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Abstract

Background

Emulation of the “target trial” (TT), a hypothetical pragmatic randomized controlled trial

(RCT), using observational data can be used to mitigate issues commonly encountered in

comparative effectiveness research (CER) when randomized trials are not logistically, ethi-

cally, or financially feasible. However, cardiovascular (CV) health research has been slow to

adopt TT emulation. Here, we demonstrate the design and analysis of a TT emulation using

electronic health records to study the comparative effectiveness of the addition of a disease-

modifying anti-rheumatic drug (DMARD) to a regimen of methotrexate on CV events among

rheumatoid arthritis (RA) patients.

Methods

We used data from an electronic medical records-based cohort of RA patients from North-

western Medicine to emulate the TT. Follow-up began 3 months after initial prescription of

MTX (2000–2020) and included all available follow-up through June 30, 2020. Weighted

pooled logistic regression was used to estimate differences in CVD risk and survival. Clon-

ing was used to handle immortal time bias and weights to improve baseline and time-varying

covariate imbalance.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0305467 June 14, 2024 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Rivera AS, Pierce JB, Sinha A, Pawlowski

AE, Lloyd-Jones DM, Lee YC, et al. (2024)

Designing target trials using electronic health

records: A case study of second-line

disease-modifying anti-rheumatic drugs and

cardiovascular disease outcomes in patients with

rheumatoid arthritis. PLoS ONE 19(6): e0305467.

https://doi.org/10.1371/journal.pone.0305467

Editor: Steve Zimmerman, Public Library of

Science, UNITED KINGDOM

Received: November 2, 2023

Accepted: May 30, 2024

Published: June 14, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0305467

Copyright: © 2024 Rivera et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Because of the

sensitive nature of the data analyzed for this study,

https://orcid.org/0000-0003-2533-0818
https://orcid.org/0000-0002-9047-6437
https://doi.org/10.1371/journal.pone.0305467
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0305467&domain=pdf&date_stamp=2024-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0305467&domain=pdf&date_stamp=2024-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0305467&domain=pdf&date_stamp=2024-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0305467&domain=pdf&date_stamp=2024-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0305467&domain=pdf&date_stamp=2024-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0305467&domain=pdf&date_stamp=2024-06-14
https://doi.org/10.1371/journal.pone.0305467
https://doi.org/10.1371/journal.pone.0305467
http://creativecommons.org/licenses/by/4.0/


Results

We identified 659 eligible people with RA with average follow-up of 46 months and 31

MACE events. The month 24 adjusted risk difference for MACE comparing initiation vs non-

initiation of a DMARD was -1.47% (95% confidence interval [CI]: -4.74, 1.95%), and the mar-

ginal hazard ratio (HR) was 0.72 (95% CI: 0.71, 1.23). In analyses subject to immortal time

bias, the HR was 0.62 (95% CI: 0.29–1.44).

Conclusion

In this sample, we did not observe evidence of differences in risk of MACE, a finding that is

compatible with previously published meta-analyses of RCTs. Thoughtful application of the

TT framework provides opportunities to conduct CER in observational data. Benchmarking

results of observational analyses to previously published RCTs can lend credibility to

interpretation.

Introduction

Comparative effectiveness research (CER) is crucial for developing practice guidelines [1].

Randomized controlled trials (RCTs) are the gold standard evidence in CER, however, RCTs

are not always feasible or ethical and have been criticized for their lack of representativeness of

the target patient population [2, 3]. As such, researchers have turned to observational data,

including electronic health records (EHR), to conduct CER. The target trial (TT) approach has

emerged as an important framework for the design and analysis of CER from observational

data [4–6]. Several studies have demonstrated that design and emulation of a hypothetical trial

(the “target trial”) in observational data can provide reliable estimates of causal effects in CER,

after alleviating concerns regarding common biases by benchmarking analyses to previously

published RCTs [7–9]. Additionally, trial emulations can be conducted in more diverse popu-

lations than the original trials, expanding the generalizability of treatment effects to understud-

ied populations [10].

This TT approach has not been widely adopted in cardiovascular health research. A system-

atic review found only 200 trial emulations published from March 2012 to October 2022 with

25% utilizing EHR data [11]. Among these papers, 30 were classified as cardiology and 19

identified to focus on major cardiovascular events as an outcome. To improve accessibility,

researchers have published TT demonstrations tackling various common question types, often

focused on interventions initiated at a single specific index event that corresponds to a clini-

cally-relevant decision point or using administrative datasets [12–16]. We contribute to the

emerging TT literature by demonstrating trial emulation to assess the effect of initiating a sec-

ond-line treatment in addition to first-line treatment on health outcomes: the effect of adding

a disease-modifying anti-rheumatic drugs (DMARD) to a regimen of methotrexate on cardio-

vascular disease in patients with rheumatoid arthritis (RA). RCTs to address this question may

not be feasible due to low event rates necessitating large samples or longer follow-up and may

not be ethical due to lack of equipoise. In this case, the Food and Drug Administration has

encouraged the addition of observational CER studies to post-market safety evidence; [17] the

methods described here can be generalized to comparisons of therapies that are confounded

by treatment due to indication. This approach can also be used in scenarios where treatment

can be initiated at multiple time points and serve as a more principled alternative to the
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commonly utilized approach of comparing never to ever initiators. Here, we summarize prin-

ciples in TT emulation using EHR data and provide additional details about design and imple-

mentation to supplement existing guides to TT emulation. Additionally, we provide

considerations specific to this research question with the hope that readers will consider this

guide when applying the TT approach to their own work.

