Step-by-step causal analysis of EHRs to ground decision-making

Matthieu Doutreligne 1,2*, Tristan Struja 4, Judith Abecassis, Claire Morgand Leo Anthony Celi 4, Gaël Varoquaux

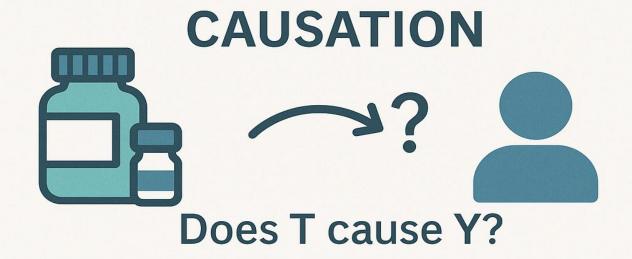
Tanawat Wuttiyakorn

M.Sc. Student

Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol university

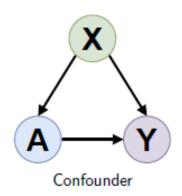
Outline

- Pitfalls of Observational Data
- 5-step analytic framework
- Application



Pitfalls of Observational Data

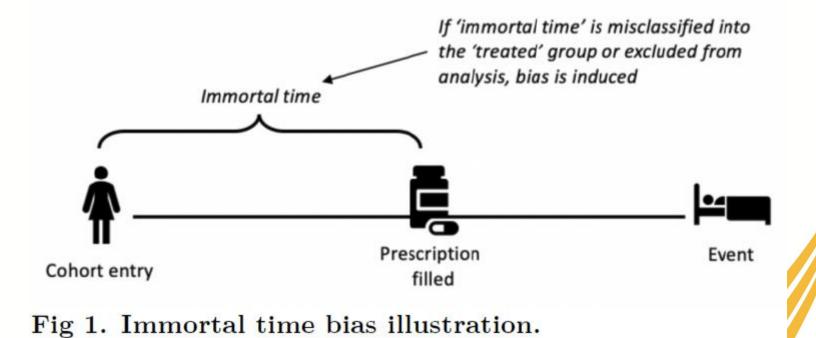
• **Confounding**: Common causes affecting both treatment choice and outcome.



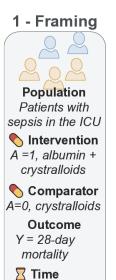
 Selection Bias: Groups being compared differ systematically due to selection, not just treatment.

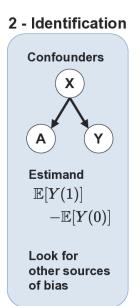
Pitfalls of Observational Data

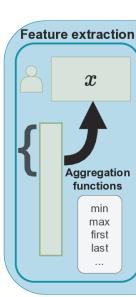
Immortal Time Bias

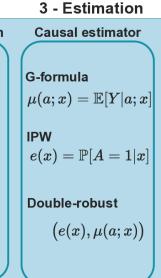


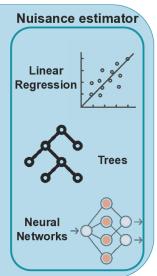
5-step analytic framework

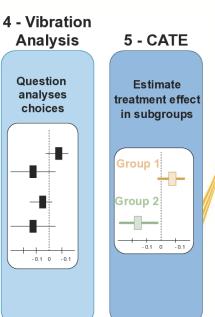












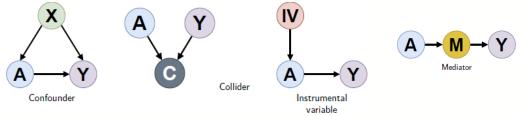
Step 1 - Study Design

Table 1. PICO(T) components help to clearly define the medical question of interest.

