signed rank
test. In the results, - indicates a P-value less than 0.1, T less than 0.05, & less than 0.01, * less than 0.001.

5. In the results, bold values indicate the best model performance.

Experimental details on IDNetwork’s hyper-parameters tuning are given in the Supplementary materials (Section 6).
The pseudocode for the validation process of IDNetwork is given in the Supplementary materials (Section 7). On real
clinical data sets, an external validation** of the predictive performance of the models can be conducted by computing
for each iteration m (m = 1, ..., M) the criteria on an independent data set as well.

6 | EXPERIMENTS ON SIMULATED DATA SETS

Through simulations, we aim to first illustrate the effects of IDNetwork parameterization on the predictive performance
and to secondly compare IDNetwork performance with other methods cited above.

6.1 | Datasimulation

For the first set of experiments, we conduct Monte Carlo simulations by generating M = 20 data sets with the same

parameters. We generate continuous-time illness-death data and we fix the horizon-time window at = = 100. We generate

three sets of data sets: D% | D900 20 000 yarying respectively, the training sample size in n, = 2000, 5000, 20 000
nonlin. nonlin.  nonlin.

(80% the data sets) and the validation sample size in ny, = 500, 1250, 5000 (20% the data sets). For each observation i

(1 <i < n) we generate four 2-dimensional baseline variables,'® each drawn from a multivariate Gaussian distribution

with mean 0 and a matrix of variance covariance Z:
T
Xi= (x0.x2. X, XP) with XP € R* ~ N (0.5,), 1<p<4,

where the entries of the matrix le)/ % are simulated from i.i.d. uniform variables on [0,1].
We aim to generate the processes (To, Do) and T, such that the illness-death times Ty, for (g,) € {(01),(02),(12)},
are simulated through Cox transition-specific hazard functions:*?

T ~ @y (tX) = @ O exp (ga (X% ) )

q
effect coefficients, and a;‘io(.) is the baseline hazard function. We generate the three baseline hazard functions as follows:

a;o(.) ~ Weibull (scale = 0.01, shape = 1.2).
We set the transition-specific risk functions to be nonlinear using quadratic functions, in the spirit of Lee et al,'8 as

. T
where gq(.) is a transition-specific risk function, g7, = ( g ﬁ;‘(z), ﬁ;i(3)’ ﬁ;i(4)> with ﬁ;l’(p ) e R2for 1 < p < 4 are fixed

gon (Xi B) = (X050 + XP 000V g (X By) = (X282 + XP857) " g1z (X B) = (X057 + X030
(13)

We fix arbitrary values for the fixed effects coefficients. Hence, in this simulation scheme, the Cox’s linear assumption
does not hold anymore.

From the simulated T, the simulation of the processes (T, Do) and T, has to respect constraints of the model (ie, To;
and Ty, are competing, Tp; and T, are recurrent) in order to generate an identifiable Cox model . We fix r = 30% such
that 30% of patients from state 0 are censored, and 30% of patients at risk for transition 1 — 2 are censored from state 1,
see Table 1. We refer the reader to the Supplementary materials (Section 8) for more details on the simulation.

BSUB0 | SUOLILWOD dA1EaID a|qedl|dde ayy Aq peusenoh are sapie YO 9sn Jo Sajni 1oy Akeiqi]auljuQ AS|IM UO (SUONIPUOD-PUE-SLLIBILOY A3 | 1M ARiq 1 pul|uo//Sdiy) SUONIPUOD pUe SWB | 8yl 38S *[5202/£0/02] Uo AReiqiauliuQ A * ewe) abpaimouy| % Akiqi AsBAIUN [OPILE - BUIGRA PNWeS Uawoy AQ OTE6 WIS/Z00T 0T/I0p/W0d A8 | 1M Areiq i puluo//sdny wouy pepeojumoq ‘6 ‘2202 ‘8520260T



MW[ L Ey_statistiCS COTTIN ET AL.

TABLE 1 Descriptive statistics on the number of (No.) observations in the simulated data sets

No. observations (%)

Data set 0—>1 0—>2 0 — cens. 1->2 1 — cens. Total
DX 720 (36%) 680 (34%) 600 (30%) 504 (70%*) 216 (30%*) 2000
D% 1817 (36%) 1683 (34%) 1500 (30%) 1272 (70%2) 545 (30%%) 5000
D2 90 7234 (36%) 6766 (34%) 6000 (30%) 5064 (70%*) 2170 (30%) 20000

2Among patients at risk.

6.2 | Simulation study
6.2.1 | Understanding the effect of K and n

To get a better understanding of the methodologies discussed in Sections 4.2 and 4.3, we perform a simulation
study where we vary the size n of the data sets, the number K of time intervals used for the piecewise approx-
imations and the selection methods of the interval cutpoints. Gensheimer and Narasimhan!” performed a similar
study in a discrete-time approach by varying the value K with the conclusion that there is no difference in the
predictive performance. Kvamme and Borgan?! performed a similar study as well in both discrete-time and piece-
wise approaches with the conclusion that there is no difference in predictive performances between the meth-
ods to select the interval cutpoints. However, they concluded that smaller values for K are better for smaller
values of n.