Motivating example: Second-line DMARD therapy versus methotrexate

monotherapy to reduce cardiovascular events in RA patients

RA is a chronic inflammatory disease characterized by broad activation of the innate and adap-

tive immune systems [18]. Due to immune activation, people with RA have increased risk of

cardiovascular disease (CVD) [19–21]. New biologic and targeted synthetic DMARDs are effi-

cacious in addressing symptoms when methotrexate (MTX) monotherapy has been insuffi-

cient [22]. However, the effects of the adding DMARDs to MTX on CVD risk are uncertain.

Meta-analyses including only RCTs concluded that the addition of DMARDs did not reduce

CVD risk in RA patients, while another meta-analysis that included both RCTs and observa-

tional studies suggested that adding DMARDs provided some benefit [23, 24]. The discrep-

ancy may be attributed to previously detailed issues with observational studies such as

selection bias, immortal time bias, and unmeasured confounding [4, 9, 25, 26] Here, to address

issues with observational studies, we used electronic health record (EHR) data from a large

regional academic health system to emulate a (hypothetical) open-label pragmatic trial com-

paring MTX alone to MTX plus DMARD therapy to assess their effect on CVD risk in RA

patients.

Materials and methods

Specifying the target trial

The first step in TT emulation is to design the “target trial:” a hypothetical pragmatic RCT

designed to assess the effect of an intervention on the outcome(s). The second step is to iden-

tify an observational data source, here EHRs, and emulate the TT by analyzing that data [27].

The design process is iterative: key components are described at the beginning and may need

to be revisited based on artifacts in the observational data source. Collaboration with clinicians

or domain experts is essential in trial emulation, ensuring that analytic decisions do not lead to

implausible clinical situations. To aid researchers as they apply this approach to their work, we

have included key considerations for the design of each component (Table 1). An overview of

the TT and corresponding emulation for our case study is described in Table 2.

Selecting a data source

In RCTs, recruitment of participants is often done in partnership with health providers or

organizations that frequently interact with the target population. In emulation, recruitment is

not conducted. Rather, one utilizes found data sources to create a large, prospective cohort of

eligible patients. The data source should have reasonable quality and size, so that sufficient var-

iation in treatment strategies is available, and outcome events are prevalent enough. EHRs can

be good data sources for clinical outcomes provided that reliable diagnostic algorithms exist

and no major changes in data capture occurred. EHRs, however, have inherent issues like

irregular timing of visits and informed presence bias which need to be accounted for in the

design and reporting of the results.

For this case study, we created the de-identified and anonymized EHR data from the North-

western Medicine Enterprise Data Warehouse (NMEDW; Northwestern University Clinical
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and Translational Sciences Institute, Chicago, IL, USA), which houses comprehensive outpa-

tient and inpatient EHR data for a large urban health care system in Chicago, Illinois (pull

date: June 21 to July 16, 2020). The Northwestern University Institutional review board

exempted this study from review and waived informed consent requirements because the

research involves the study of deidentified data.

Eligibility criteria

The eligible population should reflect the population which will be affected by the implications

of the research. Only patients who are eligible to receive either treatment strategy should be

included; patients with counterindications should be excluded. One may start from criteria in

ongoing or completed trials investigating the intervention of interest then adapt these during

emulation. Demographic exclusions should be reviewed especially if the goal is to include

understudied but often excluded populations. Operational definitions should consider avail-

able data. Diagnostic tests may not be routine and might have to be removed as a criterion–or

the data source may have to be abandoned or expanded to achieve a sufficient sample size. For

EHR analysis, published or validated phenotypes should be used as much as possible [29].

In our ideal TT, RA diagnoses would be confirmed by trained clinicians. This is not feasible

with EHR so instead we utilized Internal Classifications of Diseases (ICD) codes, which

assumes adequate sensitivity and specificity (S1 Table). We captured newly diagnosed RA

Table 1. Considerations when designing a target trial using electronic health records.

Protocol Component Considerations

Eligibility criteria • How do choices around study eligibility translate to the broader population? Do they

limit generalizability and transportability?

• Is it possible to identify all relevant eligibility criteria from structured data in the EHR?

Or are more computationally intensive methods needed to identify information recorded

only in physician notes?

• What are implications for missing data? Will substantial selection bias be introduced if a

complete case analysis is conducted?

Treatment strategies • Are all treatment strategies possible for all types of patients in the eligible population?

• Are all candidate treatment strategies used within the eligible population? Is

implementation feasible in clinical practice?

• If comparing drug classes containing multiple drugs instead individual drugs: do all

candidate drugs reasonably have the same expected effect on the outcome?

Assignment

procedures

• Randomization is assumed conditional on observed confounders (factors that are

associated both with treatment strategy decisions and the outcomes of interest). Are all

necessary confounders captured in structured data in the EHR?

Follow-up period • How will you identify study baseline (time zero) for all participants? Is there a point at

which treatment decisions are often made?

• Will all participants begin their treatment simultaneously in time? If not, add a clinically-

plausible grace period in which treatment initiation is allowable (e.g. initiate a DMARD

within 6 months of beginning methotrexate).

