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A B S T R A C T

Multi-state processes (Webster, 2019) are commonly used to model the complex clinical evolution of diseases
where patients progress through different states. In recent years, machine learning and deep learning
algorithms have been proposed to improve the accuracy of these models’ predictions (Wang et al., 2019).
However, acceptability by patients and clinicians, as well as for regulatory compliance, require interpretability
of these algorithms’s predictions.

Existing methods, such as the Permutation Feature Importance algorithm, have been adapted for interpret-
ing predictions in black-box models for 2-state processes (corresponding to survival analysis). For generalizing
these methods to multi-state models, we introduce a novel model-agnostic interpretability algorithm called
Multi-State Counterfactual Perturbation Feature Importance (MS-CPFI) that computes feature importance scores
for each transition of a general multi-state model, including survival, competing-risks, and illness-death models.
MS-CPFI uses a new counterfactual perturbation method that allows interpreting feature effects while capturing
the non-linear effects and potentially capturing time-dependent effects.

Experimental results on simulations show that MS-CPFI increases model interpretability in the case of
non-linear effects. Additionally, results on a real-world dataset for patients with breast cancer confirm that MS-
CPFI can detect clinically important features and provide information on the disease progression by displaying
features that are protective factors versus features that are risk factors for each stage of the disease.

Overall, MS-CPFI is a promising model-agnostic interpretability algorithm for multi-state models, which
can improve the interpretability of machine learning and deep learning algorithms in healthcare.
1. Introduction

The multi-state approach [1] allow to model within a unique frame-
work the occurrence of different clinical events. For instance, in the
case of breast cancer, a three-state model, called illness-death model,
with an initial state, an intermediate state of relapse, a final state of
death, and three transitions, can help characterize the risks of cancer
progression [2]. Similarly, for patients with prostate cancer, a model,
called competing risks model, with two final states can analyze the
risks of cancer-related deaths and deaths due to other causes [3]. These

∗ Corresponding author at: Healthcare and Life Sciences Research, Dassault Systemes, France.
E-mail address: aziliz.cottin@3ds.com (A. Cottin).

are specific examples of multi-state models that can be used to model
disease progression (see Section 2.2.2).

The Cox proportional hazards (Cox P.H.) model [4], the most pop-
ular in survival analysis (i.e. 2 states scenarios), is a popular statistical
method designed for modeling transition-specific risks in multi-state
models [5], but it has strong assumptions and limitations. To overcome
these limitations, an increasing number of machine learning and deep
learning algorithms has been proposed in recent years. For example,
Lee et al. [6] developed DeepHit, a deep neural network that models
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Fig. 1. Interpretable black-box multi-state model.
competing events and handles non-linear relationships between pa-
tients’ covariates and event risks in a competing-risks design. Similarly,
Cottin et al. [7] used deep neural networks to model a three-state
illness-death model with IDNetwork. In addition, machine learning [8–
10] and deep learning models [11–17] have also been developed for
survival analysis.

While machine learning algorithms, especially deep neural net-
works, have shown promising results in disease progression model-
ing, interpreting the predictions of these models can be challenging
due to their black-box nature. Interpreting the model’s predictions
is essential to ensure that the predictions are reliable, trustworthy
and accurate, making it critical in the context of clinical decision
support software. For example, feature selection is a significant con-
cern in machine learning for algorithm trustworthy, and in particular
for an application in clinical medicine [18]. Moreover, human un-
derstanding and interpretability of this kind of algorithms is a key
issue for regulation agencies. In Europe, the AI act requires machine
learning-based decision-making softwares to be explainable for their
use in practice [19,20]. In the same way, in the USA, the FDA has
recently published a new guidance [21] on clinical decision support
tools, making necessary for AI-based algorithms to be interpretable and
understandable to be certified as medical devices.

The growing concern over the interpretability of AI-based algo-
rithms has prompted significant attention in recent years, resulting
in the development of post-hoc interpretability algorithms in various
domains. Some of these existing algorithms have been extended for
interpreting black-box survival (i.e. two-states) algorithms. In particu-
lar, the Permutation Feature Importance (PFI) algorithm [22] stands
out as the most intuitive post-hoc interpretability algorithm in the
literature. Originally developed for random forests (RFs) [22], PFI
computes feature importance scores, for each input feature, by using
random permutation and assessing how this feature values perturbation
impacts the model error. It has also been extended for application to
random survival forests (RSFs) [9] and RSFs for competing risks [23].
However, none of these methods has been extended to interpret a
multi-state model.

This paper introduces the Multi-State Counterfactual Perturbation
Feature Importance (MS-CPFI) algorithm, aiming to enhance model-
agnostic feature importance interpretation for predictions from black-
box multi-state algorithms. MS-CPFI computes feature importance for
each transition within a multi-state model, making it applicable to di-
verse models, including survival models, those with competing events,
illness-death models, or any multi-state model with irreversible transi-
tions (Fig. 1). Our contributions to the existing PFI algorithm include
a model-agnostic, transition-specific feature importance score, a score
computed directly on algorithm predictions, enabling interpretable
signs, applicability to any time-dependent probability risk-specific dis-
tribution, and a novel counterfactual perturbation method, replacing
random permutation to identify non-linearities in feature effects.
2

This paper is organizing as follows. In Section 2, we survey ex-
isting strategies to mitigate the ’black box’ effect inherent in ma-
chine learning algorithms, with a specific focus on model-agnostic
approaches (Section 2.1). We present both general approaches and
those specifically tailored for interpreting predictions from event his-
tory algorithms. Additionally, we delve into the mathematical concepts
associated with multi-state models and explore specific instances of
multi-state processes (Section 2.2). Moving to Section 3, we detail our
contributions, beginning with the adaptation of the Permutation Fea-
ture Importance (PFI) algorithm to generalize for any multi-state pro-
cess (Section 3.1). We introduce our innovative counterfactual pertur-
bation approach (Section 3.3) and provide the mathematical definition
of Multi-State Counterfactual Perturbation Feature Importance (MS-
CPFI) (Section 3.2). Further, we discuss the computation of confidence
intervals for the estimated feature importance score (Section 3.4). In
Section 4, we conduct a simulation study to highlight our contributions,
showcasing the advantages of MS-CPFI, its robustness, and acknowledg-
ing potential limitations. We apply, in Section 5, MS-CPFI to interpret
the impact of clinical features on predictions in the METABRIC cohort
for patients with breast cancer. We demonstrate how MS-CPFI effec-
tively identifies well-known prognostic factors and provides an intuitive
means to interpret a multi-state algorithm.

2. Theoretical background

2.1. Related work on interpretability

2.1.1. Interpretability of machine learning models
Interpretability of machine learning algorithms can be categorized

into two approaches [24]: model-specific and model-agnostic. Model-
specific approaches designate intrinsically interpretable models by their
nature. For example, some tree-based algorithms as CART [25] can
provide a list of important features that corresponds to the features in-
trinsically selected to build the trees. Within deep learning approaches,
neural additive models [26] are the only ones intrinsically interpretable
as they consider additive effects of the features on the prediction.
Others models that are not intrinsically interpretables could be inter-
preted by relying on model-specific knowledge as well. For example,
for simple neural network-based algorithms (i.e. with few parameters),
the Garson’s algorithm [27] provides interpretations but it cannot be
applied to large deep learning algorithms [28]. For deep learning
algorithms, analyses of the gradients can provide insight on the im-
portant features [29], but this kind of approaches is mainly applied for
interpreting images classification.

On the other side, model-agnostic methods analyze the predictions
after training and apply to any machine or deep learning algorithm.
There are two main types of model-agnostic methods. The first uses
feature summary visualizations [24] to interpret the nature of the
relationship between input features and the outcome. The state-of-
the-art methods for this approach are Partial Dependence Plots [30]
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Fig. 2. Specific applications of multi-state analysis.
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nd Accumulated Local Effects (ALE) [31], which describe how a
eature influences the model prediction on average according to the
istribution of the feature.

The second type of model agnostic approach is based on comput-
ng a quantitative importance of each feature through feature sum-
ary statistics [24]. The state-of-the-art methods for this approach are
FI [22], cited previously, and Leave-One-Covariate-Out (LOCO) [32].

