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Causal machine learning for predicting 
treatment outcomes

Stefan Feuerriegel    1,2 , Dennis Frauen1,2, Valentyn Melnychuk1,2, 
Jonas Schweisthal    1,2, Konstantin Hess    1,2, Alicia Curth3, Stefan Bauer    4,5, 
Niki Kilbertus    2,4,5, Isaac S. Kohane6 & Mihaela van der Schaar7,8

Causal machine learning (ML) offers flexible, data-driven methods for 
predicting treatment outcomes including efficacy and toxicity, thereby 
supporting the assessment and safety of drugs. A key benefit of causal ML is 
that it allows for estimating individualized treatment effects, so that clinical 
decision-making can be personalized to individual patient profiles. Causal 
ML can be used in combination with both clinical trial data and real-world 
data, such as clinical registries and electronic health records, but caution 
is needed to avoid biased or incorrect predictions. In this Perspective, we 
discuss the benefits of causal ML (relative to traditional statistical or ML 
approaches) and outline the key components and steps. Finally, we provide 
recommendations for the reliable use of causal ML and effective translation 
into the clinic.

Assessing the effectiveness of treatments is crucial to ensure patient 
safety and personalize patient care. Recent innovations in ML offer 
new, data-driven methods to estimate treatment effects from data. 
This branch in ML is commonly referred to as causal ML as it aims to 
predict a causal quantity, namely, changes in patient outcomes due 
to treatment1. Causal ML can be used to estimate treatment effects 
from both experimental data obtained through randomized con-
trolled trials (RCTs) and observational data obtained from clinical 
registries, electronic health records and other real-world data (RWD) 
sources to generate clinical evidence. A key strength of causal ML 
is that it enables estimation of individualized treatment effects, as 
well as personalized predictions of potential patient outcomes (for 
example, survival, readmission, quality of life or toxicity) under dif-
ferent treatment scenarios. This offers a granular understanding of 
when treatments are effective or harmful, so that decision-making 
in patient care can be personalized to individual patient profiles. 
Still, cautious use is important as causal inference rests on formal 
assumptions that cannot be tested.

In this Perspective, we explain how causal ML differs from tradi-
tional statistical and ML approaches, and we discuss the essential com-
ponents and steps for its use in the clinic. We provide recommendations 

for avoiding common technical pitfalls and outline a path to translation 
of this approach into clinical practice.

Causal ML in medicine
In medicine, causal ML offers several opportunities for estimating indi-
vidualized treatment effects from data, which eventually help in greater 
personalization of care. First, at the patient level, causal ML can handle 
high-dimensional and unstructured data with patient covariates, and 
thus estimate treatment effects from multimodal datasets contain-
ing images, text or time series, as well as genetic data. For example, 
one could estimate treatment effects from computed tomography 
scans or entire electronic health records. Second, at the outcome level, 
causal ML can help make personalized estimates of treatment effects 
for subpopulations or even predict outcomes for individual patients2. 
For example, individual differences in drug metabolism can lead to 
serious side effects for drugs in some patients but can be lifesaving in 
others3, so a causal ML approach could learn such differences and thus 
help in designing personalized treatment strategies. Third, at the treat-
ment level, causal ML can be effective for estimating heterogeneity in 
treatment effects across patients in a data-driven manner, to identify 
for which patient subgroups treatment is effective (Fig. 1c).
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are at high risk—but without saying what the best treatment plan is5–9. 
By contrast, causal ML aims to answer ‘what if’ questions. For example, 
causal ML could estimate how the risk of diabetes onset will change if 
the patient receives an antidiabetic drug10–12, so that decisions can be 
made about whether to administer such a drug. Causal ML can also be 
used to predict the potential patient outcomes in response to different 
treatments. For example, in oncology, causal ML could make individu-
alized predictions of survival under different treatment plans, which 
can then help medical practitioners in choosing a treatment plan that 
promises the largest chance of survival or longest duration of survival13.

Methods for estimating treatment effects have a long tradition 
in the statistical literature (for example, refs. 14–17). Causal ML builds 

Despite these potential benefits, causal ML poses distinct chal-
lenges that necessitate custom methods. In addition, the appropriate 
application of this approach requires an understanding of how causal 
ML differs from traditional statistical and ML approaches.