• How will you identify loss to follow-up in your data source? How will you define contact

with the healthcare system?

Outcome • Are sufficient data (e.g., sample size and person-time) available to capture this outcome?

• Measurement error: Are operational definitions sensitive or specific enough? Do they

capture real-life events of interest?

• Do outcomes pass validation with chart review?

Causal contrasts of

interest

• Do the contrasts of interest of answer questions of significance in relation to clinical

practice or policy?

Analysis plan • What is the statistical analysis that would have been conducted for a pragmatic RCT?

• Will a validation study be conducted for identifying elements from the EHR? How will

you handle missing data?

• How will you address confounding and selection (immortal time) bias?

https://doi.org/10.1371/journal.pone.0305467.t001
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patients to ensure that we had their complete treatment history; this strategy gives us confi-

dence that we captured new second-line treatment users, not referrals of more advanced cases.

Treatment strategies

RCTs have a large degree of control on the mode, dose, and timing of interventions. For exam-

ple, trials specify minimum doses for the DMARD to be added or might focus on just one

Table 2. Specification of target trial protocol and emulation in northwestern medicine’s enterprise data warehouse (NMEDW).

Protocol

Component

Description of Target Trial Protocol Description of Target Trial Emulation Using NMEDW

Eligibility criteria Diagnosis of rheumatoid arthritis in patients aged 18-75y between 1/1/

2000 and 12/31/2019Management of RA symptoms via methotrexate

monotherapy (�12.5mg/wk) for at least 2 months (8 weeks) prior to time

zeroLaboratory Assessment:

• estimated glomerular filtration rate (eGFR) >60 mL/min

• White blood cell count>3,000/mm3

• Absolute neutrophil count>1200/mm3

• Liver transaminases<1.5x upper limit of normal

• Hemoglobin>9 g/dL

• Hematocrit>30%

Physician confirmation of no prior history of serious cardiovascular

disease including myocardial infarction, heart failure, or coronary

revascularization; other autoimmune rheumatic disease (psoriasis,

systemic lupus erythematosus, systemic sclerosis, dermatomyositis,

polymyositis, atopic dermatitis); inflammatory bowel disease (Crohns,

Ulcerative colitis); serious infections (HIV, Hepatitis B, Hepatitis C,

Tuberculosis) or cancer excluding nonmelanoma skin cancer prior to

time zero.

Same as target trial, except:

Lab values can be satisfied using bloodwork taken up to 6 months prior

to and 3 months after enrollment

Diagnoses will be identified using validated ICD-based definitions

instead of physician confirmation

Treatment

strategies

1. Initiate second line therapy with any DMARD within 24 months of

time zero

2. Do not initiate second line DMARD therapy (methotrexate

monotherapy)

Under both strategies, the decision to discontinue methotrexate or

DMARD therapies or initiate any additional therapies is left to the patient

and clinician’s discretion.

Same, except therapy initiation will be identified through prescription

orders.

Assignment

procedures

Open-label (unblinded) randomization to one treatment strategy at

baseline. Participants and clinicians were aware of assigned strategy

Randomization will be assumed conditional on baseline covariates: age,

gender, race and ethnicity, insurance, diabetes status, hypertension

status, other comorbidity status (�1 of the following: atrial fibrillation,

atherosclerotic CVD, chronic kidney disease, chronic obstructive

pulmonary disease), cholesterol level, and eGFR.

Follow-up period Starts at time zero (point of randomization and assignment to treatment

strategy) and ends at the earliest of outcome, loss to follow-up, last day of

available data (June 30, 2020), or 5 years after time zero

Same, except loss to follow-up is defined as 2 years without a patient

encounter at Northwestern.

Outcomes 4-point major adverse cardiovascular event composite:

- Non-fatal MI

- Non-fatal stroke (including hemorrhagic stroke)

- Incident HF (including first hospitalization and outpatient diagnosis)

- Cardiovascular death, certified by a clinician

Same, except components of the outcome will be identified using

validated ICD-9 and ICD-10 definitions

Causal contrasts

of interest

ITT effect; per-protocol effect Per-protocol effect only

Our strategies required the initiation of an DMARD within the grace

period regardless of further continuation. This “per-protocol” effect

mimics the ITT effect in a trial where all patients initiated their

assigned treatment during the grace period. ITT cannot be estimated

due to lack of randomization.

Analysis plan ITT analysis; Per-protocol analysis: inverse probability weighted pooled

logistic regression model with censoring when participants deviate from

study protocol. Weights estimated as a function of baseline (above) and

post-baseline covariates: diabetes status, hypertension status, other

comorbidity status, cholesterol level, and eGFR

Same, except analysis will be performed in an expanded dataset with 2

replicates (one per treatment strategy) per patient to avoid immortal

time bias [28]

https://doi.org/10.1371/journal.pone.0305467.t002
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DMARD [30]. In EHR data, however, there is more treatment variation especially if guidelines

do not explicitly favor specific drug(s). The choice of treatment strategies is limited by what is

being done in real-world clinical practice; as such, TT emulation is not useful for very new

interventions or treatments that are nearly always given for an indication [31].

The definition of the intervention should closely match actions that could be implemented

in the real world, so mechanisms for altering the action are concrete. For example, instead of

achieving certain blood concentration, we recommend specifying an intervention in terms of

the dose of a prescribed drug.