PICO component	Description	Notation	Example			
Population	What is the target population of interest?	$X \sim \mathbb{P}(X)$, the covariate distribution	Patients with sepsis in the ICU			
Intervention	What is the treatment?	$A \sim \mathbb{P}(A = 1) = p_A$, the probability to be treated	Combination of crystalloids and albumin			
Control	What is the clinically relevant comparator?	$1 - A \sim 1 - p_A$	Crystalloids only			
Outcome	What are the outcomes to compare?	$Y(1), Y(0) \sim \mathbb{P}(Y(1), Y(0)),$ the potential outcomes distribution	28-day mortality			
Time	Is the start of follow-up aligned with intervention assignment?	N/A	Intervention within the first day			

Step 2 - Identification

- 1. Stating Causal Assumptions
 - e.g., Unconfoundedness, Overlap, No Interference
- 2. Categorizing Covariates



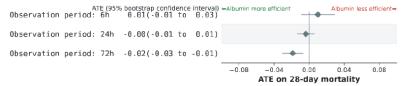
- 3. Using Directed Acyclic Graphs (DAGs)
- 4. Defining the Estimand
- 5. Choosing Causal Estimators
 - e.g., G-formula, PSM, IPW, DML

Step 3 - Statistical estimation

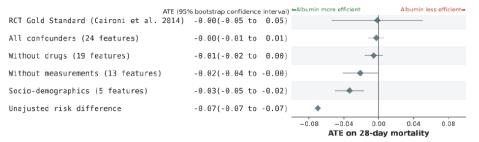
- Confounder Aggregation
- Missing Value Handling
- Outcome and Treatment Estimators
- Hyperparameter Tuning

Step 4 - Vibration analysis

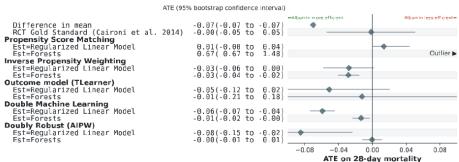
(a) Framing - Immortal Time Bias



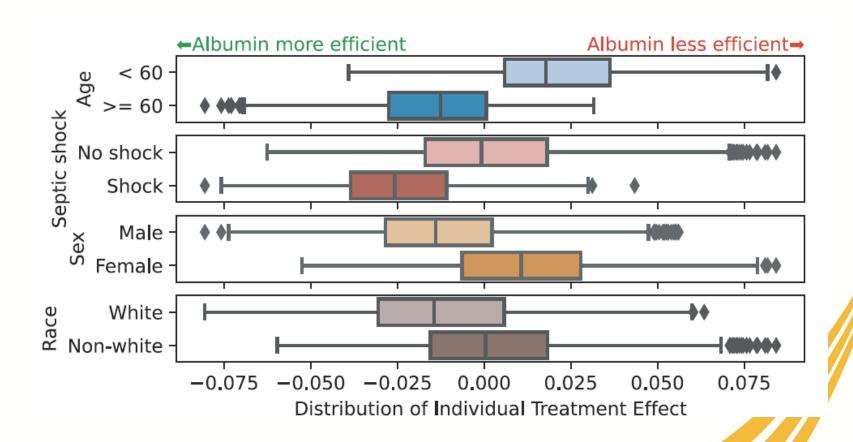
(b) Identification - confounders choice



(c) Model selection



Step 5 - Treatment heterogeneity



Application: Albumin vs. Crystalloids in Sepsis

- Patients with septic shock need fluids to maintain blood flow to organs
 - Crystalloids (saline) are common, cheap, and safe, but much of the fluid leaks out of the blood vessels
 - Colloids (albumin) are thought to stay in the blood vessels better, potentially improving circulation more effectively, but they are more expensive and might have adverse effects.
- Clinical Question: What is the effect of using albumin combined with crystalloids compared to using crystalloids alone on 28-day mortality in sepsis patients?
- Data: MIMIC-IV ICU database.
- Validation Strategy: Compare estimated ATE to known RCT average null effect.

Step 1 - Study Design

Population:

 Patients identified with sepsis during an ICU stay, >= 18 years old, and at least 24 hours of follow-up data available.

Intervention:

 Receiving a combination of crystalloids and albumin within the first 24 hours of the ICU stay.

Control:

 Receiving crystalloids only within the first 24 hours of the ICU stay.