For evaluation, we use the internal validation process described in Section 5.3. We use the iAUC and iBS measures, in
addition to the transition-specific integrated mean absolute error (iMAEg) between the estimated CIFs Fql(.lXi) and the
true CIFs F;‘l(.lXi):

Myal

. 1 /71 . y
MAEy = 2 [ L |y - Fyixo] . for .0 € (0.1.0.2.0.2),
val =1

where ny, is the number of subjects in the validation sets.

For the discretization of the time scale in the three data sets, we vary the number K of time intervals in K = 25, 50,
100, 200. We applied two methods to select the interval cutpoints with either equidistant cutpoints (uniform) or cutpoints
obtained with the Aalen-Johansen quantiles (quantilesAl).

In Figure 3, we plot the transition-specific validated criteria (iAUCs, iBSs, iMAEs) of the cutpoints selection meth-
ods versus the values of K and n. We integrate the AUC and BS measures at all the 4 equidistant time points in
[0, 7] (ie, at times t =4, 8,12, ...,96, for computational cost reasons). We integrate the MAE measure at all the 100
discrete time points in [0, 7] (ie, at times t =1,2,3...,100). We can see that the selection methods of the interval
cutpoints give similar performances in terms of iAUC and iMAE. However, in term of iBS, the uniform selection
method give slightly poorer performance for a smaller value of K (for K = 25) than the quantilesAJ selection method.
In terms of iAUC, iBS and iMAE, it is evident to see that a larger value of n increases the performances for all
the values of K. However, for transition 0 — 2, we can see that the performance differences in terms of iAUC are
very unstable when varying simultaneously the value of n, the value of K and the methods for selecting the interval
cutpoints.

6.2.2 | Understanding the role of P,

To get a better understanding of the role of the penalization term P, in the loss function in Equation (12),
we perform a second study on set of simulated data sets Dfl‘;‘r’gin. where we vary the effect of P,, the num-
ber K of time intervals (K =25, 50, 100, 200) and the selection methods of the interval cutpoints (uniform,

quantilesAl).
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-~ n=2000, a;cs = quantilesAJ - n=5000, a;cs = quantilesAJ - n=20000, a;cs = quantilesAJ
n = 2000, a;cs = uniform -e 1= 5000, a;cs = uniform ~e-n=20000, a;s = uniform
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FIGURE 3 Median iAUCs, iBSs, and iMAEs per transition, for each specified values of K and n in the simulation study. The full lines
represent the method quantilesAJ, while the dotted lines represent the method uniform

In Figure 4, we plot the transition-specific validated criteria (IAUCs, iBSs, iMAEs) versus the values of K. The full
lines represent the method quantilesAJ, while the dotted lines represent the method uniform. The green color repre-
sents the performance of IDNetwork with P, # 0, while the brown color represents the performance of IDNetwork with
P, = 0. In terms of iAUCs, the penalized model (ie, with P, # 0) outperforms the unpenalized model (ie, with P; = 0)
for all the values of K for the transitions 0 — 1 and 1 — 2. In terms of iBSs, the penalized and the unpenalized mod-
els display similar performances for all the values of K for transitions 0 — 1 and 0 — 2; the penalized model gives
slightly better performance for transition 1 — 2. In terms of iMAESs, the penalized model outperforms the unpenal-
ized model for all the values of K for the three transitions. Subsequently, we can see an interaction between the value
of K and the effect of the penalization regarding the iAUCs and the iMAEs. For the smaller value of K (ie, K = 25),
the penalized and the unpenalized models are equivalent. For the larger value of K (ie, K = 200), the penalized model
outperforms the unpenalized model. Thus, it is evident that when the value of K increases, the performance of the
unpenalized model decreases (in particular for the method quantilesAJ) while the performance of the penalized model

8SUBD| SUOLULLIOD BAIERID 3|qedl|dde ay) Aq peuAob ke sajoNe O ‘@SN JO Sa|nJ 10} A%eiq18UIIUO AB]IA UO (SUONIPUOD-PUB-SLLBIALIOD A3 1M ARR1q]1[BU|UO//SAIY) SUONIPUOD PUe SWB L 84} 89S *[5202/60/02] U0 ARiqiTaulluo &M * .eied afpaimou 2 AiqiT AISAIUN [OPIYRI - BUIGRM PNLES LWy Aq 0TEE'WIS/Z00T 0T/I0p/L00 A8 1M Afeiqjeul|uo//sdiy Wwoiy papeojumod ‘6 ‘2202 ‘8520L60T



COTTIN ET AL.

1588 Wi LEY_Statistics
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FIGURE 4 TIllustration of the effect of the penalization term P, in the loss function in Equation (12) on the set of simulated data sets
Dig?l%n': median iAUCs, iBSs, and iMAEs per transition, for each specified values of K. The full lines represent the method quantilesAJ, while
the dotted lines represent the method uniform. The red color represents the performance of IDNetwork with P, # 0, while the brown color

represents the performance of IDNetwork with P; = 0

is stable. Hence, the penalization term P, allows to mitigate the effect of a too large value of K on the IDNetwork
performance.