In our analysis, practice guidelines for RA state to use any DMARD as an additional treat-

ment to MTX [22]. Thus, we compare individuals who received MTX monotherapy with those

who received any additional DMARD. This simplification bars us from doing head-to-head

comparisons of specific DMARDs but captures implications of the guidelines.

Specifying a grace period

Unlike RCTs where points of randomization are clear and specified in advance, individuals in

EHRs do not necessarily share the same timing of treatment initiation/discontinuation. Com-

paring never to ever DMARD users based on the full data without specifying timing of initia-

tion, induces selection and leads to an unclear causal question. However, using a too strict

definitions such as “started additional DMARD exactly after 8 weeks of MTX use” would lead

to incredibly small sample sizes. It is also unrealistic because DMARD initiation being off one

or two days might be an artifact of data entry, not representing a medical care choice.

One solution is to re-define the intervention to include a grace period–a period of time

wherein eligible patients have the option of initiating a treatment strategy. This is a common

feature of pragmatic trials that can be emulated in EHRs [32]. The grace period illustrates a

tradeoff: the protocol specification is more relaxed, but one captures more individuals and bet-

ter mimics real-world practices. Grace periods should be realistic and alternative definitions

should be included in sensitivity analysis.

Our TT compares individuals who did versus did not receive a DMARD as second-line

treatment after MTX within a grace period. In our emulation, eligibility criteria include a min-

imum MTX treatment duration– 8 weeks–after which participants become eligible to initiate a

DMARD. At this point, eligible participants are granted a grace period– 24 months–within

which they either initiate an additional DMARD (active treatment) or not (control). This pro-

tocol is like a trial where recruitment is not limited to people who were newly diagnosed but

instead to people who have at least an 8 week but no more than 2-year history of using MTX

alone. This choice accommodates differences in RA disease progression, wherein patients may

not need an additional DMARD until clinically indicated. Additionally, our protocol is quite

flexible; third- and fourth-line DMARDs are permitted to be initiated anytime after the initial

second-line DMARD, and even those in the MTX monotherapy group are considered compli-

ant with protocol if they initiate a DMARDs after the grace period; this is in accordance with

the intention-to-treat principle. Stricter protocols can be emulated, but their clinical relevance

should be scrutinized.

Assignment procedures

Treatment assignment in RCTs relies on randomization, which enables unbiased estimation of

intention-to-treat (causal) effects [27]. The assignment procedure for any TT must be a prag-

matic design wherein patients and providers are aware of the treatment strategy to which they

are assigned, as we can never hope to emulate a tightly-controlled, blinded RCT in observa-

tional data [26].
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For the analysis in EHR data to emulate estimates from the TT, we must try to achieve ran-

domization conditional on measured confounders; this conditional randomization is essential

to the plausibility of exchangeability of participants between treatment groups. Several strate-

gies have been developed to achieve this goal including propensity score matching, stratifica-

tion, g-computation (or standardization), and inverse probability weighting [27]. Doubly-

robust methods can also be used, although these tend to be computationally intensive [33].

Regardless of chosen statistical approach, one needs to select covariates that act as confounders

of the treatment effect: they must be factors measured at or before baseline that influence the

treatment assignment decision and are associated with the outcome. (Table 2 for list of covari-

ates in our emulation)

An issue that arises when using EHRs for trial emulation is timing of confounder defini-

tions: the time periods when these confounders are defined matters to maintain temporality.

For example, laboratory values that are considered confounders must be assessed prior to

treatment assignment, and ideally will have been carried forward for a minimal amount of

time (e.g., specifying a look-back window of 12 months, not 10 years). Additionally, one must

be careful about informative missingness. For example, total cholesterol might be predictive of

being on statins, however, those that are on statins get their lipids measured more frequently.

Aside from working with clinicians to capture care practices, careful examination of missing-

ness patterns can help identify these problematic variables.

Outcomes

Follow-up duration for outcomes, as would be the case for RCTs, should be long enough to

capture outcomes of interest, but not so long that biological plausibility is tenuous. The pri-

mary outcome of our TT would be occurrence of Major Adverse Cardiac Events (MACE),

defined as a 4-point composite CVD outcome including non-fatal myocardial infarction (MI),

non-fatal stroke, incident heart failure (HF), and cardiovascular death, adjudicated by clini-

cians. This outcome is assessed throughout the follow-up period, as defined above.

In our emulation in EHRs, non-fatal MI, non-fatal stroke, and incident HF were identified

using validated sets of ICD-9 and ICD-10 codes (S1 Table). As we did not have cause of death

recorded in the EHR, we instead used death from all causes in our definition of MACE [21].

Follow-up period

RCTs have very strict protocols that clearly define a patient’s time of enrollment in the study,

as well as their time of exit from the study. In the TT framework, “time zero” is the point in

time when an individual meets eligibility criteria, treatment is assigned, and follow-up begins;

time zero is the observational analog to the date of first treatment received in an RCT. Careful

selection of time zero is important to avoid conflating pre- and post-treatment initiation vari-

ables, which can lead to immortal time bias [4]. (S1 Fig)

The definition of time zero varies with the clinical research question. It can be met at a single

time, for example when studying the effect of initiating remdesivir immediately upon admission

and testing positive for COVID-19 affects outcomes [34, 35]. But, it is more common for eligi-

bility to be met at multiple time points, for instance when studying hormone therapy initiation

in menopausal women, patients may be continuously eligible throughout menopause. In this

setting, a series of sequentially nested trials would need to be conducted [7].