Outcome:

• Death within 28 days

Step 1 - Study Design

Time:

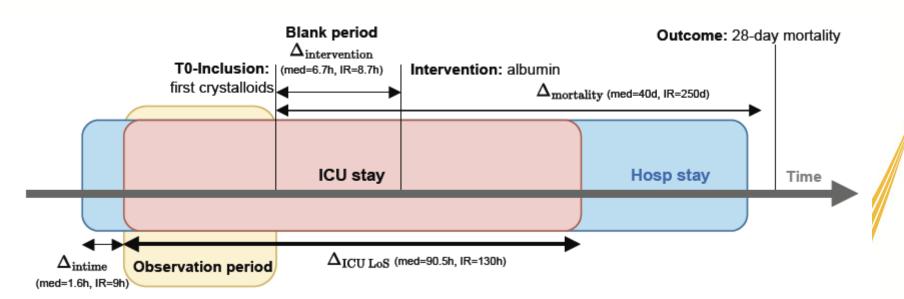
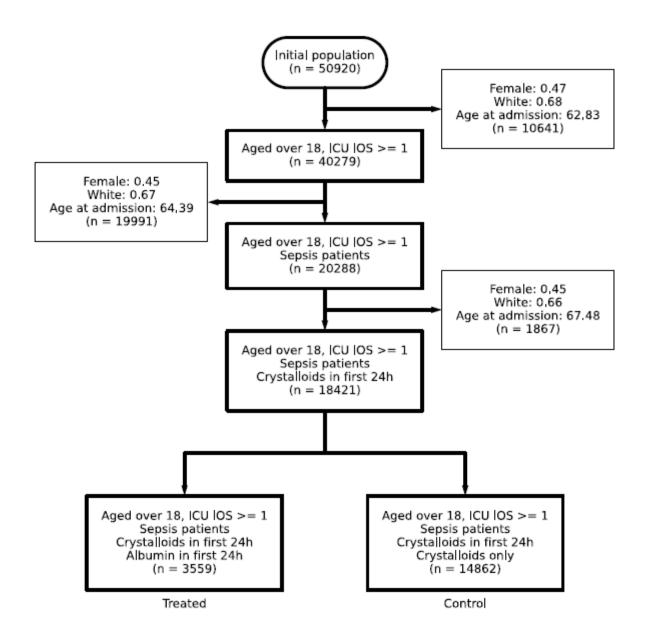


Fig 1. Graphical timeline.

Selection flowchart.