When should I use causal ML?
Causal ML for estimating treatment effects is different from traditional 
predictive ML (see Box 1 for a glossary of terms). Intuitively, traditional 
ML aims at predicting outcomes4, while causal ML quantifies changes in 
outcomes due to treatment, so that treatment effects can be estimated 
(Fig. 1a). A typical use case for traditional ML is risk scoring, such as pre-
dicting the probability of diabetes onset to understand which patients 
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Fig. 1 | Causal ML for predicting treatment outcomes. a, Different from 
traditional ML, causal ML aims to (i) estimate the treatment effect or (ii) predict 
the potential patient outcomes themselves owing to treatments. As such, one can 
perform ‘what if’ reasoning to evaluate how patient outcomes will change due to 
administering a treatment. b, Causal ML is challenging owing to the ‘fundamental 
problem’ of causal inference—in that not all potential outcomes can be observed 

and are thus missing in the data. Unless potential outcomes are explicitly needed, 
treatment effect estimation is preferred. c, Treatment effect heterogeneity 
refers to the variation in the response to treatment across different subgroups 
of a patient population (for example, according to age), indicating that the 
effectiveness of the intervention is not uniform for all individuals. For this, one 
must move beyond the ATE and obtain individualized treatment effects.
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upon the same problem setup but makes changes to the estimation 
strategy. Hence, the core benefit of using causal ML is generally not 
the types of questions that can be asked, but how these questions can 
be answered. As such, causal ML can have benefits over alternative 
methods from the statistical literature (Box 2). First, methods from 

classical statistics often assume knowledge about the parametric 
form of the association between patient characteristics and outcomes, 
such as linear dependencies. However, such knowledge is often not 
available or unrealistic, especially for high-dimensional datasets such 
as electronic health records, and this can easily lead to models that 
are misspecified. By contrast, causal ML typically allows for less rigid 
models, which helps in capturing complex disease dynamics as well as 
human pathophysiology and pharmacology. Still, there is a trade-off 
as causal ML typically requires larger sample sizes.

The fundamental problem of causal inference
Estimating treatment effects from data requires custom methods. This 
is because treatment effects for individual patients are not observable 
owing to the so-called fundamental problem of causal inference18,19: 
that is, one can only observe the factual patient outcome under the 
given treatment, but one never observes the counterfactual patient 
outcome under a different, hypothetical treatment (Fig. 1b). Therefore, 
the estimation of treatment effects or other causal quantities that are 
based on such unobserved outcomes poses challenges that do not exist 
in traditional, predictive ML.

First, to obtain a causal quantity (such as response to treatment) 
that can be estimated, certain assumptions on the causal structure of 
the problem must be made. In particular, one often needs to assume 
that there is no unmeasured confounding; that is, there are no unob-
served factors that drive both treatment decisions and subsequent 
patient outcomes. If unmeasured confounding is present, the esti-
mated treatment effects may suffer from confounding bias and, as a 
result, can be incorrect20. Additionally, to estimate treatment effects, 
one needs to account for the dependence structure between treatment, 
outcomes and patient characteristics by modeling the underlying 
causal relationships. This is because intervening on the treatment 

Box 1

Glossary of common terms in 
causal ML
Causal graph: A graphical representation of the causal relationships 
between variables, typically using directed acyclic graphs to depict 
causal paths.

Causal ML: A branch of ML that aims to estimate causal quantities 
(for example, ATE and CATE) or to predict potential outcomes.  
Here, ‘causal’ implies that the target is a causal quantity when 
certain assumptions about the data-generating mechanism are 
satisfied. For alternative definitions and use cases of causal ML,  
see ref. 1.

Confounder: A variable that influences both the treatment 
assignment and the outcome.

Consistency: The potential outcome is equal to the observed 
patient outcome under the selected treatment, which implies  
that the potential outcomes are clearly defined and observable  
in principle.

Counterfactual outcome: The unobservable patient outcome that 
would have occurred, had a patient received a different treatment.

Factual outcome: The observed patient outcome that occurred for 
the observed treatment.

Identifiability: A statistical concept referring to the ability of causal 
quantities such as treatment effects to be uniquely inferred from the 
observed data.

Positivity: Each patient has a bigger-than-zero probability of 
receiving/not receiving a treatment. This is also called overlap 
assumption.