As in an RCT, follow-up ends at the earliest of experiencing a study outcome or loss to fol-

low-up. Loss to follow-up in EHR studies needs to include a measure of inactivity or disenroll-

ment in the healthcare system, as lack of participation precludes us from collecting post-
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treatment data. If dates of disenrollment are not available, we recommend pre-specifying a

length of time (e.g., 2 years) wherein no contact with the system is considered loss to follow-up.

Causal contrasts of interest

RCTs often estimate both intention-to-treat (ITT) and per-protocol effects [28, 36]. ITT effects

are estimated based on treatment assignment alone, and ignore adherence to treatment proto-

cols. In point-treatment settings at controlled facilities (e.g., a single-dose vaccine trial), all

individuals are completely adherent to the protocol, so the ITT effect equals the per protocol

effect. However, when the treatment happens over time (e.g., take a medication daily for 3

months), there is no guarantee of perfect adherence so the ITT will not necessarily reflect per-

protocol effect. Per-protocol effect estimation accounts for post-treatment assignment proto-

col adherence, while appropriately adjusting for time-varying confounding (e.g., side effects).

As observational studies do not randomize treatment, we can only estimate per-protocol

effects when emulating TTs in EHR. However, we can be less strict in our definition of “proto-

col.” For example, here we attempted to estimate the observational analog of an ITT effect by

specifying a protocol that assigned individuals to treatment arms once they initiated a

DMARD, and allowed them to change their treatment however they and their physician

deemed fit after that initial prescription. Other examples of protocols we could have specified

(but did not implement here) are: requiring individuals to refill their prescriptions on a partic-

ular schedule, or requiring that they not initiate any other RA treatments before the end of

their DMARD prescription.

Statistical analysis

Once the TT protocol has been defined, an appropriate statistical analysis plan can be devel-

oped to address the question of interest. Estimation of ITT and per-protocol effects for survival

outcomes in RCTs with non-adherence have been described in detail elsewhere [28]. ITT

effects can be estimated using inverse probability of treatment weighted (IPTW) survival mod-

els, or baseline-covariate adjusted survival models that are standardized to the empirical base-

line covariate distribution. Per-protocol effects are slightly trickier and involve:

1. Estimating time-varying inverse probability of adherence weights [28].

2. Estimating IPTWs using a logistic regression model with treatment as the outcome and

baseline covariates as the predictors

3. Using a weighted pooled logistic regression model, where weights are product of those esti-

mated in Step 1 and Step 2. Alternately, using a weighted pooled logistic regression model

adjusted for baseline covariates, where weights are estimated in step 1.

The resulting model (Step 3) can then be used to calculate marginal survival curves, risk dif-

ferences at select times, 5-year mean restricted survival time, and the average hazards ratio

over follow-up. Covariates selected to be included in the various models should be guided by

existing knowledge or theory and by constructed directed acyclic graphs [37–39]. Researchers

may opt to use data-driven approaches for covariate selection (e.g., lasso) but it can add to the

computational time and complexity. Covariates can be used in both weighting (steps 1 and 2)

and outcome models (step 3) as it may safeguard against residual imbalance [40]. All weights

should be stabilized (and possibly truncated) to prevent large weights on rare individuals.

Non-parametric bootstrapping can be used to calculate (1-α)% confidence intervals [27, 28].

In our emulation, we used a baseline-adjusted weighted pooled logistic regression model, stan-

dardized to the empirical distribution of baseline covariates to calculate all marginal effects.
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The statistical analysis for our emulation in EHRs should resemble the analysis for the per-

protocol effect described above. However, we must address artificial introduction of immortal

time bias due to specification of a treatment grace period. Individuals may exhibit behavior

consistent with both strategies of interest during the grace period. (S1 Fig) Assigning all indi-

viduals who are lost to follow-up or experience an event during the grace period without hav-

ing initiated a DMARD to the MTX monotherapy arm would artificially inflate the event rate

in this arm [41]. There are two possible solutions to avoid this bias:

1. For all individuals who are censored or experience the outcome during the grace period

prior to initiating a DMARD, randomly assign them to a treatment strategy. No need for

inverse probability of adherence weights.

2. Clone all individuals at study baseline. Assign Clone A to MTX monotherapy, and Clone B

to initiate a DMARD within 24 months. Censor individuals when they become non-adher-

ent to their assigned treatment strategy. Use inverse probability of adherence weights to bal-

ance time-varying characteristics. Standard errors can be estimated via a non-parametric

bootstrap, or in cases with an extreme amount of data, robust variance estimation

procedures.

After implementing one of these strategies, estimate the observational analog of an ITT

effect via steps described above.

In emulations where cloning or grace periods are not employed, an analysis that can pro-

duce conditional exchangeability such as a weighted logistic regression with weights derived

from IPW would be sufficient [27]. Matching could also be explored, although care should be

undertaken when generalizing findings back to the target samples.