In addition, the role of the penalization term P, is to provide smooth estimates of the density probability functions.
Indeed, it may be reasonable to assume that large temporal variations in the density functions over successive time
intervals should be smoothed. For a too large value of K, it will result in the emergence of high jumps when computing
the CIFs. This problem can be fixed by applying a temporal smoothing method as done by P,. To illustrate our point, we
use the simulated data set Dig?gm_ and generate 100 additional observations. We estimate the CIFs of the additional obser-
vations with IDNetwork in the case of P; = 0 (unpenalized model) and in the case of P, # 0 (penalized model). Results
per transition are shown in Figure 5. For the transitions 0 — 1 and 0 — 2, the penalization term smoothes the estimates
when high jumps are estimated between adjacent time intervals. For the transition 1 — 2, estimates of IDNetwork with
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(A) Fy,(.|X) estimated with IDNetwork. (B) Fj,(.|X) estimated with IDNetwork. (C) F},(.|X) estimated with IDNetwork.
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D)  F,(|X) estimated with (E) Fy,(.|X) estimated with  (F) F,(.|X) estimated with
IDNetwork(P; = 0). IDNetwork(P, = 0). IDNetwork(P; = 0).

FIGURE 5 Estimated F(|X) in [0, 7] on the set of simulated data sets D%, for 100 additional simulated patients
((g.1) € {(0,1),(0,2),(1,2)})

P, =0 result in a loss of the variability that is corrected by setting P, # 0. We refer the reader to the true functions in
the Supplementary materials (Section 8.2); it is evident that the penalization term smooth very well the jumps that are
nonexistent in the true curves.

6.3 | Benchmark

We use the set of nonlinear simulated data sets D>*"). to compare the predictive performance of IDNetwork with the
state-of-the-art methods (see Section 5.3). To benchmark IDNetwork, we set K = 100 and divide the time scale into
intervals of uniform length.

The integrated predictive performances are shown in Table 2. Detailed results per evaluation times are displayed in the
Supplementary materials (Section 9.1). In these simulations, the Cox’s linear assumption does not hold anymore. Conse-
quently, as expected, IDNetwork significantly outperforms msCox and msSplineCox with a P-value less than 0.001 for the
three transitions in terms of iAUC and iBS. (except for the transition 1 — 2 where msCox and msSplineCox outperform
IDNetwork but with no statistical difference). IDNetwork significantly outperforms the linear version LinearIDNetwork
with a P-value less than 0.001 as well. Moreover, we note that LinearIDNetwork outperforms msCox and msSplineCox.
This illustrates the effect of a deep learning approach as compared with a statistical approach. We also evaluate the pre-
dictive performances of IDNetwork on a linear simulated data set. Results are shown in the Supplementary materials
(Section 9.2).

7 | APPLICATION ON REAL CLINICAL DATA SETS

‘We conduct experiments on real illness-death data from two clinical trials in colon cancer and one clinical trial in breast
cancer.
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TABLE 2 Predictive performance (median + SD) on the validation sets (internal validation with Monte Carlo simulations) for the set
of nonlinear simulated data sets Dfl?)?ﬁin_, with K = 100 and a uniform subdivision of the time scale

Transition

Criteria Algorithm 01 02 1-2 Average

iAUC msCox 0.508" + 0.04 0.489" + 0.05 0.499" + 0.04 0.499* + 0.02
msSplineCox 0.509* + 0.05 0.488 +0.05 0.501* + 0.04 0.498" + 0.01
LinearIDNetwork 0.517* + 0.05 0.499 + 0.06 0.509" +0.03 0.502* + 0.02
IDNetwork 0.573 + 0.03 0.527 + 0.03 0.558 + 0.04 0.545 + 0.01

iBS msCox 0.229" + 0.01 0.241* + 0.01 0.152 + 0.01 0.206" + 0.01
msSplineCox 0.238" + 0.01 0.249* +0.01 0.152 + 0.01 0.211* + 0.01
LinearIDNetwork 0.161* + 0.01 0.160* + 0.01 0.158 + 0.01 0.160* + 0.01
IDNetwork 0.143 + 0.01 0.148 + 0.01 0.153 +£0.01 0.148 + 0.01

TABLE 3 Descriptive statistics on the number of (No.) observations in the colon cancer data sets

No. observations (%)

Data set 0—>1 0—>2 0 — cens. 1-2 1 — cens. Total
NCT00079274 623 (29%) 81 (4%) 1427 (67%) 276 (44%*) 347 (56%*) 2121
NCT00275210 279 (25%) 14 (1%) 829 (74%) 132 (47%%) 147 (53%*) 1122

2 Among patients at risk.

TABLE 4 Descriptive statistics on the transition times (in months) in the colon cancer data sets

Transition
0—->1 0—->2 1-2
Data set Q1 Median Q3 Q1 Median Q3 Q1 Median Q3
NCT00079274 11 15 23 6 14 32 17 25 33
NCT00275210 10 14 22 4 7 23 16 22 30
7.1 | Data on colon cancer

7.1.1 | Description of the data sets

We use two data sets from Phase III clinical trials evaluating endpoints relapse-free survival (RFS) and overall-survival
(OS) in non-metastatic colon cancer. (1) The study NCT00079274" contains 2121 observed patients followed
for 60 months (5 years) for RFS and for 96 months (8 years) for OS.** It presents 67% of censoring from
state 0 and 56% of censoring from state 1 among patients at risk. (2) The study NCT00275210% contains
1122 patients followed over 60 months for RFS and OS.** The data set presents 74% of censoring from state
0 and 53% from state 1 among patients at risk. Descriptive statistics of the colon data sets are shown in
Tables 3 and 4.

