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Abstract
BACKGROUND Large language models (LLMs) have attracted significant interest for

automated clinical coding. However, early data show that LLMs are highly error-prone

when mapping medical codes. We sought to quantify and benchmark LLM medical code

querying errors across several available LLMs.

METHODS We evaluated GPT-3.5, GPT-4, Gemini Pro, and Llama2-70b Chat performance

and error patterns when querying medical billing codes. We extracted 12 months of unique

International Classification of Diseases, 9th edition, Clinical Modification (ICD-9-CM),

International Classification of Diseases, 10th edition, Clinical Modification (ICD-10-CM),

and Current Procedural Terminology (CPT) codes from the Mount Sinai Health System

electronic health record (EHR). Each LLM was provided with a code description and

prompted to generate a billing code. Exact match accuracy and other performance metrics

were calculated. Nonexact matches were analyzed using descriptive metrics and standard-

ized measures of text and code similarity, including METEOR score, BERTScore, and cui2-

vec cosine similarity. We created and applied a CodeSTS manual similarity grading system

to 200 randomly selected codes weighted by EHR code frequency. Using CodeSTS scores,

we identified correct “equivalent” or “generalized” generated codes.

RESULTS A total of 7697 ICD-9-CM, 15,950 ICD-10-CM, and 3673 CPT codes were

extracted. GPT-4 had the highest exact match rate (ICD-9-CM: 45.9%; ICD-10-CM:

33.9%; CPT: 49.8%). Among incorrectly matched codes, GPT-4 generated the most

equivalent codes (ICD-9-CM: 7.0%; ICD-10-CM: 10.9%), and GPT-3.5 generated the

most generalized but correct codes (ICD-9-CM: 29.9%; ICD-10-CM: 18.5%). Extracted

code frequency, shorter codes, and shorter code descriptions were associated (P<0.05)
with higher exact match rates in nearly all analyses.

CONCLUSIONS All tested LLMs performed poorly on medical code querying, often gen-

erating codes conveying imprecise or fabricated information. LLMs are not appropriate
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for use on medical coding tasks without additional re-

search. (Funded by the AGA Research Foundation and

National Institutes of Health.)

Introduction

T he International Classification of Diseases (ICD)
terminology is the most widely used administra-
tive coding system and provides a standardized

representation of medical diagnoses.1-3 In the United
States, the “CM” (clinical modification) of this terminol-
ogy plays a critical role in clinical recordkeeping, public
health surveillance, research, and billing.2 Current Proce-
dural Terminology (CPT) codes are analogously used for
procedural billing.4 Automating the extraction of medical
codes from unstructured clinical text has been a long-
standing goal of medical natural language processing
(NLP) research.5 Thus far, automated clinical coding sys-
tems require significant engineering resources to deploy
and demonstrate insufficient accuracy, leaving most
health care systems to rely on manual coders.5

Large language models (LLMs) are deep learning models
trained on extensive textual data, capable of generating
text output.6 LLMs have shown remarkable text proces-
sing and reasoning capabilities, suggesting that they could
automate key administrative tasks.7-10 However, even the
best LLMs extract fewer correct ICD-10-CM codes and
generate more incorrect codes from clinical text than
smaller fine-tuned language models.11 We sought to
benchmark baseline LLM performance on medical code
querying across several available LLMs, including GPT-
3.5, GPT-4, Gemini Pro, and LLaMa-70b Chat. We aimed
to identify potential mechanisms to improve code map-
ping performance. Using a systematic and automated
approach whereby we instruct the LLM to generate a code
when provided the code’s description, we aimed to char-
acterize the medical coding capabilities of current LLMs
in sufficient detail to guide additional research.

Methods

CODE EXTRACTION FROM MOUNT SINAI
DATA WAREHOUSE

We extracted unique primary International Classification of
Diseases, 9th edition, Clinical Modification (ICD-9-CM),

International Classification of Diseases, 10th edition, Clini-
cal Modification (ICD-10-CM), and CPT billing codes from
Mount Sinai Health System electronic health records
(EHRs) collected during the time periods corresponding
with the most recent Centers for Medicare & Medicaid Ser-
vices (CMS) billing code lists: October 1, 2014, to Septem-
ber 30, 2015, for ICD-9-CM and October 1, 2022, to
September 30, 2023, for ICD-10-CM and CPT. We used
the UMLS (Unified Medical Language System) REST API
(representational state transfer application programming
interface; UMLS Metathesaurus version: 2023AB release)
to obtain the preferred description for each code.12