For our emulation, we also conducted sensitivity analyses to explore the impact changing

the functional form of time (linear vs quadratic) instead of non-linear splines (main analysis)

and the impact of changing the grace period to 12 months instead of 24 months. We also con-

ducted sub-group analysis that included only patients who were diagnosed with RA at least 6

months before time zero. Finally, we conducted a sensitivity analysis where we excluded

hydroxychloroquine (HCQ) as a DMARD option. Exclusion of HCQ was done to emulate

some previously conducted RCTs where HCQ was allowed as a concurrent therapy to MTX

but was not counted as a step-up DMARD [42].

Missing data. Missing data is common in EHRs and can be informative: laboratory values

are often only ordered for symptomatic patients. Imputing data can be an effective strategy to

mitigate selection bias induced by complete case analyses [43, 44]. Imputation is recom-

mended for all variables included in sample selection (eligibility criteria), baseline covariates,

and study outcomes, but not treatment to preserve the integrity of treatment ascertainment.

Carry-forward imputation is commonly used despite reservations in the statistical community

[45], but in target trials this method is easily feasible. Maximum time should be informed by

clinical knowledge; for example, blood pressure changes quickly so should be used proximally

to the index date, while lipid levels change slowly so can be carried forward longer.

To limit the computational intensiveness of our TT emulation, we chose to use single impu-

tation for missing baseline variables and carried last observations forward for 2 years for time-

varying covariates. All analyses were conducted in R v4.1.0 (see S2 Fig for data observability

and S1 File Section for sample code).

Results

Our final analytic sample consisted of 659 eligible patients with 30,128 person-months of fol-

low-up. (S3 Fig) At baseline, participants were mostly female with a mean age of 54.17 years
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(standard deviation (SD): 12.95). Most were White, Non-Hispanic (59.5%) and entered the

study in 2014 (SD: 4y). Comorbid conditions were common: 23.4% had HTN, 5.5% had DM,

and 5.5% had at least one other comorbidity. (Table 3)

There were 289 (43.6%) patients who initiated second-line DMARD therapy during the

grace period (MTX+DMARD), on average 7.6 (SD: 6.68) months after time zero. The three

most common DMARDs were adalimumab (71, 25%), hydroxychloroquine (62, 22%), and

etanercept (45, 16%). (S2 Table). Among those on MTX monotherapy, 77/370 (20.8%) started

a DMARD after the grace period. At the month 24 (end of grace period and point where expo-

sure assignment was finalized), those in the MTX+DMARD group (n = 287) were younger,

had a lower proportion of White patients, a higher proportion of Hispanic patients, had a

higher proportion with DM and HTN, and had higher eGFR compared to those in the MTX

monotherapy (n = 352). (Table 3)

Thirty-one patients (4 from deaths) experienced MACE during the 60-month follow-up,

with 20 events occurring during the grace period. The adjusted estimated 60-month MACE-

free survival were 90.6% for the MTX+DMARD arm and 89.1% for MTX monotherapy trans-

lating to a risk difference of -1.47% (95% CI: -4.74 to 1.95%) and restricted mean survival time

(RMST) of 0.57 (95% CI: -0.75 to 1.81) months. The marginal hazard ratio (HR) was 0.72

(95% CI: 0.71 to 1.23) after adjustment for baseline covariates. Results from sensitivity analy-

ses, including altering the functional form of time, restricting the analysis to those diagnosed

�6 months before time zero, and excluding hydroxychloroquine as a DMARD, did not mate-

rially change the conclusions. (Table 4 and Fig 1).

For comparison, we conducted a naïve analysis subject to immortal time bias, wherein eligi-

ble patients were retrospectively assigned to treatment based on their available data before 24

months follow-up (S4 Fig). Using a Cox proportional-hazards model adjusted for baseline

covariates, the HR for the treatment effect was 0.62 (95% CI: 0.29 to 1.44). As hypothesized,

this analysis resulted in an estimated HR that was further from the null; this is probably an arti-

fact of selection bias.

Discussion

Target trial emulation addresses common issues encountered in analyses of observational

data. In this work, we described and applied the TT approach when analyzing EHR data from

a large, urban healthcare system (Table 2). Here, we did not observe evidence of differences in

MACE risk, a finding that is limited by the small number of outcomes observed. This finding

was robust to design-based and statistical choices such as grace period length and functional

form of time to specify baseline hazard. Our results contrast with other observational studies

that suggested a 30–50% reduction in CVD events with DMARD use [23, 46], but better align

with prior meta-analyses that only included RCTs, which found no effect of additional

DMARDs on CVD risk.[23, 24] Our work demonstrates that TT emulation with EHR is a fea-

sible approach to conduct CER [26]. Similar to other TT emulation studies, we reproduced

results consistent with RCTs using observational data [7, 47].