The preprocessing of this two data sets requires a preliminary evaluation of the compatible features (same covariates
and same distributions of the covariates) and to adjust the length of follow-up between both data sets. Thus, we finally
restrict our attention to 9 baseline clinical covariates (8 categorical and 1 numerical) including the following features:
BMI, sex, race, age, tumor histological type, number of positive lymph nodes, cancer stage, ECOG performance status,
presence of bowel obstruction/perforation. In the study NCT00079274, outcome RFS has been right-censored at 5 years
and outcome OS at 8 years. Whereas in the study NCT00275210, both outcomes have been right-censored at 5 years. We
adjust the length of follow-up of both studies choosing a value for r compatible with both. Then for the experimentation,

BSUB0 | SUOLILWOD dA1EaID a|qedl|dde ayy Aq peusenoh are sapie YO 9sn Jo Sajni 1oy Akeiqi]auljuQ AS|IM UO (SUONIPUOD-PUE-SLLIBILOY A3 | 1M ARiq 1 pul|uo//Sdiy) SUONIPUOD pUe SWB | 8yl 38S *[5202/£0/02] Uo AReiqiauliuQ A * ewe) abpaimouy| % Akiqi AsBAIUN [OPILE - BUIGRA PNWeS Uawoy AQ OTE6 WIS/Z00T 0T/I0p/W0d A8 | 1M Areiq i puluo//sdny wouy pepeojumoq ‘6 ‘2202 ‘8520260T



COTTIN ET AL. Statistics W] LEY—Iﬂ

TABLE 5 Predictive performance (median + SD) for the data sets NCT00079274, NCT00275210 on colon cancer on (1) the
validation sets (internal validation), (2) the external NCT00275210 test set (external validation), with a uniform subdivision of the
time scale in K = 48 (months)

Transition
Evaluation Criteria Algorithm 0—-1 0—2 1-2 Average
(1) Internal iAUC msCox 0.677 + 0.03 0.658 + 0.08 0.682 + 0.04 0.663 + 0.03
msSplineCox 0.672 +0.03 0.600 + 0.09 0.692" + 0.04 0.659 + 0.03
LinearIDNetwork 0.666 + 0.03 0.617 +0.09 0.665 + 0.05 0.637 + 0.04
IDNetwork 0.669 + 0.03 0.660 + 0.09 0.662 + 0.06 0.651 + 0.03
iBS msCox 0.153 + 0.01 0.032% +0.00 0.201" +0.02 0.130 +0.01
msSplineCox 0.156 +£0.01 0.032" +£0.01 0.192" +0.03 0.126 + 0.01
LinearIDNetwork 0.154 +£0.01 0.028 + 0.00 0.207 £ 0.03 0.130 £ 0.01
IDNetwork 0.153 + 0.01 0.027 + 0.00 0.212 +0.03 0.129 £ 0.01
(2) External iAUC msCox 0.669" + 0.00 0.601* + 0.02 0.559 + 0.02 0.610* + 0.01
msSplineCox 0.668" + 0.00 0.598* + 0.03 0.566 + 0.01 0.613* + 0.00
LinearIDNetwork  0.670 + 0.01 0.694 + 0.03 0.533" +0.02 0.642" + 0.01
IDNetwork 0.673 + 0.01 0.713 + 0.05 0.562 + 0.03 0.651 + 0.02
iBS msCox 0.157" + 0.00 0.013* + 0.00 0.184* + 0.01 0.118" + 0.00
msSplineCox 0.159" + 0.00 0.013* + 0.00 0.176* + 0.01 0.116" + 0.00

LinearIDNetwork 0.154 + 0.00 0.011 + 0.00 0.146 + 0.01 0.103 + 0.00
IDNetwork 0.154 + 0.01 0.011 + 0.00 0.150 + 0.01 0.105 £+ 0.00

Note: We integrate the AUC and BS measures at all the 30 equidistant time points in [60, 7] (ie, at every month from 2 months).

the study NCT00079274 will be used for internal validation (training and validation) and the study NCT00275210 for
external validation.*!

For the two data sets, missing values were imputed by the median value for numerical features and by the mode
for categorical features. We apply one-hot encoding on categorical features and standardize numerical features with the
Z-score. For each data set, even though IDNetwork is a continuous-time method, we still need to subdivide the time axis
into time intervals. We fix a uniform length for the time intervals to 1 month such that the time interval for month j,
vj = [j — 1,)), includes all the events that occurred on the daily time interval [(j — 1) x 30.5,j x 30.5). We set K = 48 (ie,
7 =48 months = 4 years) and subdivide the time axis into monthly intervals between 0 and 48 months and set event
times after 48 months in a last interval vyg.

