

OPEN ACCESS

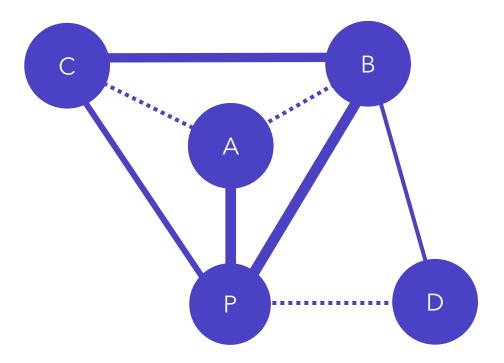
EDITED BY
Pasquale Calabrese,
University of Basel, Switzerland

REVIEWED BY
Cagla Ozkul,
Gazi University, Türkiye
Nancy R. Mejía-Domínguez,
National Autonomous University of Mexico,
Mexico

*correspondence Ming-Da Li ⋈ 100339@cdsu.edu.cn

RECEIVED 18 September 2024 ACCEPTED 14 November 2024 PUBLISHED 26 November 2024 Comparison of different exercise modalities on fatigue and muscular fitness in patients with multiple sclerosis: a systematic review with network, and doseresponse meta-analyses

Xi-Nuan Zhang¹, Zhi-De Liang² and Ming-Da Li^{1*}


¹School of Sports Training, Chengdu Sport University, Chengdu, Sichuan, China, ²Department of Physical Education, College of Physical Education, Qingdao University, Qingdao, China

Nantharat Apiwantanakul

PhD student in Clinical Epidemiology Program 07 November 2025

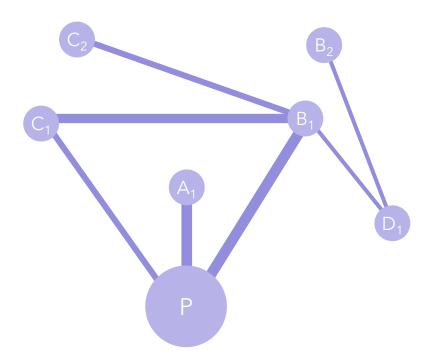
Network connectivity

• NMA provides a method to combine evidence on relative effects from comparative RCTs that form a connected network

Lumped NMA

All doses are assumed to have the same efficacy

- Increases the between-study heterogeneity
- Increase the risk of inconsistency in the network

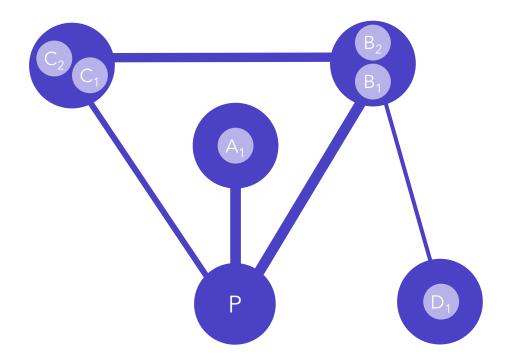

Unable to make prediction as a function of dose

Split NMA

Each dose is considered as a separate treatment

- Smaller between-study heterogeneity
- Estimate effect size with lower precision because each contrast is informed by fewer trials

Can only be used to make prediction at trialed doses

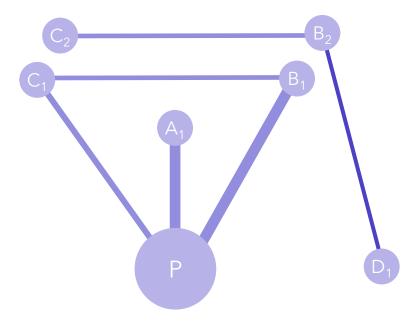


Lumped NMA

All doses are assumed to have the same efficacy

- Increases the between-study heterogeneity
- Increase the risk of inconsistency in the network