A key strength of the TT approach is that it requires researchers to state assumptions that

affect internal and external validity. This exercise facilitates a systematic approach to study

design, principled formulation of an analysis plan, transparent interpretation of results, and

collaboration within the research team. In this specific case assessing DMARD addition, the

TT approach enabled proper handling of both confounding by indication and avoided immor-

tal time bias. Specifically, we were able to overcome selection bias due to differentially selecting

individuals into treatment groups based on post-baseline events. Oftentimes, researchers

would do a naïve analysis which compares ever versus never treated (e.g., ever used DMARD

PLOS ONE Designing Target Trials in EHRs

PLOS ONE | https://doi.org/10.1371/journal.pone.0305467 June 14, 2024 10 / 18

https://doi.org/10.1371/journal.pone.0305467


vs never used DMARD) by using future events to assign exposure status. This approach forces

the researcher to make “a gamble in which the investigators bet that the amount of selection

bias introduced is less than the amount of confounding eliminated.”[7] Based on our analysis,

the selection induced by doing a naïve comparison might not have altered the overall conclu-

sion. Still, the point estimate of the naïve analysis is further away from the null compared to

the emulated value (naïve HR: 0.62 vs emulated OR: 0.71). Importantly, there is a more funda-

mental issue with the naïve analysis. The comparison answers an unclear question that cannot

be applied in real life: How can one ensure a person never uses a drug? How can one ask a per-

son to initiate a drug but not specify when to initiate it? Our paper illustrates an alternative to

this problematic naïve approach through design (e.g., introducing grace periods) and analysis

(e.g., cloning and re-weighting).

We again stress that the TT emulation framework is not prescriptive in terms of statistical

estimation. Depending on the question and data, even the commonly used linear regression

model with covariate adjustment may suffice. For our question and data, we used grace periods

with weighted pooled logistic regression. Pooled logistic regression has been shown perform

comparably with time-dependent Cox models especially in rare outcomes [48]. Use of weights

to account for post-baseline confounding have been shown to obtain unbiased estimates in sim-

ulation of trial data with null effects [49].We could have also used approaches like marginal

Table 3. Demographic and clinical characteristics of included patients with rheumatoid arthritis at baseline and stratified by treatment strategy after 24 months,

northwestern medicine, January 2000–June 2020.

Baseline After 24 months

Overall

(n = 659)

Addition of Second-Line DMARD Therapy during grace period

(n = 287)^

MTX monotherapy during grace period

(n = 352)^

Age at time zero, mean (SD) 54.17 (12.95) 52.37 (13.31) 55.27 (12.54)

Male gender, n (%) 172 (26.1) 60 (20.9) 102 (29.0)

Race and ethnicity, n (%)

Black, non-Hispanic 92 (14.0) 40 (13.9) 46 (13.1)

Hispanic 79 (12.0) 47 (16.4) 31 (8.8)

White, non-Hispanic 393 (59.6) 162 (56.4) 220 (62.5)

Other* 95 (14.4) 38 (13.2) 55 (15.6)

Insurance status, n (%)

Government 248 (37.6) 108 (37.6) 128 (36.4)

Private 309 (46.9) 137 (47.7) 167 (47.4)

Uninsured or other 102 (15.5) 42 (14.6) 57 (16.2)

Year of Time Zero, mean

(SD)

2014 (4) 2014 (4) 2014 (4)

Clinical variables+

Hypertension, n (%) 150 (22.8) 87 (30.3) 76 (21.6)

Diabetes mellitus, n (%) 36 (5.5) 26 (9.1) 17 (4.8)

Other comorbidities, n

(%)†

36 (5.5) 25 (8.7) 30 (8.5)

eGFR, mean (SD) 110.49 (36.04) 88.65 (20.51) 86.04 (21.84)

Total Cholesterol, mean

(SD)

184.48 (20.45) 182.90 (25.22) 184.37 (24.97)

* - Includes Asian, multiracial, and declined or missing.

† - Includes chronic kidney disease, atrial fibrillation, chronic obstructive pulmonary disease, and atherosclerotic cardiovascular disease. + - Clinical variables were

reported at baseline for the overall sample, and updated to reflect most recent values at or prior to 24 months as appropriate. ^ - Difference between baseline and month

24 sample is due to occurrence of outcome or censoring events.

https://doi.org/10.1371/journal.pone.0305467.t003
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structural modelling, longitudinal matching or sequential nested trials to overcome the chal-

lenges of time-varying exposures although it would necessitate modifying the question being

answered. (e.g., matching produces average treatment among the treated) [50, 51]. Despite key

strengths, our emulation has several limitations. First, our data only consisted of structured

data–ICD codes and prescription data–from a single health system. As we were unable to

include clinical assessments (e.g., pain scores and function assessments) and markers of inflam-

mation in our models [22], our analyses may be subject to unmeasured confounding. Moreover,

people may receive care from other facilities and that external data (e.g., prior MTX prescrip-

tions, state death registry) may not be recorded correctly in the NMEDW, so measurement

error may have affected study eligibility, treatment identification, and outcome ascertainment.

Second, we used a logistic regression model for our weights and outcomes model with some

parametric form assumptions. Recent work on causal inference has argued for incorporating

more flexible methods like machine learning models; [52] however, in our case integrating

these methods would be computationally expensive for little gain. Third, our definition of

MACE used all-cause death instead of CVD-specific death. While this definition is consistent

with some other studies, these results may not be directly comparable to those from studies

whose MACE definition included CVD-specific death [53]. Finally, we were unable to examine

individual DMARDs separately due to sample size limitations. This choice implies that each

DMARD affects CVD risk equally, which may not be true as conventional and targeted

DMARDs operate via different hypothesized mechanisms [54]. A larger dataset with greater

treatment heterogeneity is required to investigate DMARD-specific effects on CVD risk.

