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Traditional predictive ML

Aim at predicting outcome

Vs.

Causal ML

Quantify changes in outcome due to treatment
Aim to answer ‘what if’ questions



Patient survival

Treatment

| |
History ‘_f'_’ Predictions Time
Now

Patient survival

Treatment

Causal ML

History <=5 Predictions
Now

Time

lusuiieal |



ga Mahidol University

*| Faculty of Medicine Ramathibodi Hospital
»</ Department of Clinical Epidemiology and Biostatistics

Causal ML vs. Traditional statistics

Traditional statistics

e Often assume knowledge about the parametric form of the
association between treatment and the outcome

e Often use the simple model, such as linear regression
e Often preferred for small sample size

* However, such knowledge is often not available or
unrealistic, especially for high dimensional datasets
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Causal ML vs. Traditional statistics

Causal ML

* Allow for less rigid models, non-parametric models

* Can capture complex disease dynamic

* Non-linear model can be used to capture heterogeneity in
treatment effect

* Require larger sample sizes
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Fundamental problem of causal inference with RWD

* Can only observe the factual outcome,
but never observes the counterfactual outcome

Causal ML

b Traditional ML
Patient outcome

Treatment
If not treated  If treated

Patient Covariates Treatment ©2UeNt  patient Covariates
outcome

1 Age, sex, etc. 0 -1.0 1 Age, sex, etc. 0 -1.0
m
gu 2 1 2.3 2 1 2.3
S 1 0.3 3 1 0.3
Patient Covariates Treatment Patlent Patient Covariates Potential Treatment effect
outcome outcomes
If not If If — Ifnot
treated treated treated treated
=
[72]
= 1 Age, sex, etc. 1 ? 1 Age, sex, etc.  ? ? ?
2 l ? ? ?

2 l 0 ?

? Prediction targets

[] Missing observations
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Fundamental problem of causal inference with RWD

* Treatment assignment is not fully randomized
* Treatment assignment depends on covariates
* The Assumptions MUST be made
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Assumptions

1. Stable unit treatment value assumption (SUTVA)
2. Positivity (Overlap)

3. lgnorability (Unconfoundness)
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Causal inference methods

Propensity Score Matching

* Matches treated and untreated units based on their propensity score (the probability of
receiving the treatment given covariates)

* Reduces bias by ensuring comparable treatment and control groups

* Matching can introduce bias, especially in high-dimensional data, where units are more
likely to be far apart

* Unit without matches will be excluded, reducing the data size
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Causal inference methods

Difference-in-Difference

* Compares the change in outcomes over time between a treatment group and a control
group.

* Controls for time-invariant confounding

* Assumes parallel trends between groups before the intervention
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Causal inference methods

Causal Forest

e Adapt the decision tree and random forest to estimate heterogeneous treatment effects

* Captures heterogeneity in treatment effects

* Computationally intensive and requires sufficient sample size

Coeadom v} e Jand 11
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Causal inference methods

G-computation

* Modeling the relationship between covariates, treatment, and the outcome

f(T,X50) =By + BT + B X1 + 83Xy
* Once the outcome model is trained, it is used to predict the counterfactual
Y(T=1)=f(T =1,X;6)
Y(T =0)= f(T =0,X;6)

* then compute the average treatment effect by taking the difference between the
average predicted outcomes under treatment and control

ATE — ii [ﬁ-(T—l)—ﬁ-(T—O)]

COedlom v} e Jand 12



Mahidol University

*| Faculty of Medicine Ramathibodi Hospital
Department of Clinical Epidemiology and Biostatistics

Causal inference methods

Double Machine Learning (DML)

* Aims to obtain an unbiased estimate by using flexible machine learning to adjust for
observed confounders

* Originates from the Frisch-Waugh-Lovell theorem, to isolate causal effects by controlling
for covariates

Key Principles of DML

* Orthogonalization

(making the causal parameter orthogonal (or uncorrelated) to the nuisance function)
* Cross prediction

* Flexible ML Models

COedlom cr}'tfo\k Jand 13
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Frisch-Waugh-Lovell theorem

y; = Po + k1 + 1 X1+ .. +BrXki + u;

14
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Frisch-Waugh-Lovell theorem

Treatment Covariates

N

Y = B1X1 + B2X

e M (2023) Causal Infer n Python. O’Reilly Media
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Frisch-Waugh-Lovell theorem

oy

y* :"}71X2 }21 :'—?QX2
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Outcome Residual

Treatment Residual

Orthogonalization !!
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Frisch-Waugh-Lovell theorem

oy

y* = 71Xo X1 = 72 X>

Outcome Residual Treatment Residual

Source: Facure M (2023) Causal Inference in Python. O’Reilly Media
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Frisch-Waugh-Lovell theorem

Outcome Residual Treatment Residual

Y = (Y ~ X)) ~ (T - (T ~ X))

Yi — E|Yi|Xi| = 7 (Ti — E[T3|Xi]) + €

Coeadom v}t Jand 20
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Frisch-Waugh-Lovell theorem

Outcome Residual Treatment Residual

Y = (Y ~ X)) ~ (T - (T ~ X))

Outcome Residual Treatment Residual

Y — E|Yi|Xi| =7 (Ti — E[T3i|Xi]) + €

Coeadom v} e Jand 21
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* Frisch-Waugh-Lovell theorem

Yi —[BEYi|Xi)|= 7 (T: —[EIT:| X)) + e

* Double Machine Learning

Y; |\ M, (X0)|= 7 (T — [, (X)) + €

Outcome model Treatment model

22
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Cross prediction and out-of-fold residuals