Unable to make prediction as a function of dose

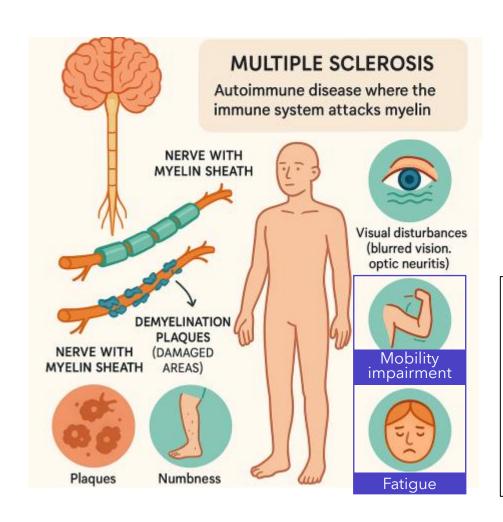


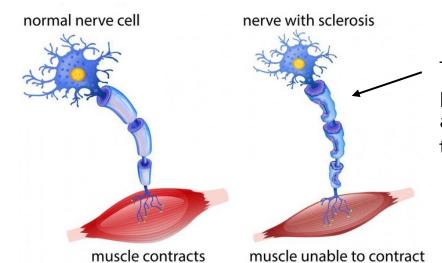
Split NMA

Each dose is considered as a separate treatment

- Smaller between-study heterogeneity
- Estimate effect size with lower precision because each contrast is informed by fewer trials

Can only be used to make prediction at trialed doses




A split network may **become disconnected**, meaning that some treatments cannot be compared

Model-based NMA approach (MBNMA)

- Incorporate a dose response model into network meta-analysis
 - Help to connect the network of evidence, allowing a wider range of agents to be compared
 - Allow estimation and prediction of relative effects across a range of doses (including at doses that have not been trialed)
- The dose-response pattern can be modeled <u>using a variety of functional</u> <u>form</u>, such as maximum effect (Emax) and linear model
- MBNMA approach provides a more flexible modeling approach than lumped and split NMA

Multiple sclerosis (MS)

The **myelin** acts as the protective nerve coating and is essential for signal transmission

Treatment

- Typically treated with disease modifying drugs, which control
 inflammation but do not address neurodegenerative processes,
 leading to residual symptoms and dysfunction
- Among nonpharmacologic management, exercise can be a beneficial rehabilitation approach for MS, particularly, reducing fatigue and addressing mobility problems have received particular attention as ways to improve overall quality of life

Introduction

- Previous NMAs
 - Studied the effects of various exercise interventions on MS patients.
 - Research on exercise dose for MS patients is still underexplored.
 - The dose-response relationship has already been widely applied in the field of exercise interventions
- Guideline from WHO encourage MS patients to engage in exercise but not provide clear recommendation regarding dose and exercise modality.

Objective

- To determine the minimum effective dose, the optimal dose, and the maximum safe threshold of different exercise modalities
 - Providing more precise guidance for clinical practice in MS

PICOs

- Population: Patients with Multiple sclerosis
- Interventions: HIIT, COM, RT, AE, MBE
- Comparator: Control group (CG)
- Outcome: Fatigue, Muscular fitness
- Study design: Randomized controlled trials

Fatigue

Outcome: FSS (Fatigue Severity Scale); FSMC (Fatigue Scale for Motor and Cognitive Functions); MFIS (Modified Fatigue Impact Scale); FIS (Fatigue Impact Scale); Weimus (Würzburg Fatigue Scale for Multiple Sclerosis); PROMIS (Patient-Reported Outcomes Measurement Information System); POMS (Profile of Mood States)