We designed and emulated a target trial in EHR data from one health system to study the

comparative effectiveness of second-line DMARD therapy versus methotrexate monotherapy

on CVD risk in RA patients. Our results are limited by sample size, namely number of MACE

events observed, although our estimates are compatible with those estimated in meta-analyses

Table 4. Hazard ratios, risk differences, and restricted mean survival times for 5-year risk of MACE comparing

methotrexate monotherapy and addition of second-line DMARD therapy, northwestern medicine, January 2000–

June 2020.

Analysis† Marginal HR* Risk Difference at month
60*

RMST at month
60*

Main 0.717

(0.709 1.228)

-1.47

(-4.74, 1.95)

0.573

(-0.751, 1.807)

Sensitivity analyses
12-month grace period 0.723

(0.537, 1.270)

-2.1

(-6.86, 2.54)

0.778

(-0.945, 2.508)

Linear time 1.066

(0.208, 1.123)

-0.9

(-4.49, 2.38)

0.351

(-0.884, 1.754)

Square time 0.711

(0.241, 1.107)

-1.35

(-4.64, 2.04)

0.529

(-0.773, 1.820)

Diagnosis of RA at least 6 months before time

zero

0.880

(0.744, 1.330)

-0.32

(-4.14, 3.39)

0.120

(-1.238, 1.594)

HCQ excluded from DMARD 1.031

(0.695, 1.345)

-0.76

(-4.45, 3.65)

0.262

(-1.138, 1.517)

HCQ–hydroxychloroquine.

* - 95% percentile bootstrap confidence intervals (CI). Weights and outcomes models adjust for age, gender, race and

ethnicity, diabetes, hypertension, and other comorbidity status, baseline cholesterol level, and baseline eGFR.

† - Model used for the denominator of the weights calculation included baseline and time-varying treatment status,

comorbidity status, and laboratory values.

https://doi.org/10.1371/journal.pone.0305467.t004
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of RCTs. While RCTs remain the gold standard for evidence in making clinical decisions and

practice guidelines, studies that thoughtfully apply the TT framework and benchmark results

to prior RCTs provide opportunities to do rigorous CER in observational data.

Fig 1. MACE-free survival curves comparing methotrexate monotherapy versus addition of second-line DMARD

therapy, northwestern medicine, January 2000–June 2020. Caption: Black lines represent survival curves. Dashed

gray lines represent 2.5 and 97.5 bootstrapped percentiles from 500 re-samples. Sensitivity analyses included: (B) linear

time, (C) linear and quadratic time, (D) used 12-month grace period, (E) require diagnosis of RA�6 months before

time zero, (F) exclude individuals who used hydroxychloroquine as additional therapy.

https://doi.org/10.1371/journal.pone.0305467.g001
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Supporting information

S1 Fig. Illustration of immortal time bias in target trial emulation with a grace period.

Abbreviations: DMARD–disease-modifying antirheumatic drug, MTX–methotrexate. This

figure illustrates data from 4 hypothetical participants. Yellow represents time available in data

prior to time zero (not included in analysis). Blue represents follow-up time available in data

after time zero. Black circles represent the end of available data for each person (whether an

event or censoring). Orange circles represent the initiation of a DMARD prescription. Person

A’s data are compatible with the MTX monotherapy strategy, and Person B and C’s data are

compatible with the MTX+DMARD strategy. The treatment assignment of individuals like

Person D can introduce immortal time bias into analysis, as assigning them all to MTX mono-

therapy artificially inflates the risk estimates made during the grace period, making MTX

monotherapy (possibly incorrectly) appear to be worse than MTX+DMARD.

(TIF)

S2 Fig. Observability of electronic health records for emulation of target trial to study the

comparative effectiveness of initiating second-line DMARD therapy after methotrexate on

cardiovascular outcomes in rheumatoid arthritis patients, northwestern medicine, January

2000 to June 2020.

(TIF)

S3 Fig. Selection of analytic cohort for emulation of target trial to study the comparative

effectiveness of initiating second-line DMARD therapy after methotrexate on cardiovascu-

lar outcomes in rheumatoid arthritis patients, northwestern Medicine, January 2000 to

June 2020. Abbreviations: DMARD–disease-modifying antirheumatic drug, MACE–major

adverse cardiac event, MTX–methotrexate, RA–rheumatoid arthritis aIndividuals who initi-

ated a DMARD before time zero were excluded as we could not capture the point in the clini-

cal decision making process when a choice regarding second line therapy was made. bFor

laboratory values, we imputed missing baseline laboratory data using random-forest based sin-

gle imputation before applying the criteria for inclusion. Laboratory eligibility criteria

included: Platelet>100,000/mm3, estimated glomerular filtration rate>60 mL/min, White

blood cell count>3,000/mm3, Absolute neutrophil count>1200/mm3, Liver trans-

aminases<1.5x upper limit of normal, Hemoglobin>9 g/dL, and Hematocrit>30%.

(TIF)

S4 Fig. Unadjusted and unweighted survival curves without accounting for immortal

timbe bias. Note: MTX only - only used methotrexate throughout the grace period, MTX+-

DMARD–added disease-modifying antirheumatic drug to methotrexate at some point during

the grace period.

(TIF)

S1 File. Supplemental methods and sample R code.

(DOCX)

S1 Table. ICD codes for different conditions.

(DOCX)

S2 Table. Types of first DMARD started during grace period and average time to starting

DMARD (n = 289), northwestern medicine, January 2000 to June 2020.

(DOCX)
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