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Background

• Big data is emerging as the next thing to transform medicine into precision 

medicine.

• Precision medicine using big data cannot be achieved by algorithms that 

operate exclusively in data-driven prediction modes, as do most machine 

learning algorithms.

• Why though?
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Some history

1920s

RCT’s can be used to study 
cause and effect but not 

observational data

Ronald Fisher, father of statistics
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Background

When can we say that a thing is a 
cause and not just an association?





https://scpoecon.github.io/ScPoEconometrics/causality.html



https://pmc.ncbi.nlm.nih.gov/articles/PMC2038856/



https://pmc.ncbi.nlm.nih.gov/articles/PMC2038856/



https://www.nytimes.com/2008/10/07/business/media/07adco.html



https://pubmed.ncbi.nlm.nih.gov/2000852/

nuh-uh



https://pubmed.ncbi.nlm.nih.gov/2000852/



https://scpoecon.github.io/ScPoEconometrics/causality.html



https://www.unav.edu/documents/16089811/16155256/Smoking+and+Health+the+Surgeon+General+Report+1964.pdf

In 1964, the US surgeon general release a report on the effect of smoking and health



https://www.unav.edu/documents/16089811/16155256/Smoking+and+Health+the+Surgeon+General+Report+1964.pdf



https://www.unav.edu/documents/16089811/16155256/Smoking+and+Health+the+Surgeon+General+Report+1964.pdf





https://csslab.uc3m.es/dataviz/projects/2023/100407614/









78 pages





https://www.med.cmu.ac.th/web/news-event/12683/

Does PM2.5 cause 
lung cancer?



https://www.med.cmu.ac.th/web/news-event/12683/

PM2.5 is a “precipitating factor” and not a cause of lung cancer. 
We currently cannot say that in a single patient, what exactly 

cause lung cancer as the process is complex and multifactorial.
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Goal of data Science and the Ladder of Causation

• It is important to understand what data science is (and is not).

• Thus, we organize questions and task of data science according to the 

Ladder of Causation.
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8.5/10
Pro: Easy to understand. Not 

too math heavy, good 
introduction to causality from 

the past to present.
Con: Historical part can be a 

slog (but important for 
understanding)

- Nat Sirirutbunkajorn
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Rung 1: Association and Prediction
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Rung 1: Association and Prediction

• Association invokes exclusively probabilistic relationships between the 

variables within observed data.

• “Recurrent wheezing in early childhood is associated with the 

development of asthma”

• The probability of observing one variable depends on that of the 

other (or vice versa)

• Prediction maps the derived probabilistic association to future data in order 

to forecast the conditional probability of outcome.

• e.g. clinical risk score (Ex. Asthma predictive index) or polygenic risk 

score.

• Tools used:

• Basic computation/traditional statistics (e.g. regression models)  

• ML, deep learning

• excels in association and prediction task but lack causal reasoning



https://dl.acm.org/doi/10.1145/2783258.2788613

Rung 1: Association and Prediction



https://www.youtube.com/watch?v=wqI_z1yumzY&list=PLUl4u3cNGP60B0PQXVQyGNdCyCTDU1Q5j&index=6

Rung 1: Association and Prediction

• In the mid 90’s, a large multi-institutional project was funded by Cost-

Effective HealthCare (CEHC) to evaluate ML in healthcare such as 

predicting pneumonia risk.

• Goal was to predict the probability of death (POD) patients with 

pneumonia

• high-risk patients could be admitted to the hospital

• low-risk patients were treated as outpatients.

• TLDR; neural nets won (AUC=0.86) but they were considered too risky and 

instead logistic regression was chosen. 



https://dl.acm.org/doi/10.1145/2783258.2788613

Rung 1: Association and Prediction

Label = Death



https://dl.acm.org/doi/10.1145/2783258.2788613

Rung 1: Association and Prediction

Having Asthma reduce the predicted probability of death!



https://dl.acm.org/doi/10.1145/2783258.2788613, https://www.youtube.com/watch?v=wqI_z1yumzY&list=PLUl4u3cNGP60B0PQXVQyGNdCyCTDU1Q5j&index=6

Rung 1: Association and Prediction

• Rule-based system learned the rule “HasAsthama(x) ⇒ LowerRisk(x)”

• Patient with asthma -> admit directly to ICU -> receive aggressive 

care -> lower risk of overall death!

• If the rule-based system had learned that asthma lowers risk, certainly, the 

neural nets had learned it, too. 

• Neural net was not used because lack of intelligibility made it 

difficult to know what other problems might also need fixing



https://dl.acm.org/doi/10.1145/2783258.2788613

Rung 1: Association and Prediction

Intelligible model (or explainable AI) 
makes it easy to tell what drive the 

prediction, but it should not be 
interpreted casually



https://dl.acm.org/doi/10.1145/2783258.2788613

Rung 1: Association and Prediction



https://dl.acm.org/doi/10.1145/2783258.2788613

Rung 1: Association and Prediction

• In the mid 90’s, a large multi-institutional project was funded by Cost-

Effective HealthCare (CEHC) to evaluate ML in healthcare such as 

predicting pneumonia risk.

• Goal was to predict the probability of death (POD) patients with 

pneumonia so that

• high-risk patients could be admitted to the hospital

• low-risk patients were treated as outpatients.

• TLDR; neural nets won (AUC=0.86) but they were considered too risky and 

instead logistic regression was chosen. 

What rung is this objective/task?

Do the tools they used make sense for the task?
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Rung 2: Intervention
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Rung 2: Intervention

• Intervention involves not only observing the data but also changing what 

we observe according to our causal hypothesis.

• RCTs which meets some assumption has been considered the goal 

standard.

• e.g. The average causal effect of drug X and mortality Y is 0.5.

• However, no experiment cannot handle a “what if?” question.

• “what if this patient had received treatment X at time t?”
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Rung 3: Counterfactual



https://stats.stackexchange.com/questions/379799/difference-between-rungs-two-and-three-in-the-ladder-of-causation

Rung 3: Counterfactual

• What would happen had y happened/not happened?

• e.g. For patient who receive treatment and died how many would not 
die had they not receive treatment: P(Y0=0|X=1,Y=1)

• Rung 3 requires more information than rung 2 to answer.

• e.g. Consider an RCT which the drug’s average causal effect is 0.

u = some factor 
which cause 
treatment 

heterogeneity



Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol university

Major Causal Inference Tools
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The way forward

• In medicine, is important to remember that a data-driven algorithm may excel at predicting 

but is agnostic about the reason and possible measures to have prevented it.

• Identifying patients with a worse prognosis (through prediction) is a different question 

from identifying the optimal prevention and treatment strategies for a specific group of 

patients—the defining question of precision medicine (through causal inference).

• Casual structure usually is unknown and most researches tended to answer relatively narrow 

causal question (e.g., the average treatment effect of bronchodilators in infants with 

bronchiolitis).

• Integration of bigdata with data science approaches could help in these tasks for optimal 

treatment decision making.
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