Potential outcome: The hypothetical patient outcome that would 
be observed if a certain treatment was administered.

Propensity score: The propensity score is the probability of 
receiving the treatment given the observed specific patient 
characteristics.

SUTVA: The outcome for any patient does not depend on the 
treatment assignment of other patients, and there is no hidden 
variation in the effect of the treatment across different settings or 
populations.

Unconfoundedness: Given observed covariates, the treatment 
assignment is independent of the potential outcomes. This is the 
case, for example, when there are no unobserved confounders,  
that is, variables influencing both the treatment and the outcome. 
The assumption is also called ignorability.

Box 2

Comparison of causal ML 
versus traditional statistics
Owing to the importance of treatment effect estimation  
across many application areas, methods for treatment effect 
estimation have been developed in different disciplines, including 
statistics, biostatistics, econometrics and ML (for example,  
refs. 23,27,49,53,54,61,98,99). However, there is no ‘dichotomy’ 
as many concepts are shared across disciplines. For example, 
many state-of-the-art methods for estimating treatment effects are 
model-agnostic in that they can be used in combination with both 
arbitrary models from classical statistics and also more modern  
ML models23,49,61.

Eventually, the choice of whether to rely on a classical statistical 
model or a more modern ML method presents a trade-off that 
depends on the underlying settings. For example, simple models 
(such as linear regression or other parametric models) are often 
preferred for small sample sizes. For large sample sizes, more 
complex, nonlinear models can be used to capture heterogeneity 
in the treatment effect. Notwithstanding, the ability to handle 
nonlinear relationships and treatment effect heterogeneity 
is not unique to causal ML but can, in principle, also rely on 
classical statistical models that allow incorporating prespecified 
nonlinearities. Therefore, causal ML may have advantages when 
the underlying data-generating process is complex and when prior 
knowledge is limited.
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variable could also affect other patient characteristics. As an example, 
consider a patient with a high body mass index whose doctor recom-
mends quitting smoking, and for whom the diabetes risk should be 
predicted. Literature from traditional ML would suggest using both 
the body mass index and smoking behavior to predict the diabetes risk 
under a smoking versus no-smoking scenario; however, this approach 
would ignore that stopping smoking would also change a patient’s 
body mass index. To address this issue, ML needs to be embedded in 
a causal framework.

The causal ML workflow
The process of predicting treatment outcomes with causal ML can be 
broken down into a few key steps (Fig. 2), which are discussed in the 
sections below. Following this workflow21,22 should help researchers to 
clearly define the research question and then guide their formulation 
of the problem structure, their choice of the causal quantity of inter-
est, the causal ML method, the evaluation metric and the appropriate 
robustness checks to validate the reliability of the estimates.

Formulate the causal structure of the problem
To estimate the effectiveness of treatments, information about the fol-
lowing variables is necessary19: the treatment of interest, the observed 
patient outcome and patient characteristics (covariates) such as age, 
gender and the medical history. For example, in cancer care, one could 
use electronic patient records with information about the type of chem-
otherapy (the treatment), the size of a cancer tumor (the outcome), and 
the previous medical history (the covariates). In the standard setting19, 
the variables can influence each other as shown by the causal graph in 
Fig. 3a. To make causal quantities identifiable, we later need to assume 
knowledge about the causal graph.

Information about the above variables can come from either 
observational or experimental data. In observational data, such as clini-
cal registries and electronic health records, the treatment assignment 
follows some typically unknown procedure, depending on the patient 
characteristics. For example, patients with a very severe illness are likely 

to get a more aggressive form of treatment, implying that the patient 
characteristics differ across treatment groups. This contrasts with 
RCTs, where treatments are randomized and, as a result, the patient 
characteristics are similar across treatment groups. This is captured by 
the propensity score, which is the probability of receiving a treatment 
given the patient covariates14. In RCTs, the propensity score is known 
(for example, the propensity score is 50% in completely randomized 
trials with two treatment arms of equal size). By contrast, the propen-
sity score in RWD is unknown, but it can be estimated to account for 
differences in the patient populations.