These previous methods are commonly referred to global meth-
ds [33], as they provide insight into the average behavior of an
lgorithm, as opposed to local methods that focus on interpreting indi-
idual predictions. Individual Conditional Expectation (ICE) plots [34],
hich are the equivalent of the PDP algorithm for measuring individual
ffects, can be used for this purpose. Local Interpretable model-agnostic
xplanations (LIME) [35] explains individual predictions by approx-
mating the predictions using a surrogate model. SHapley Additive
xPlanations (SHAP) [36] explains individual predictions as well by
omputing shapley values. For a more comprehensive review of existing
nterpretability methods, we recommend reading Christoph Molnar’s
ook [24].

Some of these existing algorithms have been extended for interpret-
ng black-box survival (i.e. two-states) algorithms.

.1.2. Interpretability of machine learning-based survival models
Within intrinsically interpretable algorithms, Cox-nnet [37] is a

eep learning architecture specifically designed to handle
igh-dimensional gene expression data. The effects of gene expression
eatures are interpreted by analyzing the values of hidden nodes and
onducting a gene set enrichment analysis. The subsequent version,
ox-nnet-v2.0 [38], enhances interpretability by integrating feature

mportance scores. In the same way, Cox-PASNet [39] combines clinical
nd gene expression features by using a pathway layer with prior
iological knowledge, which improves biological interpretability. Simi-
arly, PAGE-Net [40] integrates gene expression and histo-pathological
ata using specific layers with prior biological knowledge to improve
nterpretability. However, these approaches are model-specific and
rimarily designed for interpreting genomic data.

State-of-the-art model-agnostic interpretability methods have also
een adapted for interpreting event history algorithms. As explained
reviously, PFI have been extended for survival analysis in RSFs [9]
n RSfs for competing risks [23]. SurvLIME [41] extended the LIME
ethod. The SHAP method has been extended to interpret survival
redictions [42,43]. SurvSHAP(t) [44,45] provides time-dependent ex-
lanations for interpreting a black-box survival model. PDP and ICE
lgorithms have also been implemented for interpreting a survival
odel [46].
3

2.2. Overview of multi-state modeling

In this section, we briefly introduce the traditional definition of
a multi-state model, referring the reader to Andersen et al. [47] for
a more detailed presentation. We focus on progressive multi-state
models whose transitions are irreversible, which are widely used in
healthcare applications [5]. We then delve into specific types of multi-
state models, such as the survival model, competing-risks model, and
illness-death model, which are common to model disease progression.

2.2.1. Basic concepts
Multi-state processes extend survival analysis to model successive (≥

2) events of interest over time. It is a continuous time stochastic process,
noted 𝐸(𝑡) (𝑡 > 0). Let 𝐾 be the number of states with 0 the initial state,
uch that 𝐸(𝑡) takes values in {0,… , 𝐾 − 1} indicating the state of the
atient at time 𝑡. The initial state 𝐸(0) = 0 is the inclusion time in
linical trials. Intermediate (transient) states indicate the evolution of
he disease. The absorbent terminal state is very often death. Disease
rogression is characterized by transitions between states, represented
y the notation 𝑘 → 𝑙 with (𝑘, 𝑙) ∈ 0,… , 𝐾 − 1, 𝑘 < 𝑙.

The instantaneous risk of transitioning from state 𝑘 to state 𝑙 after
a duration 𝑡 spent in state 𝑘 is denoted by 𝛼𝑘𝑙 for 𝑘 < 𝑙 and (𝑘, 𝑙) ∈
{0,… , 𝐾 − 1} such that

𝛼𝑘𝑙(𝑡) = lim
ℎ→0

1
ℎ
P (𝐸 (𝑡 + ℎ) = 𝑙 | 𝐸 (𝑡−) = 𝑘) . (1)

It is also know as a transition intensity, or transition-specific hazard
function. The cumulative transition intensity 𝐴𝑘𝑙 is defined as

𝐴𝑘𝑙(𝑡) = ∫

𝑡

0
𝛼𝑘𝑙(𝑠)𝑑𝑠. (2)

The transition probabilities 𝑝𝑘𝑙 are defined by

𝑝𝑘𝑙(𝑠, 𝑡) = P
(

𝐸(𝑡) = 𝑙 | 𝐸(𝑠) = 𝑘
)

,∀ 0 ≤ 𝑠 < 𝑡. (3)

They can be explicitly linked with the transition intensities 𝛼𝑘𝑙 by
solving Kolmogorov equations [48,49].

2.2.2. Specific cases
Fig. 2 depicts common multi-state models used to represent disease

progression. While these models have their own definitions and predic-
tions of interest, their specific quantities can be expressed as functions
of the transition intensities (Eq. (1)) or the cumulative transition inten-
sities (Eq. (2)). In this section, we give the mathematical equivalences
between these specific quantities and the general quantities used to
predict disease progression in multi-state analysis that can be used in
the general framework of MS-CPFI (Section 3.1.3).
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The survival model. In classical survival analysis, Overall Survival (OS)
r RelapseF ree Survival (RFS) are very often the primary endpoints.
hey can be framed into the multi-state process model by considering
wo states ‘‘Alive’’ and ‘‘Death’’ (or ‘‘Relapse’’) and one transition 0 →

, as illustrated in Fig. 2(a). In this context, the transition intensity
01(𝑡) represents the instantaneous risk of death at time 𝑡, given that
he individual has survived up to time 𝑡. In the classical framework, the
robability of surviving beyond a certain time 𝑡 is given by the survival
unction 𝑆(𝑡) and is linked to the cumulative transition intensity 𝐴01 via

01(𝑡) = − ln(𝑆(𝑡)) (4)

he competing-risks model. The competing-risks model applies for com-
eting events, that can prevent the occurrence of the primary event of
nterest [50]. In a competing-risks model with 𝐾 −1 competing events,
he time of occurrence of event 𝑘 (1 ≤ 𝑘 ≤ 𝐾 − 1) is given by the latent
andom variable 𝑇𝑘 = inf 𝑡>0{𝐸(𝑡) = 𝑘}. The observable time is given
y the random variable 𝑇 = min

(

𝑇𝑘
)

1≤𝑘≤𝐾−1, together with the binary
ndicator 𝐷 that indicates the type of event.

The Cumulative Incidence Functions (CIFs) 𝐹𝑘, for 1 ≤ 𝑘 ≤ 𝐾 − 1,
re defined as

𝑘(𝑡) = P(𝑇 ≤ 𝑡, 𝐷 = 𝑘), 𝑡 > 0,

hese functions characterize the distribution of 𝑇 and 𝐷.
However, CIFs can sometimes be misinterpreted due to the ‘‘reverse

ffect’’ [51] because the CIF for one event is conditioned on the CIFs of
he competing events. The conditional probabilities (CPs) 𝐹 𝑐

𝑘 , defined as

𝑐
𝑘 (𝑡) =

𝐹𝑘(𝑡)
1 −

∑

𝑞≠𝑘 𝐹𝑞(𝑡)
, 𝑡 > 0,

and which expresses the probability that event 𝑘 occurs before time 𝑡
given that no competing event has occurred by time 𝑡, was used by Pepe
and Mori [51] and others [52–54] to avoid misinterpretation of the
CIFs. This approach provides a more accurate and meaningful analysis
of competing-risks data by accounting for the possibility of competing
events precluding the occurrence of the event of interest.

A competing-risks process can also be represented as a 𝐾-state
process (see Fig. 2(b)) with 𝐾 − 1 irreversible transitions denoted 0 →

𝑘. The cumulative transition intensity 𝐴0𝑘 can be rewritten as follows,
or 𝑡 > 0,

0𝑘(𝑡) = ∫

𝑡

0

𝐹𝑘(𝑑𝑢)

1 −
∑𝐾

𝑞=1 𝐹𝑞(𝑢)
.