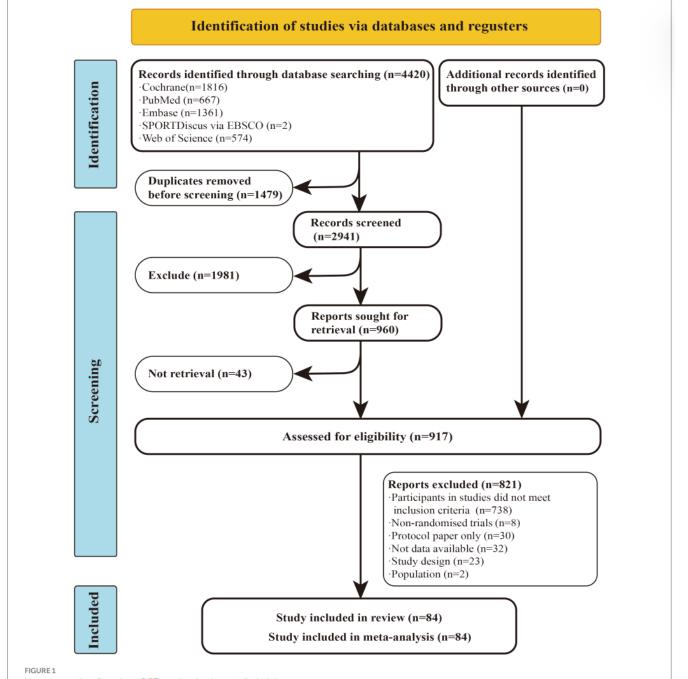
Muscular fitness

Outcome: STS (Sit-to-Stand Test); CAR (Central Activation Ratio); CUT (Curl Up Test); Muscle fiber CSA (Muscle Fiber Cross-sectional Area); Strength MVC (Maximal Voluntary Contraction); MIT (Maximal Isometric Torque); Power MIVC (Maximum Voluntary Isometric Contraction); MPT (Modified Push-ups Test); MSL (Maximum Squat Load); Standing Test WST (Wall Squat Test); SCT (Stair-Climbing Test)

; MWD (Maximal Walking Distance); PHT (Plank-Hold Test)

Modality

High-intensity interval training (HIIT)

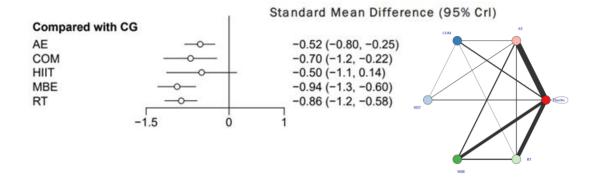

Combined exercise (COM) RT+AE

Resistance training (RT)

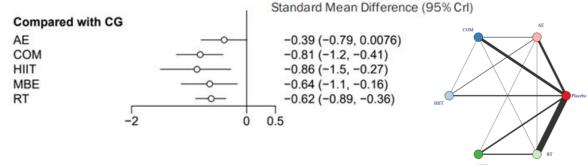
Aerobic exercise (AE)

Mind-body exercises (MBE)

Assessed the impact of exercise interventions by calculating the **standardized mean difference (SMD)** for changes observed between preand post-intervention periods.



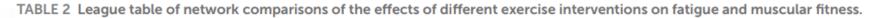
Analysis

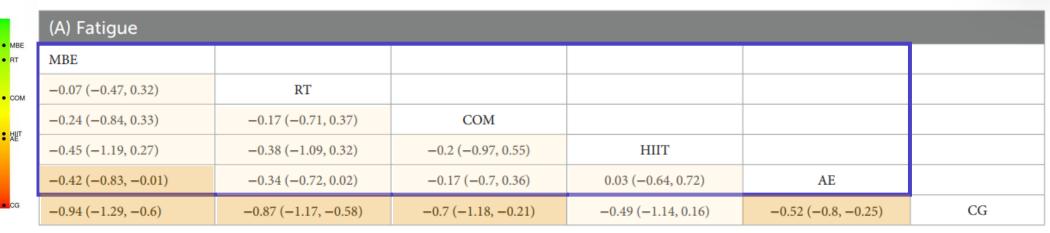

- Bayesian NMA using the "Metainsight" tool (version 6.1.0)
- Transitivity assumption
 - Examination of the key characteristics of each intervention and baseline participant data to ensure that the comparison across studies was valid
- Consistency assumption
 - Global inconsistency
 - Inconsistency between direct and indirect effect estimates within the network
- Rank the intervention calculate SUCRA

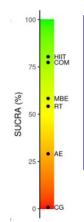
Primary analysis

Fatigue

Muscular fitness


Compared to the control group


- Most exercise interventions were effective in significantly reducing fatigue.
- All yielded notable reductions. The only exception was HIIT, which did not show a statistically significant reduction in fatigue levels.