Select the causal quantity of interest
Causal quantities, such as the response to treatment, are commonly 
formalized based on the ‘potential outcomes framework’15. The frame-
work conceptualizes potential outcomes, which are the patient out-
comes that would hypothetically be observed if a certain treatment was 
administered. Then, depending on the practical applications, different 
causal quantities can be of interest. These include treatment effects, 
which quantify the expected difference of two potential outcomes 
under different treatments. Common choices of treatment effects 
can be loosely grouped along two dimensions (Fig. 3b); the degree of 
effect heterogeneity and the treatment type. By choosing a specific 
treatment effect of interest, one defines the so-called estimand, that is, 
the causal quantity that should be predicted by the causal ML method.

Degree of effect heterogeneity. Traditionally, the average treatment 
effect (ATE) is widely used in clinical trials. The ATE measures effects at 
the level of the study population14. By comparing the average patient 
outcome for those receiving the treatment versus those who do not 
(control group), the ATE helps in understanding how effective a treat-
ment is, on average, across a specific patient cohort23. This is important, 
for example, when analyzing the comparative effectiveness of a new 
drug compared to the standard of care, or when assessing the overall 
effectiveness or safety of a new drug. However, the ATE cannot offer 
granular insights into whether patients with specific covariates may 
particularly benefit from a treatment, even though such heterogeneity 
in treatment effects can be of high interest in clinical practice (Fig. 1c). 
For a more granular view, one typically estimates the conditional aver-
age treatment effect (CATE), which is the effect of a treatment for a par-
ticular subgroup of patients defined by the covariates. Understanding 
the heterogeneity in treatment effects informs about subgroups where 
treatments are not effective or might even be harmful, which is relevant 
for individualizing treatment recommendations to specific patients.

Treatment type. Binary (discrete) treatments refer to a type of treat-
ment variable that is dichotomous and thus has only two (or more) 
categories—for example, when answering questions of whether to treat 
or not to treat. By contrast, continuous treatments refer to a type of 
treatment variable that can take on a range of values rather than being 
limited to two (or a few) categories. Continuous treatment variables 
are commonly present in situations where the intensity, dosage or 
level of exposure to treatment can be flexibly chosen24. For example, 
in radiation therapy, the dose of radiation is often chosen from a fairly 
wide spectrum that depends on the cancer type and other patient char-
acteristics25. For continuous treatments, the treatment effectiveness 
is often also summarized by dose–response curves.

Individual patient outcomes. Besides the above, some applications 
in medicine are also interested in predicting the individual patient out-
comes. Predicting patient outcomes is different from treatment effects, 
as the former gives granular predictions of the potential outcomes 
under different treatments, while the latter estimates only compara-
tive changes in outcomes but not the outcomes themselves. There-
fore, treatment effects primarily tell the advantages of one treatment 
over another, while potential outcomes can support decision-making 
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Fig. 2 | Workflow for causal ML in medicine. To predict treatment outcomes, 
assumptions on the causal structure of the problem must be made. This is 
relevant regardless of whether causal ML approaches or traditional statistical 
approaches are used. Subsequently, the causal quantity of interest can be 
predicted by causal ML.
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in routine care by helping clinicians reason about what outcome to 
expect under different treatment options. This may be seen as a ‘risk 
under intervention’ estimand and requires a careful modeling strat-
egy26. For example, while the treatment effect may say that a drug can 
improve the 5-year mortality by five percentage points, the predicted 
outcomes could inform us that the mortality is 15% with treatment and 
20% without. However, in practice, the estimation of ATE and CATE is 
often an easier task than predicting potential outcomes27 and, hence, 
is preferred when it is sufficient for decision-making.

Assess the plausibility of assumptions for identifiability
The estimation of treatment effects involves counterfactual outcomes, 
which are not observable. Therefore, formal assumptions must be 
made about the data-generating process to ensure the identifiability of 
treatment effects from data19. Intuitively, identifiability is a theoretical 
concept that refers to whether causal quantities (such as treatment 
effects) can be uniquely inferred from data. Ensuring identifiability 
is a necessary step because, otherwise, it is impossible to estimate a 
treatment effect without bias, even with infinite data19.