These cumulative transition intensities provide a meaningful anal-
sis of competing-risks data as they are not subject to the ‘‘reverse
ffect’’ issue as well. Then, in the general framework of MS-CPFI
Section 3.1.3), either the CPs or the cumulative transition intensities
ight be used to provide a right interpretation of disease progression.

he illness-death model. The Fig. 2(c) illustrates an illness-death multi-
tate process consisting of 𝐾 = 3 states: state 0 is the initial ‘‘Event-free’’
tate, state 1 is an intermediate ‘‘Relapse’’ state, and state 2 is an
bsorbing ‘‘Death’’ state. The process is irreversible and characterized
y three transitions: 0 → 1, 0 → 2, and 1 → 2, where transitions

from state 0 are competing, and transitions 0 → 1 and 1 → 2 are
successive. We consider here illness-death processes whose transitions
times depend only on the duration spent in the current state [47].

An illness-death model can be further characterized by latent ran-
dom variables (r.v.) 𝑇𝑘𝑙, for (𝑘, 𝑙) ∈

{

(0, 1), (0, 2), (1, 2)
}

. When a subject
leaves state 0, it will enter either state 1 at time 𝑇01 or state 2 at
time 𝑇02. If a subject is in state 1 at time 𝑇01, it will enter state 2 at
time 𝑇01 + 𝑇12. The observable times can be summarized by 𝑇0, which
represents the exit time from state 0

𝑇 = inf {𝐸(𝑡) ≠ 0} = min
(

𝑇 , 𝑇
)

,

4

0 𝑡>0 01 02 r
together with 𝐷0 ∈ {1, 2} that indicates the entered state; and 𝑇2 the
entry time to state 2,

𝑇2 = inf
𝑡>0

{𝐸(𝑡) = 2} = 𝑇0 + 1
{

𝐷0 = 1
}

𝑇12,

hich is the total survival time.
An illness-death process is conventionally associated with a set of

ransition intensities 𝛼𝑘𝑙, for (𝑘, 𝑙) ∈
{

(0, 1), (0, 2), (1, 2)
}

, as defined
in Eq. (1). In parallel, others suggest different modelizations; e.g. Cottin
et al. [7] suggest to model the distribution of (𝑇0, 𝐷0) and 𝑇2 with the
umulative incidence functions 𝐹𝑘𝑙, for (𝑘, 𝑙) ∈

{

(0, 1), (0, 2), (1, 2)
}

, such
hat, for transitions 0 → 1 and 0 → 2,

0𝑙(𝑡) = P
(

𝑇0 ≤ 𝑡, 𝐷0 = 𝑙
)

, for 𝑙 = 1, 2, 𝑡 > 0.

y following the semi-markovian property, for transition 1 → 2, the CIF
s defined conditionally to 𝑇0, 𝐷0 = 1 and for the duration variable 𝑑
o that 𝑑 = 𝑡 − 𝑇0, 𝑑 > 0, as

12
(

𝑑 |𝑇0, 𝐷0 = 1
)

= P
(

𝑇2 − 𝑇0 ≤ 𝑑|𝑇0, 𝐷0 = 1
)

.

Together with these quantities, the cumulative transition intensities
𝑘𝑙 defined in Eq. (2) can be reformulated such that for 𝑙 = 1, 2, 𝑡 > 0,

0𝑙(𝑡) = ∫

𝑡

0

𝐹0𝑙(𝑑𝑠)
1 −

(

𝐹01(𝑠) + 𝐹02(𝑠)
) ,

nd, for 𝑑 > 0,

12(𝑑|𝑇0, 𝐷0 = 1) = ∫

𝑑

0

𝐹12(𝑑𝑠|𝑇0, 𝐷0 = 1)
1 − 𝐹12(𝑠|𝑇0, 𝐷0 = 1)

.

We can also derive the generalization of the conditional probabili-
ies in the illness-death case for the competing transitions 0 → 1 and 0

2 as

𝑐
01(𝑡) =

𝐹01(𝑡)
1 − 𝐹02(𝑡)

, 𝐹 𝑐
02(𝑡) =

𝐹02(𝑡)
1 − 𝐹01(𝑡)

.

or transition 1 → 2, we have the following equivalence: 𝐹 𝑐
12(𝑑|𝑇0, 𝐷0 =

1) = 𝐹12(𝑑|𝑇0, 𝐷0 = 1). In the general framework of MS-CPFI
Section 3.1.3), these cumulative transition intensities and conditional
robabilities might be then used provide a meaningful interpretation
f disease progression.

In the next section, we develop our algorithm MS-CPFI that can
ake as input one of these meaningful quantities (i.e. the CPs or the
umulative transition intensities) for each transition. In addition, we
onsider that we observe a vector of covariates 𝑋 of dimension 𝑃 and

assume that all the quantities defined below are expressed conditionally
to 𝑋.

. Methodology

In this section, we address the critical need to interpret predictions
n terms of any of the functions of interest described in Section 2.2.
o facilitate the translation of this prediction into meaningful clinical
ecision support, we present the MS-CPFI algorithm. It serves as a
odel agnostic interpretation tool specifically designed for multi-state

lgorithms.

.1. Main contributions

The concept of feature importance is based on the idea that, if a
eature is important, altering its data quality will likely lead to a decline
n the accuracy of model predictions. The Permutation Feature Impor-
ance (PFI) algorithm [22], as mentioned earlier, is widely employed
n the literature for assessing feature importance. In this algorithm,
hanging the data quality of a feature involves randomly shuffling its
alues and deeming the feature important if this random perturbation
esults in a decrease in the model error. This is typically measured
hrough metrics such as discrimination error in classification algo-
ithms. The key advantage is the provision of an intuitive measure of
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Fig. 3. Illustration of our contributions in MS-CPFI as compared to the existing implemented PFI algorithms in the R package randomForestSRC for RSFs [55] and RSFs with
competing risks [56].
the features impacting the overall model error. The greater the increase
in prediction error when the feature is permuted, the more significant
the feature is deemed. Conversely, a decrease or stability in prediction
error indicates that the feature is not important for prediction accuracy.
More specifically, in Random Survival Forests (RSFs) [9], and likewise
in RSFs for competing risks [23], the PFI algorithm analyzes how a
random permutation of feature values influences model error, measured
by the concordance index or risk-specific concordance indexes. While
the PFI algorithm can be extended for multi-state models, certain
limitations arise that necessitate further consideration.

To address and overcome these limitations, we present a refined
and extended version called Multi-State Counterfactual Perturbation
Feature Importance (MS-CPFI). This enhanced algorithm expands upon
the PFI methodology in four key dimensions, as illustrated in Fig. 3 and
elaborated upon in the subsequent paragraphs.

3.1.1. Model type
First, our MS-CPFI algorithm extends the Permutation Feature Im-

portance (PFI) to accommodate any multi-state algorithm. This broad
applicability encompasses survival models, competing risks models,
illness-death models, or any other multi-state process. Furthermore,
building upon the insights of Ishwaran et al. [23], this extension
enables the computation of feature importance scores independently
for each transition within a multi-state model. The objective here is to
facilitate the measurement of how various clinical factors impact each
stage of a disease, providing a more nuanced understanding of their
influence across different disease states.

3.1.2. Feature importance evaluation criteria
In the original definition of PFI, feature importance scores are

computed based on a feature’s contribution to the model error, typically
using metrics like risk-specific concordance indexes in a competing-
risks model [23]. When transposing this definition to a multi-state
model, an equivalent model error could be represented by transition-
specific integrated Area Under the Curve (iAUC) and integrated Brier
Scores (iBSs), which quantify discrimination and calibration errors, re-
spectively. Refer to the supplementary material B for exact definitions.
In this context, a feature importance score would indicate how sensitive
the iAUC for a specific transition is to the perturbation of the corre-
sponding feature. While these measures offer insights into how features
impact model performance, they do not directly convey how model
predictions would change when a feature is perturbed. For clinical in-
terpretation, a more understandable measure of model explainability is
necessary. To address this, we implemented a prediction-based feature
importance measure that quantifies the average effect on the risk of
transition for each feature. A positive (negative) feature importance
score indicates an increase (respectively, a decrease) in the risk of tran-
sition. Unlike PFI, the sign of this prediction-based feature importance
5

score is interpretable, akin to interpreting log hazard ratios in a Cox
Proportional Hazards model [4]. Although we recommend computing
prediction-based scores for better interpretability, we recognize that
some users may be interested in model-error scores. Therefore, we
implemented our algorithm to allow users to choose the type of feature
importance (prediction-based versus error-based) through an optional
parameter.