Compare to the control group

- All found to significantly enhance muscular fitness
- AE was the only intervention that fail to reach statistical significance when compared to controls

Primary analysis

SUCRA (%)

(B) Muscular fitness					There were no significant	
ніт				differences in efficacy among the different exercise mobilities for either fatigue or muscular fitness		
-0.06 (-0.78, 0.63)	COM					
-0.23 (-1.03, 0.54)	-0.17 (-0.81, 0.45)	MBE				
-0.25 (-0.95, 0.42)	-0.19 (-0.67, 0.29)	-0.02 (-0.52, 0.49)	RT			
-0.48 (-1.17, 0.15)	-0.42 (-0.96, 0.09)	-0.26 (-0.87, 0.35)	-0.23 (-0.72, 0.24)	AE		
-0.87 (-1.53, -0.27)	-0.81 (-1.24, -0.41)	-0.64 (-1.14, -0.15)	-0.62 (-0.92, -0.35)	-0.39 (-0.8, 0.02)	CG	

The data shown in the table are mean differences and 95% credible intervals. Exercises are reported in order of surface under the curve cumulative ranking. HIIT, High-intensity interval training; COM, Combined exercise; RT, Resistance training; AE, Aerobic exercise; MBE, Mind-body exercises.

Dose-response NMA

- To investigate the dose-response relationship between exercise and outcomes such as fatigue and muscular fitness in patients with MS
 - Extended the analysis by performing a dose-response network meta-analysis using a Bayesian **model-based NMA (MBNMA)**

Dose (Exercise intensity)

- The intensity of an activity is measured using Metabolic Equivalent of Task (METs)
- One MET is the energy expended while sitting at rest
- An activity with a <u>MET value of 5</u>
 - expending <u>five times</u> the energy than you would while at rest
- The higher the MET value, the greater the energy expenditure

Dose (Exercise intensity)

Total intensity of each exercise

MET-minutes per week

Intensity of the specific activity (MET)

Coded according to the standards outlined in the 2024 Compendium of Physical Activities and its expansion Duration of a single session (min)

= exercise duration

The weekly frequency (session/week)

= exercise
frequency

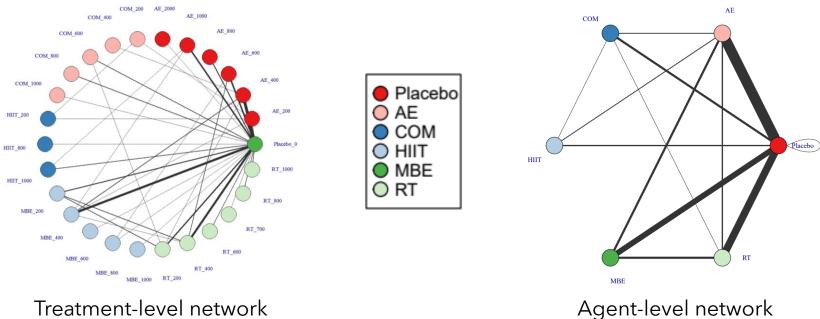
The descriptions of the intervention details reported in the studies

Χ

	Study	Treatment	Time/session	Frequency		
	Tue Kjølhede 2015	RT	60 min/session	2 sessions/week		
ſ		CG	-	-		

→ RT_600 → Placebo 0

Χ


600 MET-minutes per week MET values
Resistance/weight training

x 60 min/session

x 2 sessions/week

Dose-response NMA

- The estimated weekly MET-minutes were clustered into seven predefined categories to facilitate network connectivity and dose-response analysis
 - 0 (control), 200, 400, 600, 800, 1,000, and 2,000 MET-minutes/week

Dose-response NMA

- Evaluate transitivity and consistency
- The entire MBNMA and dose-response analysis was performed using the "MBNMAdose" package in R (version 4.3.1), and the graphical representation of the dose-response curves was accomplished with the "ggplot2" package.

Model selection

 Perform a split NMA of the different doses of physical activity as separate and unrelated treatments

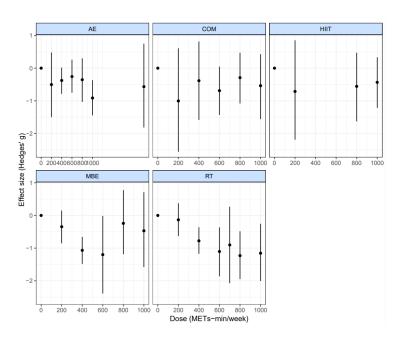


Figure a. Split NMA of different exercise agents.