LLM CODE GENERATION

We utilized GPT-3.5 Turbo (March 2023, June 2023, and
November 2023 versions), GPT-4 (March 2023, June
2023, and November 2023 versions), Gemini Pro, and
Llama2-70b Chat (Table S1 in the Supplementary Appen-
dix) to assess medical code querying capabilities.13-16 The
APIs for these models were accessed between December
26 and 27, 2023. Our primary task involved prompting the
models to generate a code when given the preferred code
description of an extracted code. We constructed a stan-
dardized prompt for this task (see Supplementary Meth-
ods).17 To standardize our LLM API calls, we used
LangChain (version 0.350). All models were set to a tem-
perature of 0.2 and 50 maximum output tokens. We
selected the lowest temperature that produced valid out-
put across all models to reduce response variability. We
tested temperatures of 0.2, 0.4, 0.6, 0.8, and 1.0 on a sub-
set of 100 codes and did not notice meaningful differ-
ences in overall accuracy. We confirmed that no LLM
responses were truncated due to the maximum output
tokens. We used the UMLS REST API to obtain the pre-
ferred code description for each generated code.12

MANUAL ASSESSMENT OF CONCEPT SIMILARITY

To manually assess concept similarity, we developed Cod-
eSTS, an adaptation of MedSTS (medical semantic textual
similarity)18 that quantifies differences between original
and generated code descriptions. We applied weighted
sampling based on the frequency of EHR codes to ran-
domly select 220 codes from each list of unique ICD-9-
CM, ICD-10-CM, and CPT codes. Twenty of these codes
were jointly reviewed by two physicians (E.K. and A.S.) to
develop a consistent ruleset for assigning CodeSTS scores
(Table S2). We (E.K. and A.S.) independently scored the
dissimilar descriptions for the remaining 200 codes and
used the average scores for our analyses. We used Cohen’s
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kappa to assess interrater reliability. There was a moder-
ate degree of interrater reliability between the two
reviewers (ICD-9-CM: 0.541; ICD-10-CM: 0.596; CPT:
0.458). We also assessed concordance between CodeSTS
and the calculated similarity scores (METEOR score,19

BERTScore,20 and cui2vec21 cosine similarity) but found
poor concordance (<0.40) across all metrics.

PERFORMANCE EVALUATION

The rate of exact code matches was calculated as an
overall metric of model performance. Within the manual
subset, we also determined the number of equivalent
codes (4 � CodeSTS > 5). To assess the similarity in text
and meaning between the original and generated codes
holistically, we utilized METEOR,19 BERTScore,20 and
cui2vec21 cosine similarity. Each automated metric assesses
similarity in a complementary fashion (Table S3). In the
manual subset, we also utilized CodeSTS scores to evaluate
similarity.

ERROR ANALYSIS

To identify code generation error patterns, we analyzed
the generated codes that were not exact matches. We
assessed the rate of valid codes and fabricated (nonvalid)
codes. Valid codes were defined as codes present from the
UMLS Metathesaurus.12 We also assessed the rate of bill-
able and nonbillable ICD codes. Nonbillable codes repre-
sent concepts that are too vague for billing purposes. We
defined these codes as the subset of valid codes not pre-
sent in the most recent CMS list of acceptable billing
codes (ICD-9-CM: 2014; ICD-10-CM: 2023).22 All CPT
codes are “billable,” so no distinction was made for CPT
codes. Because ICD codes become more granular with
each successive digit, we measured the longest sequence
of matched digits as an additional means of assessing par-
tial accuracy. To assess the structural patterns of each
model’s code generation, we assessed the rate of correctly
matched code length and correct digit-level matches. We
qualitatively and quantitatively assessed the relationships
between exact match rates and code length, code descrip-
tion, and log-transformed EHR code frequency using his-
tograms and correlation coefficients, respectively. We
used tornado plots to visualize the relationships between
exact match and length, description length, and log-
transformed EHR code frequency.

In the manual subset, we used the CodeSTS scores to iden-
tify codes that were correct, either because they were equiv-
alent (CodeSTS � 4) or generalized (3 < CodeSTS � 4).

Calculated metrics (METEOR score,19 BERTScore,20 and
cui2vec21 cosine similarity) and the manual CodeSTS score
were also assessed. CodeSTS score distributions for the
incorrect codes were described using histograms.

STATISTICAL ANALYSIS

We reported the median and interquartile range for code fre-
quency in the Mount Sinai Health System for 1 year. We sum-
marized the ICD code querying performance for each model
using descriptive statistics. We calculated mean values for
exact match, equivalent match, generalized match, valid
codes, billable codes, nonbillable codes, fabricated codes,
matched length, matched digits, longest sequence of correct
digits matched, CodeSTS score, METEOR score, BERTScore,
and cui2vec cosine similarity. We reported median values for
code generation frequency. We calculated 95% confidence
intervals for all values using bootstrapping with 10,000 sam-
ples. We calculated point-biserial correlation coefficients and
their P values for the relationships between eachmodel’s per-
formance and code frequency, code length, and description
length using an alpha of 0.05. We coded all analyses in
Python (Version 3.11.5).

