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Traditional predictive ML
Aim at predicting outcome

Causal ML
Quantify changes in outcome due to treatment

Aim to answer ‘what if’ questions
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Causal ML vs. Traditional statistics

Traditional statistics

• Often assume knowledge about the parametric form of the 
association between treatment and the outcome

• Often use the simple model, such as linear regression

• Often preferred for small sample size

• However, such knowledge is often not available or 
unrealistic, especially for high dimensional datasets
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Causal ML vs. Traditional statistics

Causal ML

• Allow for less rigid models, non-parametric models

• Can capture complex disease dynamic

• Non-linear model can be used to capture heterogeneity in 
treatment effect

• Require larger sample sizes
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Fundamental problem of causal inference with RWD

• Can only observe the factual outcome, 
but never observes the counterfactual outcome
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• Treatment assignment is not fully randomized

• Treatment assignment depends on covariates

• The Assumptions MUST be made

Fundamental problem of causal inference with RWD
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Assumptions

1. Stable unit treatment value assumption (SUTVA)

2. Positivity (Overlap)

3. Ignorability (Unconfoundness)
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Causal inference methods
Propensity Score Matching
• Matches treated and untreated units based on their propensity score (the probability of 

receiving the treatment given covariates)

• Reduces bias by ensuring comparable treatment and control groups

• Matching can introduce bias, especially in high-dimensional data, where units are more 
likely to be far apart

• Unit without matches will be excluded, reducing the data size
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Causal inference methods
Difference-in-Difference
• Compares the change in outcomes over time between a treatment group and a control 

group.

• Controls for time-invariant confounding

• Assumes parallel trends between groups before the intervention
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Causal inference methods
Causal Forest
• Adapt the decision tree and random forest to estimate heterogeneous treatment effects

• Captures heterogeneity in treatment effects

• Computationally intensive and requires sufficient sample size
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Causal inference methods
G-computation
• Modeling the relationship between covariates, treatment, and the outcome

• Once the outcome model is trained, it is used to predict the counterfactual

• then compute the average treatment effect by taking the difference between the 
average predicted outcomes under treatment and control
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Causal inference methods
Double Machine Learning (DML)
• Aims to obtain an unbiased estimate by using flexible machine learning to adjust for 

observed confounders

• Originates from the Frisch-Waugh-Lovell theorem, to isolate causal effects by controlling 
for covariates

Key Principles of DML

• Orthogonalization 

(making the causal parameter orthogonal (or uncorrelated) to the nuisance function)

• Cross prediction

• Flexible ML Models
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Frisch-Waugh-Lovell theorem
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Frisch-Waugh-Lovell theorem

Treatment Covariates
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Frisch-Waugh-Lovell theorem

Source: Facure M (2023) Causal Inference in Python. O’Reilly Media

Treatment Covariates

16



Frisch-Waugh-Lovell theorem
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Frisch-Waugh-Lovell theorem

Outcome Residual Treatment Residual

Orthogonalization !!
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Frisch-Waugh-Lovell theorem

Source: Facure M (2023) Causal Inference in Python. O’Reilly Media

Outcome Residual Treatment Residual
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Frisch-Waugh-Lovell theorem

Outcome Residual Treatment Residual
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Frisch-Waugh-Lovell theorem

Outcome Residual Treatment Residual

ATEOutcome Residual Treatment Residual
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• Frisch-Waugh-Lovell theorem

• Double Machine Learning

Outcome model Treatment model
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Cross prediction and out-of-fold residuals

Source: Facure M (2023) Causal Inference in Python. O’Reilly Media

K = 4
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Cross prediction and out-of-fold residuals

Source: Facure M (2023) Causal Inference in Python. O’Reilly Media

K = 4
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Training
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Cross prediction and out-of-fold residuals

Source: Facure M (2023) Causal Inference in Python. O’Reilly Media

K = 4
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Predicting
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Cross prediction and out-of-fold residuals

Source: Facure M (2023) Causal Inference in Python. O’Reilly Media

K = 4
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Predicting

Outcome Residual Treatment Residual
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Cross prediction and out-of-fold residuals

Source: Facure M (2023) Causal Inference in Python. O’Reilly Media

K = 4

Outcome Residual Treatment Residual

K Folds

Outcome Residuals

Treatment Residuals
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Cross prediction and out-of-fold residuals

Source: Facure M (2023) Causal Inference in Python. O’Reilly Media

Outcome Residual Treatment Residual

ATE
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• External control arm analyses
• Objective is to compare different statistical approaches for estimating the average 

treatment effect
• Dataset: Synthetic Simulations and Internal Replication Study

• Methods: Four statistical methods were compared
• Propensity Score Matching (PSM)
• Inverse Probability of Treatment Weighting (IPTW)
• G-Computation
• Doubly Debiased Machine Learning (DDML)
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Synthetic Simulations

Synthetic data includes:

• Binary Exposure (𝑇): treatment (𝑇=1) or control (𝑇=0)

• Covariates (𝑋): 20 covariates 𝑋

• Number of Patients: n=250, 500, and 1000

Two scenarios:

1. Homogeneous Treatment Effect
• treatment effect is the same for all individuals

• outcome models are linear functions of covariates

2. Heterogeneous Treatment Effect
• treatment effect varies based on interactions between covariates and the treatment.
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Internal Replication Study

To evaluate the methods using real-world clinical data by mimicking 
observational settings while having access to the true causal effect for validation

Data Source: 

• 5 randomized clinical trials (RCTs) evaluating the efficacy of Canagliflozin in 
patients with Type 2 DM, primary endpoint of change in HbA1c from baseline

Creating Observational Experiment by

• Replacing the control arm of one trial with the treated arm from another trial
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Conclusions

• G-Computation: preferred when precision and 
power are critical, particularly in small-to-moderate 
sample sizes.

• DDML: excellent choice for high-dimensional data 
and large sample sizes, offering robust and 
unbiased estimates.

• Propensity score: less reliable in the tested 
scenarios
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