RCTs ensure the identifiability of treatment effects through fully 
randomized treatment assignment. However, treatment assignment in 
RWD is not fully randomized and depends on covariates, so that formal 
assumptions must be made14. The exact set of assumptions depends 
on which type of treatment effect is chosen. For the treatment effects 
discussed above, in addition to having independent and identically 
distributed data, three ‘causal’ assumptions are standard14,28. First, 
stable unit treatment value assumption (SUTVA) requires that the 
potential outcome coincides with the observed outcome for a given 
treatment and that the observed potential outcome on one patient 

should be unaffected by the particular assignment of treatments to 
other patients. This assumption implies that there is no interference 
whereby treating one patient influences the outcomes for another 
patient in the study population (for example, due to spillover or peer 
effects). The SUTVA assumption also implies that there is hidden vari-
ation in the treatment effect across hospitals or populations. SUTVA is 
also known as consistency assumption together with non-interference. 
Second, positivity (also called overlap) requires a nonzero probability 
of receiving a treatment. Positivity implies that, for each possible 
combination of patient characteristics, we can observe both treated 
and untreated patients. And third, unconfoundedness (also called 
ignorability) states that, given observed covariates, the treatment 
assignment is independent of the potential outcomes. In particular, 
this is satisfied if the patient covariates include all possible confound-
ers—in other words, variables that influence both the treatment and 
the outcome. For example, unconfoundedness may be violated if 
patients with certain sociodemographic characteristics (such as race 
or income level) tend to have better access to treatments29, and where 
the reason is not captured in the data. In principle, unconfoundedness 
can be addressed by capturing all relevant factors driving treatment 
assignment in RWD30, yet it is generally challenging to validate this in 
practice. If confounders are not observed or not modeled (or even 
not known), then the estimated treatment effect might be biased and 
thus incorrect20.

Importantly, assumptions such as those above are required for 
consistently estimating treatment effects from data, regardless of 
whether a causal ML approach or a traditional statistical approach is 
used. A natural challenge comes from the fact that assessing the plau-
sibility of the assumptions is often difficult. Later, we discuss potential 
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b, The research question defines what causal quantity is of interest, that is, the 
estimand. The estimand can vary by the effect heterogeneity (average versus 
individualized) and treatment type (binary versus continuous). Depending on 
the causal graph and the causal quantity of interest, an appropriate causal ML 
method must be chosen.

http://www.nature.com/naturemedicine


Nature Medicine | Volume 30 | April 2024 | 958–968 963

Perspective https://doi.org/10.1038/s41591-024-02902-1

strategies to check the credibility of whether the assumptions hold. 
Notwithstanding, problem setups with alternative designs also exist. 
For example, some problem setups allow for relaxations of the SUTVA 
assumption (for example, by allowing for spillover effects)31,32. There 
also exist alternatives to assuming unconfoundedness in specific set-
tings, such as through the use of instrumental variables33,34. Finally, 
there are problem setups that are not static but time-varying, so that 
a sequence of treatment decisions is made over time35–44. Researchers 
are also developing ways to effectively combine both observational 
and experimental data45–47.

Choose and fit the causal ML method
There are different causal ML methods, which vary based on which 
causal graph and which causal quantity of interest is addressed. For 
example, a large body of literature focuses on causal ML for ATEs23,48–52.  
Here, a prominent method is based on so-called targeting to obtain 
an estimator that satisfies a semi-parametric efficient estimating 
equation. For CATE estimation with binary treatments, there are 
two broader categories of methods. On the one hand, so-called 
meta-learners53 (Box 3) are model-agnostic methods for CATE estima-
tion that can be used for treatment effect estimation in combination 
with an arbitrary ML model of choice (for example, a decision tree 
or a neural network54). A key advantage of model-agnostic methods 
is that the underlying ML model can be chosen to flexibly handle 
clinical data sources such as electronic health records. On the other 
hand, model-specific methods make adjustments to existing ML 
models to address statistical challenges arising in treatment effect 
estimation and, therefore, to improve performance. Here, prominent 
examples that are particularly useful for clinical application are the 
causal tree55 and the causal forest56,57, which adapt the decision tree  
and random forest, respectively, for treatment effect estimation. 

Even others adapt representation learning to leverage neural net-
works for treatment effect estimation58,59. A different set of methods 
is needed for predicting the response to continuous treatment varia-
bles—for settings in which the intensity, dosage or level of exposure to 
a treatment can be flexibly chosen24,60–67. This is because the number 
of treatment values is infinite and not every value is observed in the 
data—making treatment effect estimation particularly challenging 
in this context.