Results

CODE DATASETS

We extracted 7697 unique ICD-9-CM codes from the
EHR, with a median code frequency of 18.0 (interquartile
range: 4.0 to 89.0, maximum: 102,072). We extracted
15,950 unique ICD-10-CM codes, with a median fre-
quency of 9.0 (interquartile range: 2.0 to 45.0, maximum:
140,560). We extracted 3673 unique CPT codes with a
median code frequency of 8.0 (interquartile range: 2.0 to
97.0, maximum: 1,304,462). A total of 200 unique codes,
weighted by frequency of use within the EHR, were ran-
domly selected for each code system. The manually
reviewed ICD-9-CM, ICD-10-CM, and CPT data had
median code frequencies of 1511.5 (interquartile range:
478.0 to 4603.0), 1735.0 (interquartile range: 521.5 to
6191.25), and 15,977.5 (6080.0 to 64,226.0), respectively.
The code frequency distributions for the full code sets and
manual subsets are shown in Figure 1.

CODE GENERATION PERFORMANCE EVALUATION

Code generation performance for the full dataset varied
across the different coding systems and models (Table 1).
GPT-4 (November [Nov]) had the highest exact match rates
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(ICD-9-CM: 45.9%; ICD-10-CM: 33.9%; CPT: 49.8%), and
Llama2-70b Chat scored the lowest (ICD-9-CM: 1.2%; ICD-
10-CM: 1.5%; CPT: 2.6%). When excluding GPT-4, GPT-3.5
(Nov) had the next best match rates (ICD-9-CM: 28.9%;
ICD-10-CM: 18.2%; CPT: 31.9%), followed by Gemini Pro
(ICD-9-CM: 10.7%; ICD-10-CM: 4.8%; CPT: 11.4%) and
Llama2-70b Chat (ICD-9-CM: 1.2%; ICD-10-CM: 1.5%;
CPT: 2.6%). Both GPT-4 and GPT-3.5 Turbo demonstrated
improved exact match performance with each successive
model. At the code system level, ICD-9-CM and CPT codes
generally had more exact matches than ICD-10-CM. The
only exception was Llama2-70b Chat, which had the lowest
match rate with ICD-9-CM.

We assessed textual similarity between each pair of origi-
nal and generated code descriptions using METEOR

scores and BERTScores. GPT-4 (Nov) consistently scored
highest and Llama2-70b Chat consistently scored worst
across all code systems and scores. Gemini Pro and the
best-scoring GPT-3.5 Turbo model had scores between
these two extremes. To assess the conceptual similarity
between the original and generated codes, we calculated
cui2vec cosine similarity scores and observed a similar
pattern. GPT-4 (Nov) scored highest (ICD-9-CM: 0.843;
ICD-10-CM: 0.733), followed by GPT-3.5 Turbo (best
ICD-9-CM score: 0.765; best ICD-10-CM score: 0.566),
Gemini Pro (ICD-9-CM: 0.641; ICD-10-CM: 0.414), and
Llama2-70b Chat (ICD-9-CM: 0.418; ICD-10-CM: 0.287).

When evaluating the manual data (Table 2), patterns of
model performance were unchanged. However, there was
an overall increase in exact match rates and conceptual
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Figure 1. Frequency of Codes in the Electronic Health Record (EHR).
Panel A shows all extracted codes. Panel B shows a manually reviewed subset of 200 codes per system, randomly selected with weighted
sampling based on the frequency of electronic health record codes. CPT indicates Current Procedural Terminology; ICD-9-CM,
International Classification of Diseases, 9th edition, Clinical Modification; and ICD-10-CM, International Classification of Diseases, 10th
edition, Clinical Modification.
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scores across all models and code systems. The equivalent
match rate (CodeSTS score � 4) was highest for GPT-4
(Nov) (ICD-9-CM: 80.0%; ICD-10-CM: 78.0%; CPT:
83.5%) and lowest for Llama2-70b Chat (ICD-9-CM:
5.0%; ICD-10-CM: 15.0%; CPT: 9.0%). METEOR scores,
BERTScores, and cui2vec similarity scores were also uni-
formly higher than in the full dataset (Table 2).