3.1.3. Predictions of interest
Our third contribution with MS-CPFI is its ability to accept any

predictions of interest, encompassing various cumulative functions of
risk derived from a multi-state model. Examples include a survival
function from a survival model, risk-specific Cumulative Incidence
Functions (CIFs) from a competing-risks model, conditional probabil-
ities, or cumulative transition intensities from an illness-death model
(refer to Section 2.2.2 for more details). However, while MS-CPFI
offers flexibility in the choice of the function of interest, we provide
recommendations as the selection can impact interpretation and lead
to biased results in some cases. For instance, in a competing-risks
model or any multi-state model with competing transitions, the CIFs are
mutually conditioned, as explained in Section 2.2.2. This conditioning
can potentially result in misinterpretation of feature importance since
the CIF for one event (or transition) is influenced by the CIFs of
the competing events (or competing transitions). This issue was not
addressed in Ishwaran et al.’s definition of PFI for RSFs with competing
risks [23]. To mitigate this bias, we recommend using a quantity of
interest that is not conditioned by competing transitions. As discussed
in Section 2.2.2, considering either the conditional probabilities or the
cumulative hazard functions instead of the CIFs as predictions of in-
terest can address this conditioning issue. Consequently, we implement
MS-CPFI by allowing users to specify the type of predictions of interest
through an optional parameter.

3.1.4. Perturbation method
In the original definition of PFI, feature importance scores are com-

puted by randomly shuffling the feature values. However, this method
has limitations. Firstly, the random shuffle of features can introduce
randomness and result in large variance when the permutation is
repeated [57]. Secondly, randomly perturbing a feature does not allow
for the detection of non-linearities in the feature effect when computing
a prediction-based feature importance score (c.f. Section 3.1.2). To ad-
dress these limitations, we propose a new counterfactual perturbation
method, inspired by the notion of counterfactual explanations [58] and
the principle of partial dependence plots [30]. The idea is to replace
observed values of a feature by the counterfactual ones, all other
things being equal. To achieve this, the counterfactual perturbation
method changes the feature values with a theoretical one for all the
instances before making the predictions. Then, it analyses how this
change impacts the predictions, i.e., whether it decreases or increases
the prediction.
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3.2. Mathematical definition

3.2.1. General formalism
Consider a set of features (or covariates), noted 𝑋. Following the

approach proposed by Krzyziński et al. [44], we define, for a transition
𝑘 → 𝑙, a prediction of interest 𝐴𝑘𝑙, a feature 𝑥 ∈ 𝑋 with a counterfactual
scenario 𝑥𝑐 , our feature importance score as follows:

FI𝑘𝑙 (𝑡, 𝑥𝑐 ) = 𝐴̄𝑘𝑙
(

𝑡|𝑋∖𝑥, 𝑥𝑐
)

− 𝐴̄𝑘𝑙 (𝑡|𝑋) , (5)

where

𝐴̄𝑘𝑙 (𝑡) =
1
𝑛

𝑛
∑

𝑖=1
𝐴𝑘𝑙

(

𝑡|𝑋𝑖
)

s the reference cumulative transition intensity averaged over a pop-
lation of 𝑛 subjects; and, for 𝑋∖𝑥 the set of covariates excluding the
eature 𝑥,

̄𝑘𝑙
(

𝑡|𝑋∖𝑥, 𝑥𝑐
)

= 1
𝑛

𝑛
∑

𝑖=1
𝐴𝑘𝑙

(

𝑡|𝑋∖𝑥
𝑖 , 𝑥𝑐

)

is the cumulative transition intensity under a counterfactual scenario
𝑥𝑐 . The counterfactual perturbation implies then that a feature im-
portance score is computed against the reference (i.e. the average
population).

A negative feature importance indicates then that the counterfactual
scenario implies a decrease in the prediction (e.g., the cumulative
transition intensity) compared to the reference, suggesting a protective
factor. Conversely, a positive feature importance indicates that the
counterfactual scenario leads to an increase in the prediction compared
to the reference, indicating a risk factor.

To measure the overall feature importance of a feature 𝑥, we intro-
duce an aggregated feature importance score, which is integrated over
a time horizon window [0, 𝜏], so that

FI𝑘𝑙 (𝑥𝑐 ) = ∫

𝜏

0
|

|

FI𝑘𝑙 (𝑡, 𝑥𝑐 )|| 𝑑𝑡. (6)

If the sign of the difference inside the integral does not change over
time, we can remove the absolute value. In that case, a negative feature
importance indicates then that the counterfactual scenario implies a
decrease in the prediction (e.g., the cumulative transition intensity)
compared to the reference, suggesting a protective factor. Conversely,
a positive feature importance indicates that the counterfactual scenario
leads to an increase in the prediction compared to the reference,
indicating a risk factor.

However, this assumption may be too strong and can be relaxed by
using the time-dependent feature importance score defined in Eq. (5).
In particular, in the case of non-proportional risks with a shifted effect
over time, the integration of the feature importance score over time
may lead to a biased interpretation.

3.2.2. Illustrative example
Consider the setting of survival analysis and define the cumulative

transition intensity (Eq. (4)) or in this case the cumulative hazard ratio
(HR) which depends on a feature ‘‘age’’ with a time interaction, such
that (Fig. 4(a)):

𝐴01 (𝑡|age) = ∫

𝑡

0
HR𝑢 (age) 𝑑𝑢 = (age − 50)2 × 𝑡2

2
,

where the feature ‘‘age’’ have been simulated for 𝑛 individuals from the
 (50, 15) distribution, with the hazard ratio

HR𝑡 (age) = (age − 50)2 × 𝑡, (7)

for 𝑡 = 1,… , 𝜏, 𝜏 = 100. The reference cumulative transition intensity is
then given by (Fig. 4(b)):

𝐴̄01 (𝑡) =
1

𝑛
∑

(

age𝑖 − 50
)2 × 𝑡2 . (8)
6

𝑛 𝑖=1 2
onsider the three counterfactual scenarios age𝑐 ∈ {18, 50, 80}. The
ounterfactual cumulative transition intensity is then given by (Fig. 4(b)

01 (𝑡|age𝑐 ) = (age𝑐 − 50)2 × 𝑡2

2
, (9)

with age𝑐 the age value in a counterfactual scenario.
With Eq. (5), the time-dependent feature importance of ‘‘age’’ for

a counterfactual scenario age𝑐 is computed, for 𝑡 ∈ [0, 𝜏] as follows
Fig. 4(c)):

I (𝑡, age𝑐 ) =
(

(age𝑐 − 50)2 −

(

1
𝑛

𝑛
∑

𝑖=1

(

age𝑖 − 50
)2
))

× 𝑡2

2
. (10)

Then, with Eq. (6), the integrated feature importance of ‘‘age’’ for this
counterfactual scenario is computed as follows (Fig. 4(d)):

FI (age𝑐 ) =
(

(age𝑐 − 50)2 −

(

1
𝑛

𝑛
∑

𝑖=1

(

age𝑖 − 50
)2
))

× 𝜏3

6
. (11)

As expected (i.e. according to the shape of the HR in Fig. 4(a)), Fig. 4(d)
displays that the age values 18 and 80 are risk factors, the age value 50
is a protective factor. From 18 to 50 years old, the FI curve is monoton-
ically increasing; from 50 to 80 years old, the FI curve is monotonically
decreasing. Therefore, the shape of the FI curve reflects the shape of
the HR and providing these three counterfactual feature importance
scores allows understanding the effect of the feature. However, using
only the mean as a counterfactual scenario, only a negative importance
score could be seen and the true feature effect would have been then
misinterpreted. In Section 3.3; we provide some methodology to select
the counterfactual scenarios.