7.1.2 | Benchmark

We conduct (1) internal and (2) external validation. The integrated predictive performances are shown in Table 5. Results
per evaluation times are detailed in the Supplementary materials (Section 10). On the validation splits, neither method
outperforms the other for the three transitions independently. In addition, all the models are equivalent (ie, no signifi-
cant differences) on average. However, IDNetwork shows significant better performance on the external NCT00275210
validation study for all the transitions (excluding in terms of iAUC for transition 1 — 2 where msSplineCox outperforms
IDNetwork but with no statistical significance, in terms if iBS for transition 1 — 2 where LinearIDNetwork display better
performance but with no statistical significance). On average, IDNetwork displays significant better iAUC and iBS than
msCox and msSpline Cox with a P-value less than 0.001, a significant better iAUC than LinearIDNetwork with a P-value
less than 0.05.
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TABLE 6 Descriptive statistics on the number of (No.) observations in the METABRIC data set

No. observations (%)

Data set 0—>1 0—>2 0 — cens. 1->2 1 — cens. Total
METABRIC 677 (36%) 509 (27%) 717 (38%) 593 (88%*) 84 (12%*) 1903

2Among patients at risk.

TABLE 7 Descriptive statistics on the transition times (in months) in the METABRIC data set

Transition
0—-1 0->2 1-2
Data set Q1 Median Q3 Q1 Median Q3 Q1 Median Q3
METABRIC 20 39 81 65 113 121 36 61 110
7.2 | Data on breast cancer

7.2.1 | Description of the data set

We use the data from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort.*6 For the
METABRICS data set, we include 1903 patients followed for 360 months (30 years) for RFS and OS, with 38% of censoring
from state 0 and 13% of censoring from state 1 among patients at risk. Descriptive statistics of the data set are shown in
Tables 6 and 7.

This data set contains clinical, histo-pathological, gene copy number and gene expression features used to determine
breast cancer subgroups. Based on the literature, we select 17 baseline clinical, histo-pathological and gene copy num-
ber features (12 categorical, 5 numerical). It includes the following features: age, inference on the menopausal status,
Nottingham Prognostic Index (NPI), immunohistochemical oestrogen-receptor (ER) status, number of positive lymph
nodes, cancer grade, tumor size, tumor histological type, cellularity, Her2 copy number by SNP6, Her2 expression, ER
Expression, progesterone (PR) expression, type of breast surgery, cancer molecular subtype (pam50 subgroup, integrative
cluster), chemotherapy regimen, hormonal regimen, radiotherapy regimen.

The data set contains around 24 000 gene expression features. Before applying methods on this data set, we conduct a
preprocessing step by using statistical methods, in order to select a subset of relevant genes to be included in IDNetwork.
Several approaches have been reported to integrate gene expression data into survival models. These approaches are
based either on dimension reduction, on genes or metagenes selection*’ or, more recently, on the use of a large number
of gene expression values (>1000) with the development of deep learning methods.***° We choose a selection approach
in order to extract a ranked list of cancer-related genes based on their P-values from independent transition-specific Cox
P.H. models. The genes are selected using an independent data set in order to control for selection bias; we use the Breast
Invasive Carcinoma TCGA PanCancer? data set. We describe our selection process in two steps as follows:

1. For each gene expression feature:

« We fit independent transition-specific Cox P.H. models including the clinical covariates and each gene expression
feature.

« For each of the three transitions, we compute the P-value from a Wald test on the estimated coefficient related to
the specific gene.

2. For each transition:

« We adjust the P-values with a Benjamini-Hochberg multi-test correction for each transition independently. See the
Supplementary materials (Section 11) for details on the P-values per transition.

« We rank the P-values for each transition.
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TABLE 8 Number of (No.) genes selected per transition on the Breast Invasive Carcinoma TCGA PanCancer data set
for each threshold
No. genes selected per transition
Threshold («) 0—>1 0—>2 152 Total?
0.001 8 0 1 9
0.005 17 1 1 19
0.01 26 2 1 29
0.05 76 6 3 84
0.1 110 36 11 156

2Total number of unique genes selected.

« We use different thresholds, noted «, of the P-values for gene selection. We present the number of gene selected for
each threshold in Table 8. For the transition 0 — 1, several genes are selected (up to 110 genes for the threshold 0.1).
While for the transitions 0 — 2 and 1 — 2, very few genes are selected. In order to assess the biological meaning
of the selected genes, we perform a gene set enrichment analysis® for each transition-specific list of genes against
the Hallmark® collection of the Molecular Signatures Database (MSigDB). For the transitions 0 — 2 and 1 — 2,
there is no significant enriched terms. For the transition 0 — 1, there are 9 significant enriched terms. We refer
the reader to the Supplementary materials (Section 12) for detailed results on the analysis. In particular, the most
significant enriched term “Epithelial Mesenchymal Transition” is related to a core biological component of the
metastatic process in breast cancer®? and therefore well related to a primary cancer progression through a state
relapse. Hence, the gene selected on the transition 0 — 1 display a coherent functional profile associated to cancer
relapse. The addition of the selected genes in an illness-death model is thus expected to improve its performance
for the transition 0 — 1 more than the others.