CODE GENERATION ERROR ANALYSIS

To further interrogate the observed code generation errors,
we analyzed the incorrectly generated codes for Gemini
Pro, Llama2-70b Chat, and the most recent model versions
of GPT-3.5 and GPT-4. We found GPT-4 and GPT-3.5
Turbo had similarly high rates of valid codes, in contrast to
Gemini Pro and Llama2-70b Chat, which had more diffi-
culty (Table 3). Among the incorrect codes, GPT-4 and
GPT-3.5 Turbo generated similar rates of nonexistent codes,
followed by Gemini Pro and Llama2-70b Chat. Llama2-70b
Chat had the highest rate of nonbillable codes (ICD-9-CM:
9.4%; ICD-10-CM: 35.1%), followed by Gemini Pro (ICD-9-
CM: 11.1%; ICD-10-CM: 12.6%), GPT-4 (ICD-9-CM: 9.6%;
ICD-10-CM: 12.7%), and GPT-3.5 Turbo (ICD-9-CM: 6.4%;
ICD-10-CM: 10.4%). GPT-3.5 Turbo had the highest rate of
billable codes for both ICD code systems, followed closely
by GPT-4. Gemini Pro and Llama2-70b Chat had much
lower rates of generated billable codes. Surprisingly, all
models had a low rate (<75%) of correct length code (Table
3) for the code systems with variable code lengths (ICD-9-
CM and ICD-10-CM). Overall digit-level matches were also
low (<70%) across all models (Table 3). As a measure of
code specificity, we determined the longest correct
sequence and observed that the most frequent length was
three digits for most scenarios (Table 3).

We observed the frequency of code repetition in the incor-
rectly generated codes (Table 3). We found GPT-4 had the
lowest rate of code repetition and, for all models, ICD-9-
CM codes repeated the least. Among incorrect codes,
GPT-4 notably repeated ICD-10-CM codes a mean of 3.7
times in contrast to GPT-3.5 Turbo, which repeated codes
a mean of 93.6 times. Table S4 shows the top five repeated
codes for each model and code system. Interestingly, the
most repeated CPT code for nearly all models was 84120,
which corresponds to “Porphyrins, urine; quantitation and
fractionation.” We were unable to identify any pattern
that explained which codes were repeated.

Automated textual similarity scores (METEOR score,
BERTScore, and cui2vec cosine similarity) in the error

analysis showed a similar pattern to what was observed in
the overall dataset (Table 3). GPT-4 consistently scored
highest and Llama2-70b Chat consistently scored lowest,
with Gemini Pro and GPT-3.5 Turbo between these two
extremes. Manually assessed CodeSTS scores were used
to analyze conceptual similarity (Table 4). GPT-3.5 Turbo
(Nov) had the highest rate of correctly generalized code
matches (ICD-9-CM: 29.9%; ICD-10-CM: 18.5%), fol-
lowed by GPT-4 (Nov) (ICD-9-CM: 18.6%; ICD-10-CM:
13.0%), Gemini Pro (ICD-9-CM: 9.2%; ICD-10-CM:
5.6%), and Llama2-70b Chat (ICD-9-CM: 1.6%; ICD-10-
CM: 7.5%). We observed that in most instances a Cod-
eSTS score of 1 was most frequent for the ICD code
systems and a score of 0 for the CPT code system (Figure
S1). In general, the GPT-4 models had the highest propen-
sity for higher CodeSTS scores, which is consistent with
other similarly high measures of conceptual similarity for
these models. A full error analysis for the manually
reviewed codes that were not exact matches is shown in
Table S5.

EHR code frequency, shorter codes, and shorter code
descriptions were generally associated with a higher rate
of exact matches for all models and code systems
(P<0.05). The exceptions were ICD-9-CM code length for
Llama2-70b Chat and CPT description length for GPT-3.5
and GPT-4. Log-transformed EHR code frequency had
the strongest correlation with ICD-9-CM and CPT code
exact match accuracy for all models. Conversely, code
length had the strongest correlation with ICD-10-CM
code exact match accuracy. The distribution of exact
match counts and rates for these code characteristics are
illustrated in Figures S2 to S4.

Discussion
Our study evaluated the medical code–generating perfor-
mance of GPT-3.5, GPT-4, Gemini Pro, and Llama2-70b
Chat. We found that no model had an exact match rate
for generated ICD-9-CM, ICD-10-CM, and CPT codes
above 50%, rendering these models unsuitable in their
base form. GPT-4 performed the best in terms of exact
and equivalent match rates and multiple measures of con-
ceptual similarity. GPT-3.5 was the next best model, fol-
lowed by Gemini-Pro. Llama2-70b Chat performed the
worst by a large margin, with exact match rates under 5%.
All models generated CPT and ICD-9-CM codes more
accurately than ICD-10-CM codes.
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Despite struggling with exact code generation, the models
often generated codes that were correct or at least concep-
tually similar to the correct codes. To complement the
automated similarity scores, we created and applied the
CodeSTS metric. We observed a moderate degree of inter-
rater reliability between the two CodeSTS scorers. There
was poor concordance between CodeSTS and the auto-
mated similarity scores, which we attribute to differences
between each metric’s definition of similarity. Within our
manually reviewed subset, we found that GPT-3.5 had the
greatest tendency to generate correct but generalized
codes and GPT-4 had the greatest tendency to generate
equivalent codes. Across the entire dataset, GPT-4 had
the lowest rate of fabricated codes and GPT-3.5 had the
lowest rate of nonbillable code generation. For GPT-4,
GPT-3.5, and Gemini Pro, code generation errors were
most likely after the first three generated digits. The Cod-
eSTS score distributions confirm this observation, because
most nonexact generated codes correspond with scores of
1 to 3, which all have some degree of relationship with the
original code. The base LLMs can therefore parse the gen-
eral descriptive nature of medical codes. Still, they often
cannot attain adequate precision and resort to overgenera-
lization or fabricated specificity, which is unacceptable for
clinical use cases.23