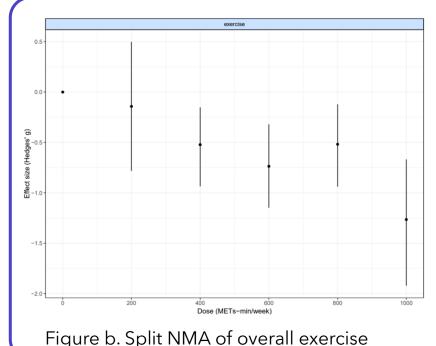


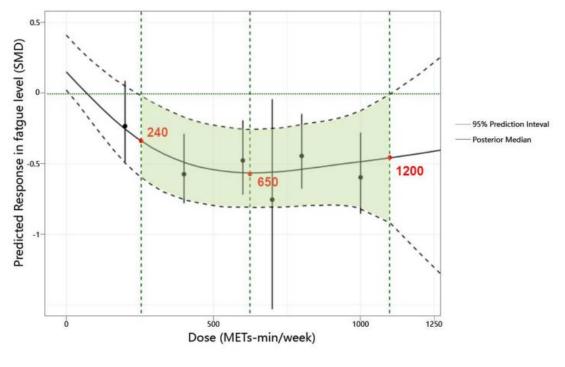
Figure b. Split NMA of overall exercise

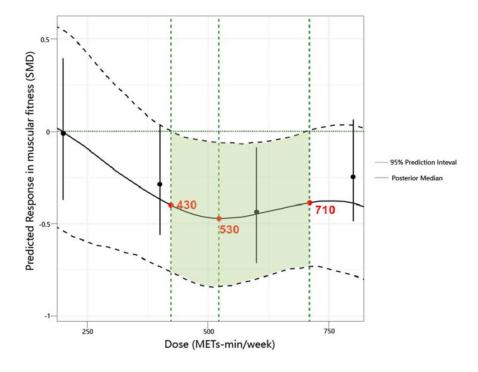
- The <u>different responses of</u> each dose to overall and different types of exercise
- This step helps determine which function is more appropriate for the data and should be used in a model-based network meta-analysis

Model selection

- Applied several widely recommended functions to model the doseresponse relationship
- Comparison of model fit index

(a) Fatigue

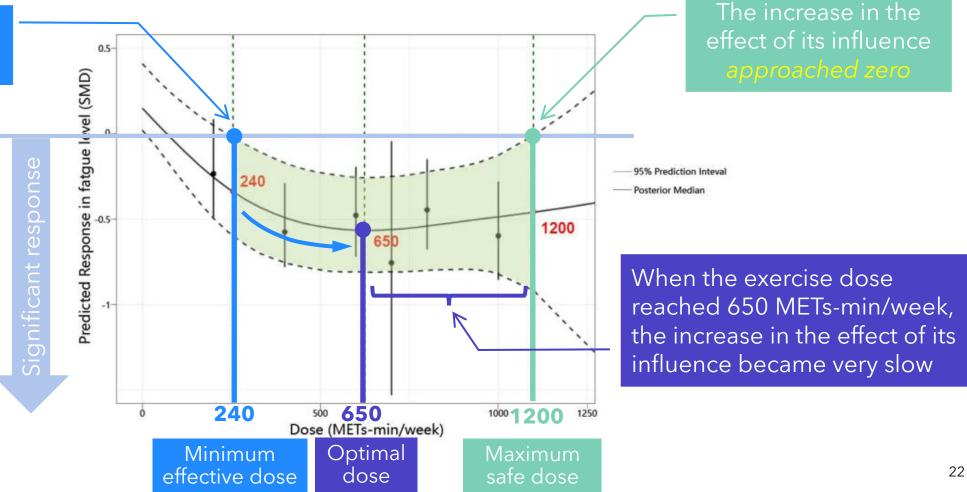

Model	DIC	SD	Deviance	Residual deviance	pD
Emax (common treatment effects)	19350.4	NA	19295.91	19391.066	55.1
Restricted cubic spline (common treatment effects; 3 knots)	18715.4	NA	18659.01	18754.174	57.4
Restricted cubic spline (random treatment effects; 3 knots)	133.2	6.181 (5.167, 7.477)	19.682	114.838	114.2
Non-parametric monotonically up (common treatment effects)	36988.5	NA	36935.990	37031.146	53.0
Quadratic (2 nd degree polynomial, common treatment effects)	19302.7	NA	19248.141	19343.297	54.9
Quadratic (2 nd degree polynomial, random treatment effects)	134.0	6.158 (5.172, 7.392)	19.924	115.079	115.1