For all the features, missing values were imputed by the median value for numerical features and by the mode for cat-
egorical features. We apply one-hot encoding on categorical features and standardize numerical features with the Z-score.
We fix a uniform length for the time intervals to 1 month such that the time interval for month j, v; = [j — 1,), includes
all the events that occurred on the daily time interval [(j — 1) X 30.5,j x 30.5). We fix K = 120 (ie, r = 120 months =
10 years) and subdivide the time axis into monthly intervals between 0 and 120 months and set event times after 120
months in a last interval vy;.

7.2.2 | Benchmark

With the Metabric data set we aim to compare the scalability performance of IDNetwork with other methods when includ-
ing a large number of features and varying the amount of features. The integrated predictive performances are shown
in Tables 9 and 10. Detailed results per evaluation times are displayed in the Supplementary materials (Section 13). We
compare different models with different lists of genes varying the threshold « of the P-values. For each of the four com-
pared algorithms, the models show different performances in terms of iAUC. The algorithms msCox and msSplineCox
display similar iAUC for transition 0 — 1, better iAUC for transition 0 — 2 and poorer iAUC for transition 1 — 2 when the
value of a increases. The algorithms IDNetwork and LinearIDNetwork improve their iAUC for transition0 —» 1and 1 — 2
when the value of «a increases. As expected, IDNetwork and LinearIDNetwork display similar iAUC for the transitions 0
— 2 and 1 — 2 when the value of « increases, as most of the genes included are informative on transition 0 — 1. Hence,
the two deep learning methods have a better iAUC for the transition 0 — 1 thanks to the addition of the selected gene
features in the modelization. This result is consistent with the gene set enrichment analysis realized in Section 7.2.1 in
which we have highlighted than the list of genes selected for the transition 0 — 1 is particularly related to the metastatic
process whereas there are no enriched terms in the genes selected for the transitions 0 - 2 and 1 — 2. In terms of iBS, we
can see a decreasing of the msCox and msSpline performances when the value of a increases. Whereas, LinearIDNetwork
and IDNetwork performances remain stable. Hence it seems that the deep learning methods are less sensitive in terms

of iBS to the increase in the number of features. Finally, we chose the model Mg as the best model to predict transitions
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TABLE 9 Integrated AUCs (median + SD) on the validation sets (internal validation) for the METABRIC data set, with a uniform
subdivision of the time scale in K = 120 (months)

Transition
Criteria Model Algorithm 0->1 0—2 1-2 Average

iAUC M, msCox 0.686 + 0.02 0.7027 + 0.05 0.725 + 0.04 0.711" + 0.02
msSplineCox 0.686 + 0.02 0.702" + 0.05 0.729 + 0.04 0.7107 +0.02
LinearIDNetwork 0.649* + 0.04 0.609* + 0.05 0.705 + 0.04 0.657* +£0.03

IDNetwork 0.681 + 0.03 0.671 +0.05 0.732 + 0.05 0.689 + 0.03
MR msCox 0.697 + 0.03 0.740* +0.03 0.728 + 0.02 0.720* +0.01
msSplineCox 0.694 + 0.03 0.751* + 0.04 0.734 + 0.01 0.726" + 0.01
LinearIDNetwork 0.657* +0.03 0.591* + 0.06 0.718 +0.03 0.651* +0.03

IDNetwork 0.689 + 0.03 0.659 + 0.05 0.717 + 0.04 0.692 + 0.03
MR msCox 0.702" +0.02 0.750* + 0.03 0.722 +0.03 0.724* +0.01
msSplineCox 0.690 + 0.02 0.756* +0.04 0.723 + 0.02 0.720° + 0.02
LinearIDNetwork 0.656" +0.03 0.629% +0.07 0.703" +0.03 0.653* +0.03

IDNetwork 0.684 +0.03 0.677 + 0.04 0.722 +0.03 0.692 + 0.02
MEHE msCox 0.693 + 0.02 0.753* +£0.03 0.710 + 0.04 0.713* +0.02
msSplineCox 0.694 + 0.02 0.763* +0.03 0.721 + 0.04 0.724" + 0.02
LinearIDNetwork 0.665" +0.03 0.615 + 0.06 0.715+0.03 0.654* +0.02

IDNetwork 0.685 + 0.03 0.649 + 0.06 0.717 £ 0.03 0.690 + 0.03
MBS msCox 0.696 + 0.03 0.743* +0.03 0.692% +0.03 0.709* +0.02
msSplineCox 0.716 + 0.03 0.722 +£0.03 0.729 + 0.05 0.739' + 0.04
LinearIDNetwork 0.665* + 0.03 0.627 + 0.05 0.720 + 0.02 0.667* + 0.02

IDNetwork 0.704 +0.03 0.640 + 0.05 0.722 £ 0.02 0.686 + 0.02

M msCox 0.681* +0.04 0.722" +0.03 0.671* +0.04 0.691 + 0.02

msSplineCox 0.686 + 0.01 0.683 +0.02 0.688" +0.02 0.686 + 0.01
LinearIDNetwork 0.670* +0.03 0.634 + 0.05 0.719 £ 0.03 0.679% +0.02

IDNetwork 0.709 + 0.03 0.661 + 0.05 0.732 + 0.03 0.697 + 0.02

Note: We integrate the AUC and BS measures at all the 30 equidistant time points in [90, 7] (ie, at every month from 3 months). The model M, uses only the
clinical features and each model MEY, for & € [0.001,0.005,0.01,0.05, 0.1], uses the clinical features and the genes selected with a corrected P-value less
than a.