We should notice that, in this case, the integrated feature im-
portance is sufficient to provide insight on the feature importance
according to the feature effect shape. Previously, we identified a spe-
cific case (the case of a shifted effect (SE) of the feature over time) for
which the integrated feature importance may lead to a biased interpre-
tation of the feature effect and for which the time-dependent version
of our feature importance should be preferred. In the supplementary
material C, we give an illustration for this specific case. We illustrate
how our time-dependent version of MS-CPFI would be useful to detect
a change in the feature effect over time.

3.3. Selection of the counterfactual scenarios

In the computation of feature importance scores using MS-CPFI for
a feature 𝑥, the process involves generating counterfactual scenarios by
selecting counterfactual values, denoted as 𝑥𝑐 . We propose a method-
ology for choosing these counterfactual scenarios applicable to both
numerical and categorical features.

3.3.1. For a numerical feature
The most natural idea for perturbing a numerical feature is to

replace feature values with either the feature mean (for a Z-score
scaled feature) or the feature range/2 (for a min–max scaled feature),
reducing variance by removing randomness and ensuring replication
and stability in the estimation of feature importance. However, using a
unique value will not capture the shape of the relationships between a
feature and the predictions.

While the most straightforward approach is to create counterfactual
scenarios for a feature 𝑥 by using all possible feature values (e.g., for
a feature ‘‘age’’ with values in the interval [18, 90], the counterfactual
scenarios would be age𝑐 ∈ {18, 19,… , 90}), this can be computationally
expensive. Alternatively, selecting equally spaced or quantile values
might be considered. However, they may introduce bias in the interpre-
tation, as these values may not capture potential non-linearities in the
feature’s effect. To address this, we recommend choosing counterfactual
scenarios for a feature 𝑥 using transition-specific univariate Cox Pro-
portional Hazards (Cox P.H.) models [4] with spline-based functions.

For a transition 𝑘 → 𝑙, we plot the estimated hazard ratio according to
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Fig. 4. Illustration of MS-CPFI: example for a feature ‘‘age’’ with the counterfactual scenarios 𝐚𝐠𝐞𝑐 ∈ {18, 50, 80}. Figure (a) plots the time-dependent hazard ratios (Eq. (7)).
Figure (b) plots the reference cumulative transition intensity (Eq. (8)) and the cumulative transition intensities for the selected counterfactual values (Eq. (9)). Figure (c) plots the
time-dependent feature importance scores (Eq. (10)). Figure (d) plots the integrated feature importance scores (Eq. (11)).
the values of the feature 𝑥. The selected counterfactual values include
both extreme feature values and the inflection points (which can be
chosen graphically) of the hazard ratio curve. In our algorithm, we
allow users to choose counterfactual scenarios for a numerical feature,
empowering them to specify the counterfactual values for the feature
selected upstream.

3.3.2. For a categorical feature
For a categorical feature, the counterfactual scenarios are the fea-

ture categories. However, if the feature is dummy-encoded or one-
hot-encoded, then the feature-related binary features should be con-
sidered as non independent features, and we then need to adjust the
counterfactual perturbation.

Indeed, disrupting an encoded feature category independently of the
others, as done in state-of-the-art methods, would break the association
between categories of the original feature. Therefore, we must take
into account the underlying association between encoded features.
Additionally, for dummy-encoded features, the reference category leads
to a conditional interpretation of the dummy features based on the
reference.

To address these issues, we investigated two types of counterfactual
perturbation for dummy-encoded features, illustrated in Fig. 5 using
the example of a categorical feature BMI (Body Mass Index) with
three categories: Low, Normal, and High, which have been dummy-
encoded into two binary features: Low and High, with Normal as the
reference category.
7

1. The perturbation method dependent on the reference category
(Normal) consider each dummy encoded feature (Low and
High) independently and replace their values with 0. This pro-
vides a feature importance measure for each dummy encoded
feature, which should be interpreted relatively to the reference
category. The choice of the reference category does not affect the
model results, except for interpretability purposes. Typically, the
normative category is chosen as the reference, but in some cases,
determining a unique normative category may be challenging.

2. To address this issue, we implemented a second perturbation
method that is not conditioned on a reference category. For each
feature category, we create a counterfactual scenario where the
targeted category is set to 1, while all others are set to 0. These
counterfactual scenarios provide a feature importance measure
for each feature category, including the reference category, in-
dependent of the reference choice.

In our algorithm, we provide users with the option to choose be-
tween two perturbation methods for a categorical feature. However, we
recommend opting for the second option, i.e., the permutation method
that is not conditioned on the reference category.

3.4. Construction of a confidence interval

To provide a confidence interval (CI) for feature importance scores
with MS-CPFI, we employ Monte Carlo Simulations (MCS) to validate
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Fig. 5. Counterfactual perturbation for categorical features. Illustration for a categorical feature ‘‘BMI’’ that has been dummy-encoded.
Fig. 6. Construction of confidence intervals (CIs) of feature importance scores in MS-CPFI.
experiments on simulations by generating 𝑀 data sets. On real data
sets, we employ Monte Carlo Cross Validation (MCCV) to provide a
CI for feature importance by randomly splitting 𝑀 times the data set.
Let 𝑀 be the number of iterations (𝑚 = 1,… ,𝑀), where the index 𝑚
represents either the data set 𝑚 for simulations, or the data set from
split 𝑚 for a real data set.

An illustration is given in Fig. 6, and a detailed pseudo-code with
mathematical notations is given in supplementary material D (Algo-
rithm D.1). This pseudo-code is written for a prediction-based im-
portance score; for computing performance-based, i.e. iAUC or iBS-
based, feature importance scores, the pseudo-code is given in the
supplementary material E (Algorithm E.1).
8

4. Experimental results

4.1. Simulation study design

To conduct our evaluation, we used an illness-death model as
depicted in Fig. 2(c) and performed Monte Carlo simulations (MCS)
by generating 𝑀 data sets for each simulation model. For each dataset
replica 𝑚 (𝑚 = 1,… ,𝑀), we generated a sample of 𝑛 = 5000 continuous-
time illness-death observations and partitioned it into a training set of
size 𝑛tr = 4000 (80% of the data) and a validation set of size 𝑛val = 1000
(20% of the data). We fixed the horizon-time window at 𝜏 = 100.
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Table 1
Properties of the simulation models.

Model Covariates generation Risk functions

𝐴a 𝑋 =
(

𝑋1 ,… , 𝑋6
)𝑇 with 𝑋𝑝 ∈ R𝑛 ∼  (0, 1),

(1 ≤ 𝑝 ≤ 6)

𝑔01
(

𝑋, 𝛽01
)

= 0.5𝑋2
1 + 0.3𝑋2

2
𝑔02

(

𝑋, 𝛽02
)

= 0.5𝑋2
3 + 0.3𝑋2

4
𝑔12

(

𝑋, 𝛽12
)

= 0.5𝑋2
5 + 0.3𝑋2

6

𝐵b
𝑋 =

(

𝑋1 ,… , 𝑋6
)𝑇 with 𝑋𝑝 =

(

𝑋𝑝1 , 𝑋𝑝2
)𝑇 ∈ R𝑛×2 ∼


(

0, 𝛴𝑝
)

, 1 ≤ 𝑝 ≤ 6, with 𝛴𝑝 ∈ R2×2 the matrix of
variance–covariance of 𝑋𝑝.

𝑔01
(

𝑋, 𝛽01
)

= 0.3𝑋2
11 + 0.3𝑋2

21
𝑔02

(

𝑋, 𝛽02
)

= 0.3𝑋2
31 + 0.3𝑋2

41
𝑔12

(

𝑋, 𝛽12
)

= 0.3𝑋2
51 + 0.3𝑋2

61

a In model A, six covariates were generated, each drawn from a multivariate Gaussian distribution with
mean 0 and variance 1.

b In model B, six bi-dimensional covariates were generated, each drawn from a multivariate Gaussian
distribution with mean 0 and a matrix of variance–covariance:

𝛴𝑝 =
(

1 0.3
0.3 1

)

, (1 ≤ 𝑝 ≤ 6)

.
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We generate the observation (𝑇0, 𝐷0) and (𝑇2) such that the latent
llness-death times 𝑇𝑘𝑙, for (𝑘, 𝑙) ∈ {(01), (02), (12)}, are simulated

through transition-specific Cox P.H. hazard functions [59], so that, for
each observation 𝑖 (1 ≤ 𝑖 ≤ 𝑛),

𝑇 𝑖
𝑘𝑙 ∼ 𝛼𝑘𝑙(𝑡|𝑋𝑖) = 𝛼0𝑘𝑙(𝑡) exp

(

𝑔𝑘𝑙
(

𝑋𝑖, 𝛽𝑘𝑙
))

where 𝑔𝑘𝑙(.) is a transition-specific risk function, 𝑋𝑖 ∈ R𝑃 are the
individual covariates, 𝛽𝑘𝑙 ∈ R𝑃 are fixed effect coefficients, and 𝛼0𝑘𝑙(.) is
the baseline hazard function. The three baseline hazard functions are
Weibull with scale parameter 0.01, and shape parameter 1.2.