	Missing	Overall	Cristalloids only	Cristalloids + Albumin	P-Value
n		18421	14862	3559	
Glycopeptide, n (%)		9492 (51.5)	7650 (51.5)	1842 (51.8)	
Beta-lactams, n (%)		5761 (31.3)	5271 (35.5)	490 (13.8)	
Carbapenems, n (%)		727 (3.9)	636 (4.3)	91 (2.6)	
Aminoglycosides, n (%)		314 (1.7)	290 (2.0)	24 (0.7)	
suspected_infection_blood, n (%)		170 (0.9)	149 (1.0)	21 (0.6)	
RRT, n (%)		229 (1.2)	205 (1.4)	24 (0.7)	
ventilation, n (%)		16376 (88.9)	12931 (87.0)	3445 (96.8)	
vasopressors, n (%)		9058 (49.2)	6204 (41.7)	2854 (80.2)	
Female, n (%)		7653 (41.5)	6322 (42.5)	1331 (37.4)	
White, n (%)		12366 (67.1)	9808 (66.0)	2558 (71.9)	
Emergency admission, n (%)		9605 (52.1)	8512 (57.3)	1093 (30.7)	
Insurance, Medicare, n (%)		9727 (52.8)	7958 (53.5)	1769 (49.7)	
myocardial infarct, n (%)		3135 (17.0)	2492 (16.8)	643 (18.1)	
malignant_cancer, n (%)		2465 (13.4)	2128 (14.3)	337 (9.5)	
diabetes with cc, n (%)		1633 (8.9)	1362 (9.2)	271 (7.6)	
diabetes_without_cc, n (%)		4369 (23.7)	3532 (23.8)	837 (23.5)	
metastatic_solid_tumor, n (%)				111 (3.1)	
severe_liver_disease, n (%)		1127 (6.1) 1289 (7.0)	1016 (6.8) 880 (5.9)	409 (11.5)	
renal_disease, n (%)		3765 (20.4)	3159 (21.3)	606 (17.0)	
				*	
aki_stage_0.0, n (%)		7368 (40.0)	6284 (42.3)	1084 (30.5)	
aki_stage_1.0, n (%)		4019 (21.8)	3222 (21.7)	797 (22.4)	
aki_stage_2.0, n (%)		6087 (33.0)	4605 (31.0)	1482 (41.6)	
aki_stage_3.0, n (%)	0	947 (5.1)	751 (5.1)	196 (5.5)	<0.001
SOFA, mean (SD)	0	6.0 (3.5)	5.7 (3.4)	6.9 (3.6)	< 0.001
SAPSII, mean (SD)	0	40.3 (14.1)	39.8 (14.1)	42.8 (13.6)	< 0.001
Weight, mean (SD)	97	83.3 (23.7)	82.5 (24.2)	86.4 (21.2)	< 0.001
temperature, mean (SD)	966	36.9 (0.6)	36.9 (0.6)	36.8 (0.6)	< 0.001
mbp, mean (SD)	0	75.6 (10.2)	76.3 (10.7)	72.4 (7.2)	< 0.001
resp_rate, mean (SD)	9	19.3 (4.3)	19.6 (4.4)	18.0 (3.8)	< 0.001
heart_rate, mean (SD)	0	86.2 (16.3)	86.2 (16.8)	86.5 (14.3)	0.197
spo2, mean (SD)	4	97.4 (2.2)	97.3 (2.3)	98.0 (2.1)	< 0.001
lactate, mean (SD)	4616	3.0 (2.5)	2.8 (2.4)	3.7 (2.6)	< 0.001
urineoutput, mean (SD)	301	24.0 (52.7)	24.7 (58.2)	21.1 (16.6)	< 0.001
admission_age, mean (SD)	0	66.3 (16.2)	66.1 (16.8)	67.3 (13.1)	< 0.001
delta mortality to inclusion, mean (SD)	11121	316.9 (640.2)	309.6 (628.8)	365.0 (708.9)	0.022
delta intervention to inclusion, mean (SD)	14862	0.3 (0.2)	nan (nan)	0.3 (0.2)	nan
delta inclusion to intime, mean (SD)	0	0.1 (0.2)	0.1 (0.2)	0.1 (0.1)	0.041
delta ICU intime to hospital admission, mean (SD)	0	1.1 (3.7)	1.0 (3.7)	1.6 (3.4)	< 0.001
los_hospital, mean (SD)	0	12.6 (12.5)	12.6 (12.5)	12.9 (12.4)	0.189
los_icu, mean (SD)	0	5.5 (6.7)	5.5 (6.5)	5.5 (7.2)	0.605

Table 1. Characteristics of the trial population measured on the first 24 hours of ICU stay.

Step 2 - Identification

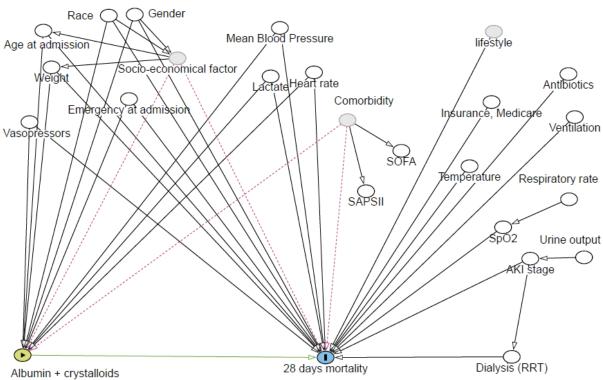


Fig 1. Causal graph for the Albumin vs crystalloids emulated trial
The green arrow indicates the effect studied. Black arrows show causal links known to medical
expertise. Dotted red arrows highlight confounders not directly observed. For readability, we
draw only the most important edges from an expert point of view. All white nodes correspond to
variables included in our study.