(b) Muscular fitness

Model	DIC	SD	Deviance	Residual deviance	pD
Emax (common treatment effects)	176.8	NA	131.353	179.205	46.2
Restricted cubic spline (common treatment effects; 3 knots)	169.2	NA	120.953	168.805	48.8
Restricted cubic spline (random treatment effects; 3 knots)	134.7	0.551 (0.331, 0.813)	60.499	108.351	75.4
Non-parametric monotonically up (common treatment effects)	254.7	NA	209.776	257.628	45.6
Quadratic (2 nd degree polynomial, common treatment effects)	175.6	NA	128.936	176.788	47.3
Quadratic (2 nd degree polynomial, random treatment effects)	135.6	0.576 (0.368, 0.819)	60.271	108.124	75.7

Prediction dose-response relationship

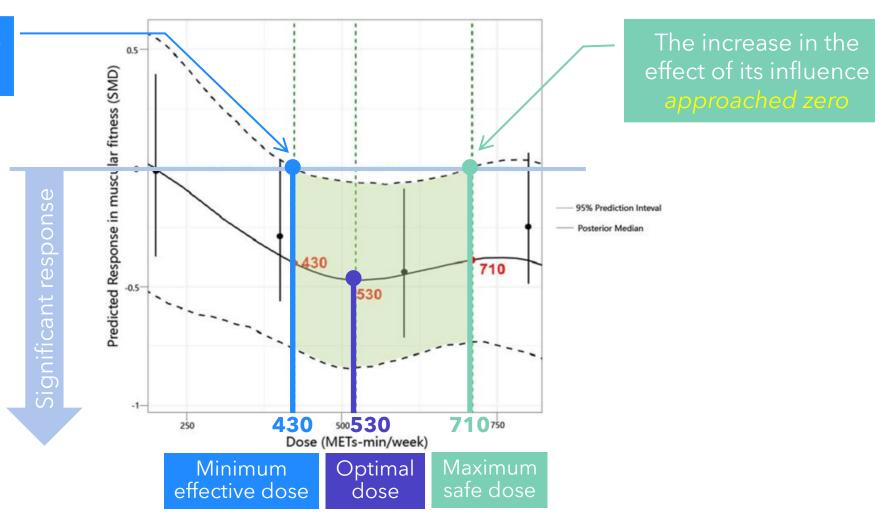
• A **non-linear dose-response relationship** between the total exercise dose and fatigue levels as well as muscular fitness