We introduce a censoring process such that 30% of patients from
state 0 are censored, and 30% of patients at risk for transition 1 → 2
are censored from state 1.

Supplementary material F provides more details on the statistical
methods used for the simulation of the transition times.

4.2. Scenario design

To evaluate our interpretability algorithm, we considered two sim-
ulation models were consider, in which the covariates generation and
the risk functions vary. These simulation models are summarized in
Table 1. We then created four distinct scenarios based on these models.

Scenario A.1: Illustration of the reverse effect. Scenario A.1 aims to
illustrate the ‘‘reverse effect’’ discussed in Section 2.2.2, which can
arise when computing cumulative incidence functions (CIFs) for com-
peting transitions. The data used for this scenario was generated from
Model A, which has no correlated features or interaction terms. Two
features affect the hazard function for each transition, with no cross-
effects through transitions, and risk functions are parameterized with
quadratic effects.

Scenario A.2: Illustration of the prediction-based feature importance and of
the counterfactual perturbation for numerical features. Scenario A.2 high-
lights the advantages of the prediction-based MS-CPFI over performance
based (i.e., iAUC-based) feature importance measures. The data used
for this scenario were also generated from Model A.

Scenarios B.1 and B.2: Illustration of the counterfactual perturbation for
categorical features. Scenarios B.1 and B.2 use data generated from
Model B, where continuous features are transformed into discrete fea-
tures and dummy-encoded by excluding a reference category. These
scenarios aim to illustrate our interpretability framework for categor-
ical features. By definition, the choice of reference category has no
effect on the results, but it can impact the interpretability of classical
methods. Using these scenarios, we aim to show how a counterfac-
tual perturbation for categorical features independent on the reference
category can be more easy to interpret than the perturbation method
independent on the reference category. Scenarios B.1 and B.2 differ in
9

the choice of the reference category to demonstrate this advantage. f
4.3. Results

To conduct our simulations and estimate the predictions of interest,
we use IDNetwork [7] that is a deep learning architecture designed
to model an illness-death process and to provide transition-specific
and time-dependent predictions (see the supplementary material A for
a brief description). Output of IDNetwork are the density probabil-
ity functions. Using the equivalence defined in Section 2.2, we can
compute one of the predictions functions as input to MS-CPFI.

Main results on scenarios A.1 and A.2, B.1 and B.2 are displayed
in the next sections. Additional results are given subsequently. In our
results, we focus on the integrated feature importance (with no absolute
value).

4.3.1. Scenario A.1: Illustration of the reverse effect
To illustrate how the reverse effect constraint between competing

transitions can be overcome, we compare the CIFs with conditional
probabilities (CP) and cumulative hazard functions in Fig. 7, using
a performance-based (i.e. iAUC-based) feature importance that show
the impact of model performance (see the supplementary material E).
Specifically, we focus on the competing transitions 0 → 1 and 0 →

2, and illustrate the reverse effect in Fig. 7(a) when CIFs are used as
the functions of interest. For transition 0 → 1 (respectively transition
0 → 2), features 𝑋1 and 𝑋2 (respectively features 𝑋3 and 𝑋4) have
a positive feature importance. However, features 𝑋3 and 𝑋4 (which
actually have an effect on the competing transition 0 → 2) display a
negative feature importance for transition 0 → 1 (respectively, features
𝑋1 and 𝑋2 display a negative feature importance for transition 0 → 2).

herefore, computing feature importance with CIFs can lead to a biased
nterpretation of competing transitions.

To address this issue, we use CPs (Fig. 7(b)) or Hs (Fig. 7(c)) to
vercome the reverse effect. For the subsequent results, we use Hs to
llustrate our findings.

.3.2. Scenario A.2: Illustration of the prediction-based feature importance
nd of the counterfactual perturbation for numerical features

In scenario A.1, we demonstrated the reverse effect that can occur
n the presence of competing transitions with an iAUC-based feature
erformance. However, an iAUC-based feature importance does not
rovide information of the sign of the feature effect; in that case a
rediction-based feature importance is more helpful. In scenario A.2,
e illustrate advantages of the prediction-based feature importance and
f the counterfactual perturbation for numerical features.

As explained in Section 3.1, to compute a prediction-based MS-
PFI, counterfactual scenarios need to be created for each numerical

eature by selecting the relevant feature values characterizing changes
n the risk of the transition. We illustrate how we choose these values

or feature 𝑋1 in Fig. 9 where we plot the hazard ratio estimated
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Fig. 7. Illustration of the reverse effect mentioned in Section 2.2 (Scenario A.1). Feature importance score computed with an iAUC-based MS-CPFI versus the type of prediction:
(a) CIFs versus (b) CPs or (c) cumulative hazard functions. Features written in bold are those which have an effect in the simulation.

Fig. 8. Visualization of the true risk functions (Scenario A.2). True transition-specific risk functions,
{

𝑔𝑘𝑙
(

𝑋𝑖 , 𝛽𝑘𝑙
)

, 𝑋𝑖
1

}

1≤𝑖≤𝑛 ,
(

(𝑘, 𝑙) ∈
{

(0, 1), (0, 2), (1, 2)
})

,

versus values of 𝑋1. Blue points represent individual risks; the blue line represents a linear smooth of the individual points.
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Fig. 9. Selection of the counterfactual values (Scenario A.2). Transition-specific hazard ratios ĤR
𝑖
𝑘𝑙 versus the values 𝑋𝑖

1 estimated with spline-based transition-specific univariate
Cox models [60]. We tested the significance of the non-linear part for each model with a threshold of 0.05; ∗ indicates a significant 𝑝-value.
Fig. 10. Illustration of the prediction-based feature importance with numerical features (Scenario A.2). Feature importance scores computed with a prediction-based MS-CPFI
and the cumulative hazard functions as the predictions of interest. Features written in bold are those which have an effect in the simulation. Features names following by the
suffix ‘‘c_value’’ designate the counterfactual values selected in Fig. 9.
with spline-based transition-specific marginal Cox models [60]. Fig. 8
displays the true simulated hazard ratios. For each transition, we select
graphically the values of 𝑋1 that correspond to the effect changes in
the estimated hazard ratio curves. Dashed lines represent the selected
values. For transition 0 → 1, selected values are {min(𝑋1), 0,max(𝑋1)};
for transitions 0 → 2 and 1 → 2, selected values are {min(𝑋1),max(𝑋1)}.
We repeat this process for each feature.

In Fig. 10, we plots results of feature importance for each transition
and for each selected values of the features. A significant positive
prediction-based feature importance for a counterfactual feature value
indicates that this feature value is a deleterious risk factor for the
transition. Respectively, a significant negative prediction-based feature
importance for a feature value indicates that the feature value is a
protective factor for the transition.