Step 2 - Identification

Causal estimation strategies

- Inverse Propensity Weighting (IPW)
- Outcome modeling (G-formula)
- Augmented Inverse Propensity Weighting (AIPW)
- Double Machine Learning (DML)

Software Implementation:

Packages	Simple	Confidence	sklearn	sklearn	Propensity	Doubly Robust	TMLE	Honest splitting
	installation	Intervals	estimator	pipeline	estimators	estimators	estimator	(cross validation)
dowhy	✓	✓	✓	✓	✓	X	X	X
EconML	1	1	✓	Yes except	Y	1	×	Only for doubly
				for imputers	^	•		robust estimators
$\mathbf{z}\mathbf{E}\mathbf{p}\mathbf{i}\mathbf{d}$	>	✓	X	X	✓	✓	✓	Only for TMLE
causalml	×	1	1	✓	✓	<	✓	Only for doubly
			•					robust estimators

Table 1. Selection criteria for causal python packages.

Step 3 - Statistical estimation

Confounder Aggregation:

- Using the last recorded value before the follow-up period started.
- Using the first observed value.
- Using both the first and last values as two separate features

Missing Value Handling:

- Filled it in using the median value
- One-hot encoding

Step 3 - Statistical estimation

Estimators:

- Main causal estimator: IPW, G-formula, AIPW, DML
- 2 Different types of machine learning models
 - Random Forests
 - Ridge Logistic Regression

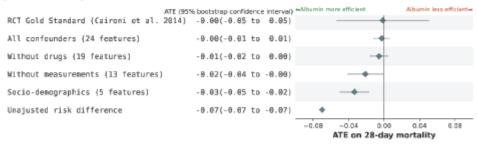
Hyperparameter Tuning:

	estimator	nuisance	Grid
Estimator type			
Linear	LogisticRegression	treatment	{'C': logspace(-3, 2, 10)}
Linear	Ridge	outcome	{'alpha': logspace(-3, 2, 10)}
Forest	RandomForestClassifier	treatment	{'n_estimators': ['10', '100', '200'], 'max_depth': ['3', '10', '50']}
Forest	RandomForestRegressor		{'n_estimators': ['10', '100', '200'], 'max_depth': ['3', '10', '50']}

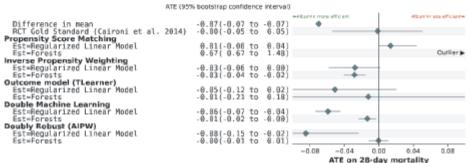
Table 1. Hyper-parameter grid used during random search optimization.

Step 4 - Vibration analysis

(b) Identification - confounders choice



(c) Model selection



Step 5 - Treatment heterogeneity

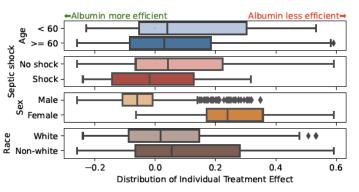


Fig 1. Values of Conditional Average Treatment effects on sex, age, race and pre-treatment septic shock estimated with a final forest estimator. The CATE are positive for each subgroups, which is not consistent with the null treatment effect obtained in the main analysis. The boxes contain between the 25th and 75th percentiles of the CATE distributions with the median indicated by a vertical line. The whiskers extends to 1.5 the inter-quartile range of the distribution.

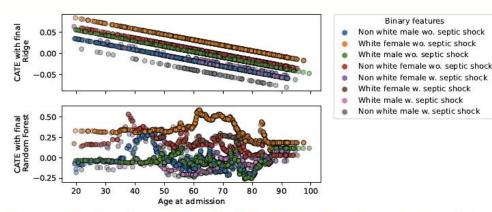


Fig 2. Values of Conditional Average Treatment effects on sex, age, race and pre-treatment septic shock plotted for different ages.

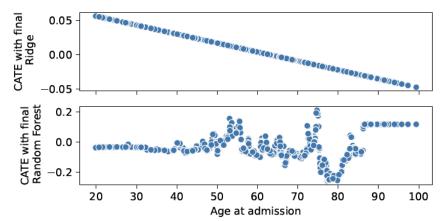


Fig 3. Values of Conditional Average Treatment effects on age, for the subpopulation of white male patients without septic shock.