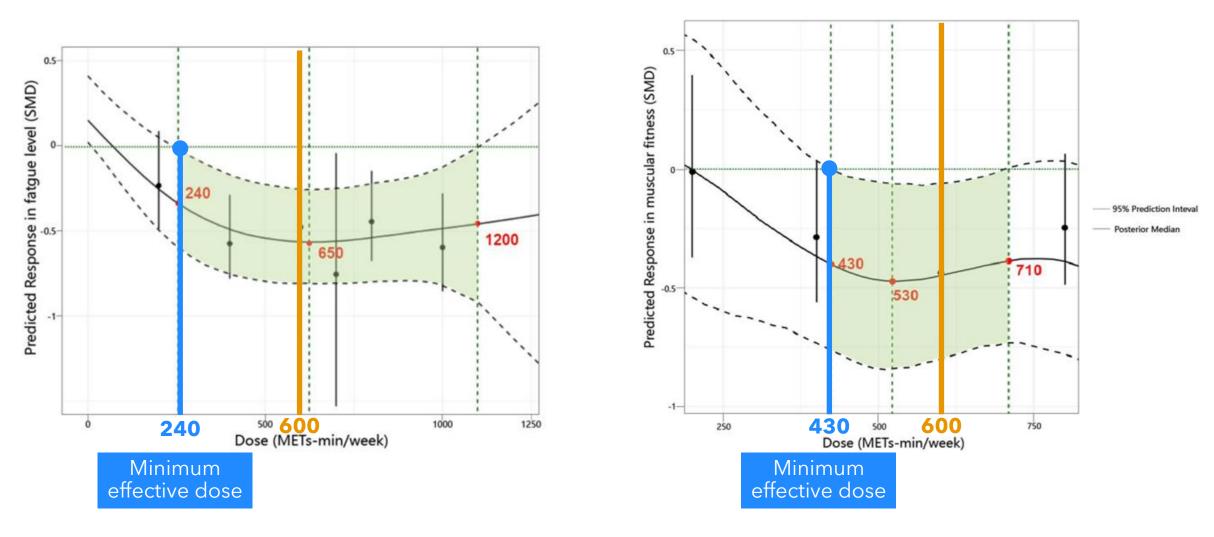

(a) Fatigue

(b) Muscular fitness

Prediction dose-response relationship Fatigue

The upper limit of the 95% Crl less than zero


a significant response was observed starting at 240 METs-min/week


Prediction dose-response relationship Muscular fitness

The upper limit of the 95% Crl less than zero

a significant response was observed starting at 430 METs-min/week

Current WHO guidelines = **600** – **1200 MET minutes** per week

In contrast to the WHO's recommended 600 METs-min/week, our findings indicate that a dose **as low as 240 METs-min/week** is <u>sufficient to improve fatigue</u> in patients, while **430 METs-min/week** can <u>enhance muscular fitness</u>.

Practical recommendation based on optimal dose

A. Exercise recommendations for reducing fatigue in patients with multiple sclerosis based on optimal dosage (650 METs-min/week).					
Type of exercise	Intensity	Energy expenditure ^a (METs-min)	Optimal recommended accumulation ^b (min/	Minimum recommendations for	
The optimal do	ose for reducing fat	igue = 650 METs-min/	week)	exercise prescription ^c (sessions × min/per week)	
MBE	Moderate	4 (code 02160)	~165	4 × ~40	
				3 × ~55	
RT	Moderate	3.5 (code 02054)	~190	4 × ~50	
				3 × ~65	
	Vigorous	6.5 (code 02057)	~100	4 × ~30	
				3 × ~40	
COM	Moderate	4.5 (mean of codes 01214,	~145	3 × ~50	
		02052)			
	Vigorous	8 (mean of codes 01236, 02055)	~90	3 × ~30	

Practical recommendation based on optimal dose

B. Exercise recommendations for patients with multiple sclerosis to improve muscular fitness based on optimal dosage (530 METs-min/week). Type of exercise Intensity Energy expenditure^a Optimal recommended Minimum (METs-min) accumulation (min/ recommendations for week) exercise prescription^b (sessions × min/per week) The optimal dose for improving muscular fitness = **530 METs-min/week** Moderate 7 (code 02210) $4 \times \sim 20$ HIIT ~75 $3 \times \sim 25$ Vigorous 11 (code 02214) $3 \times \sim 20$ ~50 2 × ~25 4.5 (mean of codes 01214, Moderate COM ~120 $3 \times \sim 40$ 02052) $2 \times \sim 60$ Vigorous 8 (mean of codes 01236, 02055) ~70 $3 \times \sim 25$ $2 \times \sim 35$ MBE Moderate 4 (code 02160) ~135 $3 \times \sim 50$ $2 \times \sim 70$

Conclusion

- They confirmed the effectiveness of various exercise interventions in reducing fatigue levels and improving muscular fitness among patients with multiple sclerosis.
- There were no significant differences in efficacy among the different exercise modalities for either fatigue reduction or muscular fitness improvement.
- The findings revealed a nonlinear dose-response relationship between exercise and levels of fatigue as well as muscular fitness.

Conclusion

- The optimal dose
 - for reducing fatigue = 650 METs-min/week,
 - for improving muscular fitness = 530 METs-min/week
- Unlike the WHO's recommended 600 METs-min/week
 - A dose as low as 240 METs-min/week is sufficient to reduce fatigue
 - A dose as low as 430 METs-min/week is sufficient to enhance muscular fitness
- Future large-scale randomized controlled trials are needed to investigate the effects of different exercise doses on patients with MS.

Limitations

- The <u>multidimensional nature of MS symptoms</u> complicates its management. Cognitive and psychosocial dimensions could act as confounding variables or mediators in the associations.
 - However, they could not account for these confounding variables in their analysis.

Limitations

- The dose-response analysis for some exercises did not show significant effects.
 - This may be due to <u>the limitations of the exercises themselves</u>, or <u>an insufficient range of doses covered in the studies</u>, which may not have been enough to detect relevant and significant dose effects.
 - Should approach the results of dose predictions with caution and emphasize the need for future research to focus more on the impact of different exercise doses on MS patients.

Thank you