EHR code frequency had the largest impact on code-
generated performance, likely explaining the differences
in overall performance between the full dataset and man-
ual subset. This relationship is likely due to the frequency
of these codes appearing in the training data. Similarly, we
noted that the models repeatedly generated the same
codes for multiple descriptions, suggesting a tendency for
specific codes or, potentially, gaps in the training data. We
could not discern any pattern in the repeated codes. In
general, code repetition was most frequent for CPT codes.
Performance across code systems is most likely related to
the frequency of each code and its description in the LLM
training data.24 The error patterns we observed suggest
that the LLMs do not have a complete internal representa-
tion of medical coding rules. This is consistent with prior
work showing that LLMs have difficulty performing multi-
step logic without support.25 This is also consistent with
our observations about model behavior while developing
our prompt strategy. We found that, for particular code
descriptions, no amount of prompt engineering could
coerce the models to generate the correct code.

Our results are consistent with a prior experiment showing
that smaller, fine-tuned Spark NLP models (76% capture
rate) outperformed GPT-4 (58%) and GPT-3.5 (40%)
when extracting ICD-10-CM codes from a limited set of
clinical text.11 We similarly found a high rate of incorrectly
generated ICD codes. However, our approach differs in
several key aspects. By simplifying the model task to
match codes to their descriptions (code querying), we
could scale our benchmarking to over 27,000 ICD and
CPT codes. We also focused our study on explaining why
more advanced LLMs would perform worse at extracting
codes from clinical text. We suspected that because
general-purpose LLMs struggle with tasks requiring
character-level comprehension, such as arithmetic or
word spelling,26-28 they would similarly struggle with the
fundamental task of matching alphanumeric medical
codes to their official descriptions. This task isolates the
model’s understanding of the medical codes from higher-
level language tasks like understanding clinical concepts.

Our study reaffirms the limitations of LLM tokenization.
LLMs are trained on and generate text in short segments,
achieved by splitting the source text into basic linguistic
units known as “tokens.” However, when tokenization is
applied to nonlanguage text such as medical codes, it clus-
ters the characters without regard for the coding system’s
intrinsic structure and obscures that information from the
model.29,30 The limitations of tokenization may be over-
come with additional LLM fine-tuning or linkage with pro-
grammed “tools.”31-34

Our study has several limitations. We did not evaluate
strategies known to improve LLM performance, including
advanced prompt engineering, tool use, retrieval aug-
mented generation, or model fine-tuning. We also did not
evaluate code generation performance in the context of
real-world clinical narratives or notes from the EHR.
Despite this, our validation approach targets a key bottle-
neck in performance and provides scalable and re-
producible open-source evaluation metrics that can spur
accelerated development of LLM-based medical code
extraction tools. Since our study was conducted, new and
updated models have been released that may perform bet-
ter on medical code querying.

Our evaluation of LLM proficiency in generating codes
from the ICD-9-CM, ICD-10-CM, and CPT systems
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Table 3. ICD-9-CM, ICD-10-CM, and CPT Code Generation Error Analysis of Current Model Versions, Full Code Set.*

Coding System Metric
GPT-3.5 Turbo

(Nov)† GPT-4 (Nov)† Gemini Pro† Llama2-70b Chat†

ICD-9-CM
(n=7697)

Incorrect codes, n
(% of total)

5467 (71.0%) 4149 (53.9%) 6869 (89.2%) 7601 (98.8%)

Valid code, %
(95% CI)

96.1% (95.6%–96.6%) 97.1% (96.6%–97.5%) 88.9% (88.1%–89.6%) 54.1% (53.0%–55.2%)

Billable code, %
(95% CI)

89.7% (88.9%–90.5%) 87.5% (86.5%–88.5%) 69.8% (68.7%–70.9%) 44.7% (43.6%–45.8%)

Nonbillable code,
% (95% CI)

6.4% (5.8%–7.0%) 9.6% (8.7%–10.5%) 19.1% (18.2%–20.0%) 9.4% (8.8%–10.1%)