0 — 1and 1 — 2. With the model Mg, IDNetwork outperforms significantly the other algorithms with an averaged iAUC
of 0.697 and an averaged iBS of 0.124, an iAUC of 0.714 and an iBS of 0.142 for transition 0 — 1, an iAUC of 0.730 and an
iBS of 0.167 for transition 1 — 2. IDNetwork show poorer performance for transition 0 — 2. This is, in our opinion, due
to the fact that experiencing transition 0 — 2 means that the patient died from another cause than cancer, but the clinical

and biological features provided to the model were not related (excluding the age) to non-cancer causes of death.

8 | DISCUSSION

We present IDNetwork a novel deep learning method to model an illness-death process and to predict two-stage evolution
of a disease based on baseline covariates. To the best of our knowledge, it is the first deep learning architecture developed in
the context of multi-state analysis. It outperforms standard methodologies in this context. In clinical practice, IDNetwork
may be useful in personalized medicine by providing predictions of the risks of relapse and death. It could help physicians
to adapt the therapeutic guidelines for a specific patient.
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TABLE 10 Integrated BSs (median + SD) on the validation sets (internal validation) for the METABRIC data set, with a uniform
subdivision of the time scale in K = 120 (months)

Transition
Criteria Model Algorithm 0->1 0—2 1-2 Average

iBS M, msCox 0.145 + 0.01 0.071* +0.01 0.156 + 0.01 0.124 +0.01
msSplineCox 0.146 + 0.01 0.073* +0.01 0.161 +0.01 0.126" +0.01
LinearIDNetwork 0.149 + 0.01 0.061 +0.01 0.175" +0.02 0.127* +0.01

IDNetwork 0.145 + 0.01 0.059 + 0.01 0.164 + 0.01 0.122 + 0.01

MR, msCox 0.145 + 0.01 0.067* + 0.01 0.159" + 0.01 0.124 + 0.00

msSplineCox 0.146 + 0.01 0.065" +0.01 0.165 + 0.01 0.125+0.01

LinearIDNetwork 0.146 + 0.01 0.060 + 0.01 0.173 +0.01 0.126 + 0.01

IDNetwork 0.146 + 0.01 0.059 + 0.01 0.166 + 0.02 0.124 + 0.01

MR msCox 0.145 + 0.01 0.068* + 0.01 0.164 + 0.01 0.126 + 0.00

msSplineCox 0.150 +0.01 0.071% £ 0.00 0.169 + 0.01 0.131 +0.01

LinearIDNetwork 0.146 + 0.01 0.060 + 0.01 0.178 +0.01 0.128 +0.01

IDNetwork 0.146 + 0.01 0.058 + 0.01 0.168 + 0.02 0.125 + 0.01

MEE msCox 0.146 +0.01 0.068" +0.01 0.167 + 0.01 0.126 + 0.00

msSplineCox 0.148 +0.01 0.069* + 0.00 0.174 +0.01 0.130 + 0.01

LinearIDNetwork 0.144 + 0.01 0.060 + 0.01 0.175 +0.01 0.127 +0.01

IDNetwork 0.145 + 0.01 0.060 + 0.01 0.171 + 0.02 0.124 + 0.01
MBS msCox 0.149" +0.01 0.071* + 0.01 0.185" +0.02 0.134* +0.01

msSplineCox 0.144 + 0.01 0.068" + 0.00 0.165 + 0.03 0.126 + 0.01
LinearIDNetwork 0.144 +0.01 0.060 + 0.01 0.175" +£0.01 0.127" +0.01

IDNetwork 0.142 + 0.01 0.059 + 0.01 0.167 +0.01 0.123 + 0.01
M msCox 0.157* +£0.01 0.072* £ 0.01 0.207* +£0.01 0.145* £ 0.01
msSplineCox 0.162" +0.01 0.066 + 0.01 0.201* + 0.01 0.143* +0.00
LinearIDNetwork 0.145 + 0.01 0.060 + 0.01 0.178" +0.02 0.127" +0.01

IDNetwork 0.145 + 0.01 0.060 + 0.01 0.165 + 0.01 0.124 + 0.01

Note: We integrate the AUC and BS measures at all the 30 equidistant time points in [90, 7] (ie, at every months from 3 months). The model M, uses only the
clinical features and each model MEY, for & € [0.001,0.005,0.01,0.05, 0.1], uses the clinical features and the genes selected with a corrected P-value less
than a.