Existing causal ML methods often generate point estimates. 
This can be a serious limitation in medical applications68, where 
uncertainty estimates such as standard errors or confidence inter-
vals are crucial for reliable decision-making69. However, there is 
also some progress. For example, for CATE estimation, the causal 
forest56,57 is a method that offers rigorous uncertainty estimates. 
In addition, several other strategies have been developed recently, 
such as Bayesian methods70 and conformal prediction71, but still 
more research is needed.

Evaluate the causal ML method
Arguably, the best way to evaluate causal ML methods is to assess 
the accuracy in predicting patient outcomes from randomized data. 
While this does not allow assessment of treatment effects for indi-
vidual patients, it still helps during model selection, so that models 
are favored with the best performance in terms of average or hetero-
geneous treatment effects. By contrast, benchmarking for the pur-
pose of model selection is challenging, as both counterfactuals and 
ground-truth values of treatment effects are unknown72–74. As a remedy, 
two strategies are common. A simple strategy is to compare methods 
from causal ML based only on the performance in predicting factual 
outcomes (whereby the performance in predicting counterfactual 
outcomes is ignored). This may give some insights into whether the 
underlying disease mechanisms in the data are captured. Yet it has a 
major limitation in that the key causal quantity of interest—that is, 
the treatment effect—is not evaluated. Another approach is to use 
pseudo-outcomes75. Here, a pseudo-outcome is first estimated using a 
secondary, independent model to approximate the unknown counter-
factual outcome, and then the pseudo-outcome is used to benchmark 
the estimated CATE. However, this approach depends on the perfor-
mance of the secondary model for pseudo-outcomes and tends to 
favor certain methods75. Overall, both strategies are merely heuristics 
and there is no ‘perfect’ solution.

Perform robustness checks
To validate the robustness of the treatment effect estimates against 
explicit violations of the different assumptions, so-called refutation 
methods are used76. Common refutation methods include adding a 
random variable to check if the treatment effect estimates remain con-
sistent (as such a variable should not affect the estimates), or replacing 
the actual treatment variable with a random variable to check if the 
estimated treatment effect goes to zero. Further, one could perform 
simulations where the outcome is replaced through semisynthetic data, 
to check if the treatment effect is correctly estimated under the new 
data-generating mechanism (for the simulated outcomes). Altogether, 
the choice of which refutation method to use for validating the causal 
ML methods highly depends on the specific problem setting and should 
be carefully chosen and implemented. Even when the refutation meth-
ods yield a positive result, this is no guarantee that the assumptions are 
satisfied. Nevertheless, robustness checks that are best practice in ML 
are still essential—for example, to mitigate the risk of bias77—especially 
as the results in treatment effect estimation may heavily depend on 
both the data and the model choice.

Technical recommendations
To ensure the careful and reliable use of causal ML in clinical practice, 
we make several technical recommendations.

Box 3

Model-agnostic methods for 
CATE estimation
There are different ways in which meta-learners can leverage the 
data in a supervised learning setting for CATE estimation.

Plug-in learners: One approach is to train a single ML model that 
predicts the patient outcome but where the treatment is added as 
a separate variable to the covariates (called S-learner53). Another 
way is to train two separate ML models for each treatment (called 
T-learner53). Here, one ML model is trained for predicting patient 
outcomes in the treatment group and one ML model for the control 
group. After having computed the ML model(s), one simply uses 
the estimated treated and control outcome to ‘plug them into’ the 
formula for computing the treatment effect.

Two-step learners: An alternative approach is to target the CATE, 
which can lead to faster convergence27. However, because the 
difference between factual and counterfactual outcomes is 
never observed in data, so-called pseudo-outcomes are used as 
surrogates, which have the same expected value as the CATE. 
Prominent examples are the so-called DR-learner27 and the so-called 
R-learner98, which come with certain robustness guarantees61,98,99.

The above meta-learners have different advantages and 
disadvantages. Unfortunately, there are no clear rules for choosing 
meta-learners but only high-level recommendations54,75,100.
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Checking the plausibility of assumptions
Assessing the plausibility of the underlying assumptions is crucial 
for the validity of treatment effect estimates, yet it is also challeng-
ing. For the consistency assumption, one should assert that the treat-
ment of one patient does not affect the outcome of another based on 
domain knowledge. For the positivity assumption, one typically plots 
the propensity scores to check that they are not too small or too large; 
otherwise, there may not be enough support in the data for reliable 
inferences78. Another strategy is to rely upon methods for uncertainty 
quantification as some treatments may be given rarely to certain patient 
cohorts, implying that there may be limited support in the data for 
making inferences in these patient cohorts and, therefore, a large 
uncertainty79. If the positivity assumption is violated, one strategy is 
to exclude certain subgroups from the analysis as no reliable inferences 
for them can be made78,80.