For transition 0 → 1, for feature 𝑋1, according to the simulated
effects (Fig. 8), we expected a null feature importance for the value2,
a positive feature importance for value1 and value3; idem for feature
𝑋2; for other features, we expected a null feature importance. First
plot of Fig. 10 displays this expectation. For transitions 0 → 2 and 1
→ 2, the second and the third plots display a null feature importance
for the three counterfactual values, for these two features, as expected.
For the other features, conclusions are those expected (see plots of the
true feature importance scores in the supplementary materials G, Figure
G.1). We can also compare these results with the plots in Fig. 7(c),
computed with an iAUC-based feature importance. An iAUC-based
feature importance does not provide an explanation on the sign of the
feature effect and could not detect the variations in the effects when the
feature value changes. Rather, the prediction-based feature importance
with the counterfactual perturbation can identify associations between
values of a feature and risks of transition.
11
4.3.3. Scenarios B.1 and B.2: Illustration of the counterfactual perturbation
for categorical features

We used scenarios B.1 and B.2 to demonstrate the advantages of the
counterfactual perturbation method for dummy-encoded categorical
features. The purpose was to show how a feature importance score that
is independent of the reference category can provide the correct inter-
pretation regardless of the chosen reference category, as compared to a
feature importance score that is dependent on the reference category.

To generate our results, we employed equal-frequency discretization
and created four categories (cut1, cut2, cut3, cut4) from the initial
numerical features in model B. Subsequently, each discretized feature
was transformed using dummy encoding, excluding a reference cat-
egory. We present our results specifically for the transition 0 → 1,
as the conclusions for other transitions are equivalent. Based on the
way the features were discretized (refer to Fig. 11), we expect the
following feature importance score patterns. For features 𝑋11 and 𝑋21,
we anticipate a positive feature importance score for cut1 and cut4,
and a negative feature importance score for cut2 and cut3. For the
remaining features, we expect non-significant importance scores across
all dummy features.

In scenario B.1, the reference category is cut1; in scenario B.2, the
reference category is cut2. In Fig. 12, features written in bold are those
which have an effect in the simulation. Graphs have been zoomed only
for the four first features; the others features have no effect on the
transition (complete plots are given in the supplementary material H).

The counterfactual perturbation method that is independent of the
reference category provides consistent interpretation regardless of the
chosen reference category (Fig. 12(b)). On the other hand, a counterfac-
tual perturbation method that is dependent on the reference category
(Fig. 12(a)) yields different interpretations when the reference category
changes. Consequently, it may lead to a misinterpretation of the true
effect of the feature categories.
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Fig. 11. Transformation of numerical features into categorical features (Scenarios B.1 and B.2). True simulated transition-specific risk functions for transition 0 → 1,
{
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,

versus values of the feature for features
(

𝑋𝑝1 , 𝑋𝑝2
)𝑇 , 𝑝 = 1, 2. Dashed lines display bounds of the created categories from the quantile values 0.25, 0.5, 0.75, such that

cut1 =
[

𝑄0% , 𝑄25%
]

, cut2 =
]

𝑄25% , 𝑄50%
]

, cut3 =
]

𝑄50% , 𝑄75%
]

, cut4 =
]

𝑄75% , 𝑄100%
]

. Blue points represent individual risks; the blue line represents a linear smooth of the individual
points. We did not put graphs for features 𝑋31 ,… , 𝑋62; graphs are similar to those of features 𝑋12 and 𝑋22 as they have no effect on this transition either.
Fig. 12. Illustration of the prediction-based feature importance on categorical features (Scenarios B.1 and B.2). Feature importance scores for transition 0 → 1, with a
prediction-based MS-CPFI and the cumulative hazard functions as the predictions of interest, versus the type of counterfactual perturbation: (a) dependent versus (b) independent
on the reference category.
4.3.4. Additional experiments
We conducted additional experiments on MS-CPFI using three ad-

ditional scenarios. The simulation schemes for these scenarios are
provided in the supplementary material I.1.

In scenario C, the advantage of the prediction-based MS-CPFI is
illustrated in the case of exponential effects of the features on the
risks of transition. Detailed results can be found in the supplementary
material I.2, which show that the prediction-based MS-CPFI algorithm
accurately estimates feature importance in the case of exponential
effects and is capable of detecting non-linear risk functions.

In scenario D the robustness of MS-CPFI is illustrated in the presence
of cross effects (i.e. shared effects of the features between the transi-
tions). Detailed results are presented in the supplementary material I.3,
confirming the robustness of MS-CPFI in detecting important features
even when cross effects are present.

Lastly, scenario E was designed to highlight the effects of correlated
features. In the computation of feature importance, only the marginal
effect of each feature is measured, which can lead to biased interpre-
tation in the presence of strongly correlated features [61]. Detailed
12
results are provided in the supplementary material I.4, they illustrate
the biased interpretation that may happen when computing feature
importance in the presence of strongly correlated features. To address
this issue, we suggest two alternative methods: either preprocessing the
dataset by keeping only one of the correlated features or computing
conditional feature importance by perturbing the correlated features
simultaneously [57].

5. Results on the METABRIC data set

5.1. Data description

The data from the Molecular Taxonomy of Breast Cancer Interna-
tional Consortium (METABRIC) cohort, as described in the study by
Curtis et al. (2012) [62]1 were used. Our analysis focuses on a sample

1 The METABRIC data set is available at https://www.cbioportal.org/study/
clinicalData?id=brca_metabric.

https://www.cbioportal.org/study/clinicalData?id=brca_metabric
https://www.cbioportal.org/study/clinicalData?id=brca_metabric
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Fig. 13. Estimated important prognostic factors in the METABRIC data set on patients with breast cancer. Feature importance with a prediction-based MS-CPFI and the
cumulative hazard functions as the predictions of interest. The features ‘‘Age’’ following by the suffix ‘‘c_value’’ designate the selected counterfactual values illustrated in Fig. 14.
Table 2
Number of (No.) observed event and right-censored patients (METABRIC data set on
patients with breast cancer).

Data set No. observations (%) Total

0 → 1 0 → 2 0 → cens. 1 → 2 1 → cens.

METABRIC 677 (36%) 509 (27%) 717 (38%) 593 (88%)a 84 (12%)a 1903

a Among patients at risk.

of 1903 patients who were followed up for a period of 360 months
(30 years). To model the progression of breast cancer in this dataset, a
three-states illness-death model was used. The initial state is denoted by
0 and corresponds to ‘‘Inclusion in the cohort’’, while state 1 represents
an intermediate stage of ‘‘Relapse’’, and state 2 is an absorbing state that
denotes ‘‘Death’’. Descriptive statistics for these events are presented in
Table 2.

The METABRIC dataset comprises clinical, histo pathological, gene
copy number, and gene expression features used to determine breast
cancer subgroups. Based on the literature, we selected the most rel-
evant clinical and histo pathological features, excluding those that
exhibited high correlation, as confirmed by the results presented in the
supplementary material (Appendix A).

In addition, we transformed some of the initial numerical features
into categorical features based on clinical classification, ultimately
retaining one numerical and fourteen categorical features for analysis.

To address missing values, we imputed the median value for the
numerical feature and the mode for categorical features. We applied
dummy-encoding to the categorical features and standardized the nu-
merical feature using a min–max scaler. A description of these fea-
tures and their transformations is presented in Table J.1.1 of the
supplementary material (Appendix J.1).

To generate the necessary predictions for applying MS-CPFI to
the METABRIC dataset, we employ the deep learning-based predic-
tion algorithm IDNetwork for illness-death model [7], as detailed in
13
the supplementary material (Appendix A). The outputs of IDNetwork
correspond to density probability functions, which we convert into
cumulative hazard functions as the predictions of interest, as per the
equivalences defined in Section 2.2.

5.2. Results

In this section, we demonstrate the effectiveness of the prediction-
based MS-CPFI algorithm in identifying clinically important features
using real data. Here, we focus on the integrated feature importance
(with no absolute value). Fig. 13 displays results of feature importance
for each transition. We analyzed these interpretability results by check-
ing in the literature if they are clinically valid. In the next paragraphs,
we provide an analyze of the main important risk factors; additional
analyses are given in Section 5.3 and in the supplementary material J.2.

To determine the counterfactual values of interest for the numerical
feature ‘‘Age’’ corresponding to changes in the risk of transition for
each state, we utilize spline-based univariate transition-specific Cox
P.H. models, as shown in Fig. 14. For transition 0 → 1, we can consider
that between the extreme values of age the effect is monotone, and
choose the counterfactual values as the extreme values, i.e. {22, 96}.
For transition 0 → 2 the selected age values are {22, 45, 70, 96}; for
transition 1 → 2 the selected age values are {22, 50, 70, 96}. Between
each selected value, we consider a monotonic effect of the risk.