Fabricated code, %
(95% CI)

3.9% (3.4%–4.4%) 2.9% (2.4%–3.5%) 11.1% (10.4%–11.8%) 45.9% (44.8%–47.0%)

Code generation
frequency, mean
(95% CI)

4.9 (4.7–5.0) 3.0 (3.0–3.1) 6.5 (6.3–6.6) 17.5 (16.9–18.1)

Matched length, %
(95% CI)

71.8% (70.6%–73.0%) 73.9% (72.5%–75.2%) 62.7% (61.5%–63.8%) 58.1% (57.0%–59.2%)

Matched digits, %
(95% CI)

56.3% (55.6%–57.0%) 63.3% (62.6%–64.0%) 53.2% (52.6%–53.8%) 30.8% (30.2%–31.4%)

Longest sequence
of correct digits
matched, % (95%
CI)

0: 18.7% (17.7%–19.7%) 0: 10.0% (9.1%–10.9%) 0: 17.1% (16.2%–18.0%) 0: 42.2% (41.1%–43.3%)

1: 5.9% (5.3%–6.6%) 1: 4.9% (4.3%–5.6%) 1: 9.9% (9.2%–10.6%) 1: 21.2% (20.3%–22.2%)

2: 12.7% (11.8%–13.6%) 2: 12.5% (11.5%–13.5%) 2: 20.8% (19.8%–21.7%) 2: 21.2% (20.3%–22.1%)

3: 42.3% (41.0%–43.6%) 3: 42.0% (40.5%–43.6%) 3: 36.5% (35.3%–37.6%) 3: 12.3% (11.6%–13.1%)

4: 20.4% (19.3%–21.4%) 4: 30.6% (29.3%–32.0%) 4: 15.8% (14.9%–16.6%) 4: 3.1% (2.7%–3.5%)

cui2vec cosine
similarity, mean
(95% CI)

0.660 (0.654–0.667) 0.697 (0.690–0.703) 0.590 (0.584–0.596) 0.402 (0.393–0.411)

METEOR score,
mean (95% CI)

0.198 (0.193–0.202) 0.235 (0.230–0.240) 0.153 (0.150–0.157) 0.079 (0.075–0.083)

BERTScore, mean
(95% CI)

0.805 (0.803–0.807) 0.824 (0.822–0.827) 0.786 (0.784–0.788) 0.743 (0.741–0.745)

ICD-10-CM
(n=15,950)

Incorrect codes, n
(% of total)

13,025 (81.7%) 10,492 (65.8%) 15,170 (95.1%) 15,693 (98.4%)

Valid code, %
(95% CI)

82.7 (82.0%–83.3%) 81.5 (80.7%–82.2%) 62.6 (61.8%–63.4%) 69.7 (69.0%–70.4%)

Billable code, %
(95% CI)

72.2% (71.4%–73.0%) 68.8% (67.9%–69.7%) 50.0% (49.2%–50.8%) 34.6% (33.9%–35.4%)

Nonbillable code,
% (95% CI)

10.4% (9.9%–11.0%) 12.7% (12.0%–13.3%) 12.6% (12.1%–13.2%) 35.1% (34.3%–35.8%)

Fabricated code, %
(95% CI)

17.3% (16.7%–18.0%) 18.5% (17.8%–19.2%) 37.4% (36.6%–38.2%) 30.3% (29.6%–31.0%)

Code generation
frequency, mean
(95% CI)

93.6 (88.6–98.7) 3.7 (3.7–3.8) 46.2 (44.0–48.4) 63.1 (60.4–65.9)

Matched length, %
(95% CI)

57.4% (56.6%–58.3%) 64.7% (63.8%–65.7%) 58.9% (58.1%–59.7%) 31.3% (30.6%–32.1%)

Matched digits, %
(95% CI)

57.0% (56.6%–57.4%) 67.6% (67.2%–68.0%) 51.6% (51.3%–52.0%) 37.5% (37.1%–37.8%)

Longest sequence
of correct digits
matched, % (95%
CI)

0: 13.7% (13.1%–14.3%) 0: 5.0% (4.6%–5.4%) 0: 12.0% (11.5%–12.5%) 0: 20.7% (20.1%–21.4%)

(continued)
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suggests that base LLMs alone are poorly suited for
medical code mapping tasks. Although the models can
approximate the meaning of many codes, they also
display an unacceptable lack of precision and a high
propensity for falsifying codes. This has significant
implications for billing, clinical decision-making, qual-
ity improvement, research, and health policy. Whereas

we found that current base LLMs struggle with simple
code queries, there is an opportunity to mitigate this
with fine-tuning, tool use, or retrieval augmented gen-
eration. Finally, we provide a systematic and automated
evaluation approach for medical code generation that
can spur the development of medical code extraction
tools.