Validating the unconfoundedness assumption is especially chal-
lenging for RWD. The best way to avoid violations of the unconfound-
edness assumption is to consult domain knowledge to ensure that all 
relevant factors behind treatment assignment are captured in RWD30. 
An alternative is to adopt an instrumental variable approach33,34; but 
appropriate instruments are often rare in medical applications and, 
again, the validity of instruments cannot be tested. If unobserved 
confounders cannot be ruled out, conducting a causal sensitivity 
analysis can be helpful to assess how robust the results are to poten-
tial unobserved confounding. Causal sensitivity analysis dates back 
to a study from 1959 showing that unobserved confounders cannot 
explain away the causal effect of smoking on cancer81. Causal sensitiv-
ity analysis computes bounds on the causal effect of interest under 
some restriction on the amount of confounding, thus implying that 
a treatment effect cannot be explained away. Restrictions on the 
amount of confounding are based on domain expertise, typically by 
making comparisons to known, important causes that act as baselines 
(for example, risk factors such as age). Recently, a series of causal 
ML methods have been proposed that provide sharp bounds82–86. 
However, causal sensitivity analysis still requires that there is suf-
ficient knowledge of human pathophysiology and pharmacology 
about important disease causes, which may not always be the case in 
observational studies20.

Reporting
Findings should be interpreted and reported with great care. In particu-
lar, the assumptions, the rationale for the chosen causal ML method 
and the robustness checks should be clearly stated. If possible, the 
estimated treatment effects from RWD should be compared against 
those from RCTs. This can help in validating the reliability of the causal 
ML methods but may also reveal differences between clinical trials 
and routine care (for example, owing to different patient cohorts or 
different levels of adherence).

The reliability of the estimated treatment effects also depends 
on the quality and representativeness of the underlying data. Fur-
thermore, analyses through causal ML involve multiple hypotheses 
testing and, therefore, are at risk of false positives. Similarly, owing 
to the retrospective nature of such analyses, another risk is selective 
reporting of positive results. To mitigate such risks, preregistered 
protocols for analysis are highly recommended87,88. Finally, when causal 
ML is used together with RWD, the limitations of making causal conclu-
sions should be openly acknowledged, and, if possible, RCTs should be 
considered for validation.

Clinical translation
By estimating treatment effects from medical data, causal ML offers 
substantial potential to personalize treatment strategies and improve 
patient health. Still, there is a long way to go. A key focus for future 
research must be on bridging the gap between ML research and direct 
benefits for patients in clinical practice.

Clinical use cases
Causal ML can help in generating new clinical evidence. For RCTs, causal 
ML may determine specific patient cohorts within the population that 
might respond positively (or negatively) to a particular treatment. 
For example, the treatment effect of antidepressant drugs compared 
to a placebo varies substantially and tends to increase with baseline 
severity of the depression89. However, RCTs typically compare patient 
outcomes across two (or more) treatment arms, which would return the 
ATE at the population level, and the use of causal ML may help to define 
inclusion criteria for clinical trials or to identify predictive biomarkers 
(for example, certain genetic mutations in a tumor).

Furthermore, causal ML may offer flexible, data-driven methods 
to analyze treatment effect heterogeneity in RWD, including clinical 
registries and electronic health records. This is relevant as RCTs can 
be subject to limitations90; for example, costs may be prohibitive or 
treatment randomization can be unethical for vulnerable populations 
(for example, pregnant women)91. RWD together with causal ML could 
allow the estimation of heterogeneous treatment effects for vulnerable 
groups, rare diseases, long-term outcomes and uncommon side effects 
that are often not sufficiently captured by traditional RCTs. For exam-
ple, as randomizing hospitalizations is typically not possible, one study 
used causal ML to estimate the effect of hospitalizations on suicide 
risk from RWD92. Likewise, patient populations in RCTs are often not 
representative of the broader population93, but one can account for this 
through causal ML94 to better understand the post-approval efficacy 
of treatments. However, while the potential of RWD has been widely 
recognized90,95, many methodological questions are still unanswered, 
and causal ML may thus help in translating data into clinical evidence.