Prognostication of diseases is a key momentum in the medical decision process of various diseases, for example to iden-
tify population at risk of cardiovascular complications or to identify population at risk of cancer relapse. The most used
approaches are based on nomograms and scores computed based on a few clinical and biological features. For example,
the CHAD2-DS2-VASC score is commonly used by physicians to identify patients who require anticoagulant treatment
following the diagnosis of a cardiac atrial arrhythmia.>® In the same way, the RSClin tool that combines clinical, patholog-
ical and genetic information has been developed in oncology to predict the risk of breast cancer relapse and to determine
more precisely which patients need chemotherapy in addition to surgery.>* But a lot of medical information contained
in the patients’ records is left unexploited. In parallel to the development of new biomarkers relying on highly special-
ized technologies, another approach is to focus on the optimization of prognostic models based on large but accessible
information. In the area of digital medicine which aims to capture and combine a huge amount of data, healthcare work-
ers will need specialized algorithms to support their practices based on standardized guidelines on the one hand, and on
personalized assessment on the other hand. IDNetwork has been developed in that sense.

IDNetwork uses a multi-task architecture and transition-specific subnetworks to learn an estimation of the density
probabilities of occurrence of state transitions of an illness death process. It uses piecewise approximations to provide
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accurate predictions of the cumulative probabilities of state transitions. IDNetwork uses multiple fully connected layers
and nonlinear activation functions to model the relationships between covariates and risks of transitions without any
assumption. It is trained by minimizing a loss function designed to both capture the relationships between covariates and
risks of transitions and provide smooth piecewise approximations of the density probabilities.

Through experiments on simulated data sets, we investigate different configurations of IDNetwork and illustrate the
benefit of our loss function. We compare the predictive performances of our method with the state-of-the-art methods
using discrimination and calibration criteria. We evaluate IDNetwork in predicting the cumulative probabilities of state
transitions on a simulated data set and on real data sets on colon and breast cancer. We show that IDNetwork provides
significant improvements compared with the others methods.

Furthermore, medical decision-making requires to combine heterogeneous individual features. On the real data set
on breast cancer, we illustrate how IDNetwork can be easily adapted to integrate various types of data (as clinical, bio-
logical, molecular, gene expression) and displays in this case coherent and significant improvements in comparison with
statistical methods.

Developing a reliable multi-state model with a small training set and few events can be challenging and can result in
a poor predictive model. Time-to-event data collected in a clinical setting can suffer from a high censoring rate, especially
for rare events. Applying survival models on data sets with fewer events than censored observations can impair the risks of
events estimates. In addition, deep learning methods require large amount of training data. This is rarely the case with data
sets from clinical trials where the number of patients is relatively low compared to the databases commonly used in deep
learning. We adapt the architecture of IDNetwork to handle these limitations by using hyper-parameters to simplify the
architecture when available training data may require it for each of the three transitions. Moreover, given the increasing
popularity of using real-world data (RWD) collection, such as electronic health records (EHRs) or disease registries, we
aim to exploit these data in the future for our problematic to make more efficient and reliable decision-making.

Explaining predictions in deep neural networks is challenging but essential in clinical applications where inter-
pretability and reliability are evaluated to support medical decisions. For the future work, it may be relevant to add a model
interpretability functionality to IDNetwork in order to help clinicians in establishing the patient prognosis. It could reveal
what are the patient characteristics associated with each transition and increase the understanding of the evolution of the
disease. Some methods have already been developed to explain predictions in deep neural networks.>> But these methods
are mainly used in the domain of image classification and are rarely developed in contexts like ours. It will be therefore
necessary to adapt these methods for multi-state analysis in order to understand the relationship between covariates and
risks of transitions. It would be interesting to illustrate the interaction effects between covariates in IDNetwork as well.
In particular, it could reveal the role of gene interactions in the variation of the risks.

IDNetwork is a flexible method developed for an illness-death process and can readily be applied in many cancers and
cardiovascular diseases to predict two-stage evolution. It can be generalized to embrace more complex disease evolution
patterns by adapting the states and transitions.> For example, the evolution of a disease should be modeled with multi-
ple intermediate states to reflect the long-term patient journey composed of sequential treatments. Therefore, IDNetwork
could provide a more realistic prediction of disease evolution through different phases. At the end, it could support med-
ical decisions not only based on a single event as done by traditional approaches, but by anticipating relevant outcomes
closed to the disease course of a real patient.

In the same way, IDNetwork could be generalized to model time-varying covariates (rather than only baseline covari-
ates) by adapting the model architecture and the loss function. Incorporating time-varying features could provide dynamic
updated predictions of the cumulative incidence functions based on all the patients’ characteristics measured since the
beginning of their clinical follow-up.
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(2) The data from the clinical trial NCT00275210* is available under request at https://data.projectdatasphere.org/
projectdatasphere/html/content/128.

We use also the data from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort.*®
The METABRIC data set is available at https://www.cbioportal.org/study/clinicalData?id=brca_metabric.

ENDNOTES

*https://www.tensorflow.org/.

"The clinical trial NCT00079274 data set is available under request at https://data.projectdatasphere.org/projectdatasphere/html/content/161.

*The clinical trial NCT00275210 data set is available under request at https://data.projectdatasphere.org/projectdatasphere/html/content/128.

$The METABRIC data set is available at https://www.cbioportal.org/study/clinicalData?id=brca_metabric.

IThe Breast Invasive Carcinoma TCGA PanCancer data set is available at https://www.cbioportal.org/study/clinicalData?id=brca_tcga_pan_
can_atlas_2018.
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