Table 3. (cont.)

Coding System Metric
GPT-3.5 Turbo

(Nov)† GPT-4 (Nov)† Gemini Pro† Llama2-70b Chat†

1: 7.1% (6.7%–7.5%) 1: 2.9% (2.6%–3.2%) 1: 14.3% (13.7%–14.8%) 1: 26.6% (25.9%–27.2%)

2: 9.1% (8.6%–9.6%) 2: 5.6% (5.2%–6.1%) 2: 18.6% (18.0%–19.2%) 2: 24.1% (23.5%–24.8%)

3: 44.8% (43.9%–45.6%) 3: 42.1% (41.1%–43.0%) 3: 40.6% (39.9%–41.4%) 3: 23.6% (22.9%–24.2%)

4: 18.5% (17.8%–19.2%) 4: 29.9% (29.0%–30.7%) 4: 12.4% (11.9%–12.9%) 4: 4.6% (4.3%–4.9%)

5: 5.8% (5.4%–6.2%) 5: 11.6% (11.0%–12.2%) 5: 2.0% (1.7%–2.2%) 5: 0.4% (0.3%–0.4%)

6: 1.0% (0.8%–1.2%) 6: 2.9% (2.6%–3.2%) 6: 0.1% (0.1%–0.2%) 6: 0.0% (0.0%–0.1%)

cui2vec cosine
similarity, mean
(95% CI)

0.417 (0.411–0.423) 0.512 (0.506–0.518) 0.349 (0.342–0.355) 0.255 (0.249–0.261)

METEOR score,
mean (95% CI)

0.237 (0.234–0.240) 0.314 (0.310–0.317) 0.188 (0.185–0.191) 0.108 (0.106–0.110)

BERTScore, mean
(95% CI)

0.830 (0.828–0.831) 0.866 (0.864–0.868) 0.810 (0.808–0.811) 0.769 (0.768–0.770)

CPT (n=3673) Incorrect codes, n
(% of total)

2502 (68.1%) 1843 (50.2%) 3225 (88.6%) 3579 (97.4%)

Valid code, %
(95% CI)

94.0% (93.0%–94.9%) 93.9% (92.8%–95.0%) 84.1% (82.8%–85.3%) 54.8% (53.1%–56.4%)

Fabricated code, %
(95% CI)

6.0% (5.1%–7.0%) 6.1% (5.0%–7.2%) 15.9% (14.7%–17.2%) 45.2% (43.6%–46.9%)

Code Generation
Frequency, mean
(95% CI)

8.4 (7.5–9.3) 2.6 (2.5–2.7) 15.3 (14.0–16.7) 60.3 (56.3–64.4)

Matched length, %
(95% CI)

99.7% (99.4%–99.9%) 98.5% (98.0%–99.1%) 98.7% (98.3%–99.1%) 98.8% (98.4%–99.1%)

Matched digits, %
(95% CI)

59.5% (58.7%–60.4%) 63.3% (62.3%–64.2%) 53.7% (53.0%–54.5%) 40.8% (40.1%–41.6%)

Longest sequence
of correct digits
matched, % (95%
CI)

0: 4.2% (3.5%–5.0%) 0: 4.4% (3.5%–5.4%) 0: 7.5% (6.6%–8.4%) 0: 13.2% (12.1%–14.3%)

1: 12.0% (10.7%–13.2%) 1: 6.5% (5.4%–7.7%) 1: 15.5% (14.3%–16.8%) 1: 32.6% (31.0%–34.1%)

2: 18.5% (17.0%–20.0%) 2: 16.0% (14.3%–17.6%) 2: 27.7% (26.2%–29.2%) 2: 29.6% (28.1%–31.1%)

3: 34.8% (32.9%–36.6%) 3: 36.0% (33.8%–38.2%) 3: 30.1% (28.5%–31.7%) 3: 18.2% (16.9%–19.4%)

4: 30.5% (28.7%–32.4%) 4: 37.2% (34.9%–39.4%) 4: 19.2% (17.8%–20.6%) 4: 6.5% (5.8%–7.3%)

METEOR score,
mean (95% CI)

0.243 (0.236–0.251) 0.289 (0.281–0.298) 0.187 (0.182–0.193) 0.143 (0.137–0.149)

BERTScore, mean
(95% CI)

0.817 (0.813–0.821) 0.838 (0.834–0.842) 0.788 (0.785–0.791) 0.759 (0.756–0.762)

* CI denotes confidence interval; CPT, Current Procedural Terminology; ICD-9-CM, International Classification of Diseases, 9th edition, Clinical
Modification; ICD-10-CM, International Classification of Diseases, 10th edition, Clinical Modification; and Nov, November.