Eventually, the choice of the specific estimand depends on the 
setting where causal ML is used. For regulatory bodies, it may be rel-
evant to assess the overall net benefit for patients at large, for example, 
when comparing a new drug against the standard of care. This would 
require the estimation of the ATE. To ensure patient safety, regula-
tory bodies could also assess how the treatment effect varies across 
different subpopulations, which would involve the CATE. Likewise, 
the CATE may help to identify subpopulations that are particularly 
responsive to a treatment (for example, for hypothesis generation) or 
that would benefit from newly developed drugs, thereby contributing 
to an accelerated drug development. When causal ML is integrated 
into clinical decision support systems in routine care, clinical profes-
sionals may want to make personalized predictions of how a patient’s 
health state changes under different treatment options. This would 
require methods for CATE estimation or even for predicting potential 
patient outcomes.

Challenges and future directions
Several challenges in the clinical translation of causal ML are at the tech-
nical level. First, both estimating heterogeneous treatment effects and 
predicting individual patient outcomes are naturally difficult. In prac-
tice, this often requires both strong predictors of treatment effects and 
large sample sizes. While the former depends on the human pathophysi-
ology and pharmacology in the specific disease setup, the latter may 
improve over time with an increasing prevalence of electronic health 
records. Another challenge is that uncertainty quantification for many 
causal ML methods is lacking. However, uncertainty quantification is 
crucial for reliable decision-making and thus for building clinical evi-
dence69. For example, point estimates might indicate substantial effect 
heterogeneity, especially in settings with limited data, while in fact there 
may be little heterogeneity but simply large (aleatoric) uncertainty 
as the outcomes are difficult to predict. Hence, causal ML methods 
that only provide point estimates without conveying the appropriate 
uncertainty in the predictions may lead to potentially misleading or 
inappropriate conclusions. Finally, many causal ML methods are only 
implemented in specialized software libraries. Hence, comprehensive 
software tools are needed that improve reliability and ease of use, and 
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that account for practical needs in medicine (for example, rigorous 
uncertainty quantification).

The development of standardized protocols, ethical guidelines 
and regulatory frameworks for causal ML applications will be essen-
tial in ensuring safe and effective treatment decisions. For example, 
consensus-based, tailored checklists for reporting and quality will 
need to be developed. While there are checklists for traditional, 
predictive ML96 and for generating real-world evidence88,97, future 
research is needed that adapts such checklists to account for the 
needs of causal ML in medicine. Likewise, customized review pro-
cesses will need to be developed, which define how evidence gener-
ated through causal ML methods must undergo regulatory review 
for approval.

So far, research in causal ML has primarily evaluated the perfor-
mance of different methods through simulations (for example, refs. 35, 
37,38,40,42,44). However, simulations involve (semi)synthetic datasets 
that do not fully capture the nuances of real-world disease dynamics. 
Hence, generating clinical insights through a cautious use of innova-
tive causal ML methods can provide an important first step. This will 
help in understanding the strengths and limitations of causal ML in 
a medical context, especially in comparison to established clinical 
trial approaches. For this, settings where clear guidelines are missing 
could be appropriate, so that causal ML can provide input to aug-
ment the decision-making of clinical professionals. Causal ML for 
predicting treatment outcomes requires both methodological knowl-
edge as well as domain knowledge of disease dynamics; therefore, 
cross-disciplinary collaboration between ML experts and clinicians is 
crucial for developing tools for clinical use. Eventually, tools based on 
causal ML may be integrated into routine care through clinical decision 
support systems. Such systems may directly predict individual patient 
outcomes for different treatment options and thereby support the 
decision-making of clinical professionals.

Conclusion
Causal ML offers the possibility to draw novel conclusions about the 
efficacy and safety of treatments and to personalize treatment strat-
egies, thus improving patient health. However, in practice, several 
challenges arise, not least ensuring the reliability and robustness of 
these methods. Successful examples of causal ML in clinical use are still 
lacking, so proof-of-concept studies involving cautious use in clinical 
practice should be prioritized as an important first step.
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