Data

1
Predict Estimate
Estimate
Fredict
3
Estimate Predict
Estimate
Estimate

Source: Facure M (2023) Causal Inference in Python. O’Reilly Media
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Cross prediction and out-of-fold residuals

1

Predict Estimate
Estimate

K=4 3 Fredict

Data -
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M,(X;) M, (X;)
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y* = vy1X2 X1 = 72X

Source: Facure M (2023) Causal Inference in Python. O’Reilly Media
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Cross prediction and out-of-fold residuals

K=4

1
Predict Estimate
Estimate
3 Predict
Data . Estimate
Estimate Predict
Estimate
Estimate Predict
Predicting
My(X;) M;(X;)
a: Y1 X2 X1|= 72X>

Source: Facure M (2023) Causal Inference in Python. O’Reilly Media
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Cross prediction and out-of-fold residuals

K=4
1
Predict Estimate
Estimate
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Data -
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My(X;) M;(X;)
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Source: Facure M (2023) Causal Inference in Python. O’Reilly Media

Estimate

Predict

.

Fredict

26



Cross prediction and out-of-fold residuals
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Cross prediction and out-of-fold residuals

Outcome Residual Treatment Residual

(3)= Bk

Coeadom v} the Jand 28

Source: Facure M (2023) Causal Inference in Python. O’Reilly Media



: . ®
External control arm analysis: an evaluation =

of propensity score approaches, G-computation,
and doubly debiased machine learning

Nicolas Loiseau’T, Paul Trichelair!, Maxime He, Mathieu Andreux, Mikhail Zaslavskiy, Gilles Wainrib and
Michael G. B. Blum

e External control arm analyses
* Objective is to compare different statistical approaches for estimating the average
treatment effect
» Dataset: Synthetic Simulations and Internal Replication Study
 Methods: Four statistical methods were compared
* Propensity Score Matching (PSM)
* Inverse Probability of Treatment Weighting (IPTW)
* G-Computation
* Doubly Debiased Machine Learning (DDML)

Coeadom v}t Jand 29
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Synthetic Simulations

Synthetic data includes:

e Binary Exposure (T): treatment (T=1) or control (T=0)
e Covariates (X): 20 covariates X
* Number of Patients: n=250, 500, and 1000

Two scenarios:

1. Homogeneous Treatment Effect

* treatment effect is the same for all individuals
* outcome models are linear functions of covariates

y=f(X,Q)+0T +¢

2. Heterogeneous Treatment Effect
* treatment effect varies based on interactions between covariates and the treatment.

y=010-T)(X,2) +Tf(X,21) +60T + ¢
Wowv}mw 30
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Internal Replication Study

To evaluate the methods using real-world clinical data by mimicking
observational settings while having access to the true causal effect for validation

Data Source:

* 5 randomized clinical trials (RCTs) evaluating the efficacy of Canagliflozin in
patients with Type 2 DM, primary endpoint of change in HbAlc from baseline

Trial Nb. patients Inclusion criteria Arms Background therapy

NCT01106625 [39] 469 Canagliflozin 300 Metformin and Sulphonylurea
Sitaglipin 100

NCT01137812 [40] 755 Canagliflozin 300 Metformin and Sulphonylurea

Canaglifozin 100

Placebo

NTC01106651 [41] 659 Age:55to 80 y.o. Canagliflozin 300 Metformin and
Canaglifozin 100 Sulphonylurea (357 patients)
Placebo Metformin (302 patients)
NCTO1106677 [42] 1284 Canagliflozin 300 Metformin
Canaglifozin 100

Sitaglipin 100
Placebo

NCT00968812 [43] 1450 45>BMI>22 Metformin

Glimepiride 100

Creating Observational Experiment by

* Replacing the control arm of one trial with the treated arm from another trial

31
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Table 2 Results of the negative contral experiments when the
experimental and control arms are the same. MSE and MAE are 0.1 .
respectively the mean squared error and the mean average error . .
between the ATT estimation and the ground truth, which is null. E ° Lo
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Zero g " .|,
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MSE(x1000) MAE(x100) C.I Coverage(%) =z o . .
width E [
(x1000) &
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Unadjusted 873 762 249 78% (7./9) __E 02
PSM [eas 679 | 283 100% (5/9) 8 oo
PTW 479 591 273 100% (9/9) g
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Table 3 Results of the RCT replication experiments. Pseudo MSE and MAE are respectively the pseudo mean squared error and the
pseudo mean average error obtained by replacing the unknown ground truth with the RCT estimate. Estimate agreement is the
percentage of RCT 95% confidence intervals that contain ATT estimation. Regulatory agreement is the percentage of time the cutoff
P < 005 obtained from the non-randomized experiments agrees with the RCT result about P < 0.05

Pseudo Pseudo C.l. Width(x100) Estimate Agreement Regulatory Agreement
MSE(x1000) MAE(x100)
Unadjusted 794 7.30 251 84.2% (16/19) 73.7% (14/19)
PSM 451 6.15 29.0 89.5% (17/19) 73.7% (14/19)
IPTW 575 5.86 285 89.5% (17/19) 78.9% (15/19)
G-computation 3.26 4.68 259 100% (19/19) 78.9% (15/19)

DDML 4.70 5.60 | 313 ] 100% (19/19) 84.2% (16/19)
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Conclusions

* G-Computation: preferred when precision and
power are critical, particularly in small-to-moderate
sample sizes.

* DDML: excellent choice for high-dimensional data
and large sample sizes, offering robust and
unbiased estimates.

* Propensity score: less reliable in the tested
scenarios

COedlom v the Jand 36
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