† Application programming interface accessed between December 26 and 27, 2023.
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Table 4. ICD-9-CM, ICD-10-CM, and CPT Code Generation Error Analysis of Current Model Versions, Manually Reviewed Code Subset.*

Coding System Metric GPT-3.5 Turbo (Nov)† GPT-4 (Nov)† Gemini Pro† Llama2-70b Chat†

ICD-9-CM
(n=200)

Incorrect codes,
n (% of total)

67 (33.5%) 43 (21.5%) 131 (65.5%) 191 (95.5%)

Valid code, %
(95% CI)

95.5% (89.6%–100.0%) 93.0% (83.7%–100.0%) 82.4% (75.6%–88.5%) 55.0% (48.2%–61.8%)

Billable code, %
(95% CI)

91.0% (83.6%–97.0%) 83.7% (72.1%–93.0%) 62.6% (54.2%–71.0%) 44.5% (37.7%–51.3%)

Equivalent
match, % (95%
CI)

3.0% (0.0%–7.5%) 7.0% (0.0%–16.3%) 4.6% (1.5%–8.4%) 0.5% (0.0%–1.6%)

Generalized
match, % (95%
CI)

29.9% (19.4%–40.3%) 18.6% (7.0%–30.2%) 9.2% (4.6%–14.5%) 1.6% (0.0%–3.7%)

Nonbillable
code, % (95%
CI)

4.5% (0.0%–10.4%) 9.3% (2.3%–18.6%) 19.8% (13.0%–26.7%) 10.5% (6.3%–15.2%)

Fabricated code,
% (95% CI)

4.5% (0.0%–10.4%) 7.0% (0.0%–16.3%) 17.6% (11.5%–24.4%) 45.0% (38.2%–52.4%)

CodeSTS score,
mean (95% CI)

1.9 (1.6–2.1) 1.9 (1.5–2.3) 1.3 (1.1–1.5) 0.4 (0.3–0.5)

ICD-10-CM
(n=200)

Incorrect codes,
n (% of total)

81 (40.5%) 46 (23%) 144 (72%) 173 (86.5%)

Valid code, %
(95% CI)

87.7% (80.2%–93.8%) 84.8% (73.9%–93.5%) 63.9% (56.2%–71.5%) 79.2% (72.8%–85.0%)

Billable code, %
(95% CI)

76.5% (66.7%–85.2%) 65.2% (52.2%–78.3%) 47.9% (39.6%–56.2%) 49.1% (41.6%–56.6%)

Equivalent
match, % (95%
CI)

4.9% (1.2%–9.9%) 10.9% (2.2%–19.6%) 0.7% (0.0%–2.1%) 2.3% (0.6%–4.6%)

Generalized
match, % (95%
CI)

18.5% (9.9%–27.2%) 13.0% (4.3%–23.9%) 5.6% (2.1%–9.7%) 7.5% (4.0%–11.6%)

Nonbillable
code, % (95%
CI)

11.1% (4.9%–18.5%) 19.6% (8.7%–30.4%) 16.0% (10.4%–22.2%) 30.1% (23.1%–37.0%)

Fabricated code,
% (95% CI)

12.3% (6.2%–19.8%) 15.2% (6.5%–26.1%) 36.1% (28.5%–44.4%) 20.8% (15.0%–26.6%)

CodeSTS score,
mean (95% CI)

1.7 (1.5–2.0) 1.8 (1.4–2.2) 0.9 (0.8–1.1) 1.1 (1.0–1.3)

CPT
(n=200)

Incorrect codes,
n (% of total)

94.6% (89.2%–98.6%) 84.8% (72.7%–97.0%) 86.1% (80.6%–91.7%) 74.2% (67.6%–80.2%)

Valid code, %
(95% CI)

0.0% (0.0%–0.0%) 0.0% (0.0%–0.0%) 0.0% (0.0%–0.0%) 0.0% (0.0%–0.0%)

Equivalent
match, % of
(95% CI)

6.8% (1.4%–13.5%) 15.2% (3.0%–27.3%) 10.4% (5.6%–16.0%) 2.7% (0.5%–5.5%)

Fabricated code,
% of (95% CI)

5.4% (1.4%–10.8%) 15.2% (3.0%–27.3%) 13.9% (8.3%–19.4%) 25.8% (19.8%–32.4%)

CodeSTS score,
mean (95% CI)

1.2 (1.0–1.4) 1.8 (1.4–2.1) 1.0 (0.8–1.2) (0.3–0.6)

* CI denotes confidence interval; CPT, Current Procedural Terminology; ICD-9-CM, International Classification of Diseases, 9th edition, Clinical
Modification; ICD-10-CM, International Classification of Diseases, 10th edition, Clinical Modification; and Nov, November.

† Application programming interface accessed between December 26 and 27, 2023.
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