Cancer grade [63]. Tumor grade is a prognostic classification based on
the proliferation rate of cancer cells. A grade 1 tumor grows slowly
and is associated with a low likelihood of metastasis, while a grade
3 tumor grows rapidly and is associated with a high likelihood of
metastasis. Grade 2 tumors grow faster than grade 1 tumors but slower
than grade 3 tumors and have an intermediate probability of metastasis.
Therefore, patients with grade 1 and grade 2 tumors generally have a
better prognosis than those with grade 3 tumors. Our analysis confirms
these findings, as we observe that grade 3 is a risk factor for relapse
(i.e., transition 0 → 1), while grade 2 is a protective factor. In addition,
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Fig. 14. Selection of the counterfactual values for the feature ‘‘Age’’ (METABRIC data set on patients with breast cancer). Estimated transition-specific hazard ratios for
feature ‘‘age’’ as functions of ‘‘age’’. Dashed lines represent the selected counterfactual values. We tested the significativity of the non-linear part for each model with a threshold
of 0.05; ∗ indicates a significant 𝑝-value.
for the risk of death after a relapse (i.e., transition 1 → 2), grades 1 and
2 are protective factors, while grade 3 is a risk factor. These findings
are consistent with previous research in the field.

TNM classification [64]. The TNM (Tumor size, Nodes involvement,
presence of Metastasis) classification from the American Joint Com-
mittee on Cancer (AJCC) is used to establish tumor stage of patients
with breast cancer. The tumor size (T) is a classification from 𝑇 0 (no
evidence of primary tumor) to 𝑇 3 (tumor size ≥ 5 cm), and 𝑇 4 (tumor
size growing into the chest wall and/or skin). The number of invaded
lymph nodes (N) is a classification from 𝑁0 (cancer has not spread
to nearby lymph nodes), to 𝑁3 (cancer has spread to ≥ 10 auxiliary
lymph nodes). There features are well-known risk factors of breast
cancer progression. Our results reveal that for transitions 0 → 1 and
0 → 2, a 𝑇 1 cancer is a protective factor and 𝑇 2 is risk factor. 𝑇 3 is
not significant, that is probably due to the fact that the frequency of
observations of 𝑇 3 is low against frequencies of 𝑇 1 and 𝑇 2. For all three
transitions, 𝑁0 is a protective factor, 𝑁1 is not significant, 𝑁2 and 𝑁3
are risk factors (except for transition 1 → 2 where 𝑁3 is not significant).
These findings align with the existing literature, indicating that a T0
(or N0) cancer is a protective factor, while a higher 𝑇 (respectively a
higher N) increases the risks of relapse and death.

Hormone receptor status [65]. Breast cancers can be classified in two
groups: hormone receptor-positive versus hormone receptor-negative
cancers. In hormone receptor-positive breast cancers, female sex hor-
mones (estrogen - ER - and/or progesterone - PR) stimulate tumor
growth. These cancers usually grow slower than hormone receptor-
negative cancers and have a better short-term prognosis, but may
have a higher risk of late recurrence. In hormone receptor-negative
breast cancers, female sex hormones do not affect cancer cells growth.
They have a greater risk of relapse in the first years after the end of
treatment.

In our results, we found that hormone receptor-positive (ER+ and/or
PR+) cancers are favorable prognostic factors, while hormone receptor-
negative (ER- and/or PR-) cancers are unfavorable prognostic factors
for all three transitions. This means that hormone receptor-positive
cancers have a lower risk of relapse or death than hormone receptor-
negative cancers; these conclusions are consistent with the literature.

Her2 status [65]. Breast cancers can also be classified as Her2-positive
(noted Her2+) or Her2-negative (noted Her2-) cancers. Her2+ breast
cancers have a higher level of the protein Her2 (Human epidermal
growth factor receptor 2). This protein increases the growth of can-
cer cells, which makes the cancer more aggressive than Her2- can-
cers. However, Her2-targeted treatments are very effective, that makes
Her2+ cancers having a very good prognosis for relapse and death. In
ours results, we can see that, for transition 0 → 2, Her2- is a risk factor,
Her2+ is a protective factor; for transitions 0 → 1 and 1 → 2, there is
no significant effect of the protein Her2.
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Age at diagnosis [66]. Age is a known risk factor of beast cancers;
incidence increases with age. However, patients diagnosed at a young
age (less than 40 years old) have a poorer prognosis than patients aged
from 40 to 60 years old. They present a higher probability to have a
triple-negative cancer (i.e. ER-, PR- and Her2-) because they are about 2
to 3 times more likely to have the BRCA1 mutation that is linked to the
development of aggressive breast cancer as the triple-negative breast
cancer. These cancers have a poorer remission prognosis than other
sub-types of breast cancer. Consequently, this age group has a higher
recurrence rate than the others age groups. Patients over 70 years old
have the lowest survival; their survival is affected by their age and their
risk of developing medical comorbidities. However, cancers of elderly
patients are mainly hormone receptor-positive cancers; therefore they
present a low risk of cancer-related death.

In our results, for transition 0 → 1 (i.e. the risk of relapse), the
age value 22 (Age c-value1) is a risk factor, the age value 96 (Age
c-value4) is a protective factor. These results are consistent with the
literature; younger patients have a higher probability of relapse; older
patients have a good prognosis of cancer recurrence as they can be
treated effectively with hormonotherapy. For transition 0 → 2 (i.e. the
risk of death with no cancer relapse), the age value 22 (Age c-value1)
is a protective factor, the age values 45, 70 and 96 (Age c-value2, Age
c-value3 and Age c-value4) have no significant effect. These results are
consistent with the literature; younger patients have a low probability
of death with no cancer relapse because the occurrence of this transi-
tion is strongly linked to non-cancer deaths and comorbidities-related
deaths which rather affect older patients. For transition 1 → 2 (i.e. the
risk of death after a cancer relapse), the age values 22 and 50 (Age c-
value1 and Age c-value2) are protective factors, the age values 70 and
96 (Age value3’’ and ‘‘Age c-value4) are risk factors. We can also see
that patients aged of 96 years old have a higher risk for this transition
than patients aged of 70 years old. These results are consistent as the
risk of death for patients over 70 years old is strongly correlated to
comorbidities, and this risk increases when age increases.

In parallel, effects of the age values are ordered. For transition 0
→ 1, the risk of relapse decreases when age increases; for transition 0
→ 2, the risk of non-cancer deaths decreases when age decreases; for
transition 1 → 2, the risk death after a cancer relapse decreases when
age decreases. This allows to characterize the shape of the feature effect
for each transition (see supplementary material J.2 - Figure J.2.1 for an
illustration).

5.3. Additional results

In the supplementary material J.3, we compare our results with
the interpretability results from transition-specific Cox P.H. models; we
conclude that the state-of-the-art statistical method does not allow to
detect all the known prognostic factors, and is limited in the presence
of non-linear effects of the features.
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Fig. 15. iAUC-based feature importance (METABRIC data set on patients with breast cancer). Feature importance with an iAUC-based MS-CPFI and the cumulative hazard
functions as the predictions of interest.
We also compared the prediction-based feature importance, as
shown in Fig. 13, with an iAUC-based feature importance, illustrated
in Fig. 15. Our goal was to highlight the limitations of using a per-
formance criterion to compute feature importance scores for clinical
interpretation.

We observed that the sign of the feature importance, i.e. whether it
is positive or negative, is not interpretable when computing an iAUC-
based feature importance. A positive feature importance indicates that
perturbing the feature decreases the iAUC of the model, implying that
the feature is important for model training. On the other hand, a
negative feature importance is not interpretable.

We found that some well-known important prognostic factors for
breast cancer, such as the hormone-receptor status, are non-significant
when using the iAUC-based feature importance method. Particularly for
transition 1 → 2, we observed several important features, including
the 𝑇 and 𝑁 classifications, cancer grade, hormone-receptor status,
and histological classification, which were not significant. Additionally,
as the sign of an iAUC-based feature importance score is not inter-
pretable, it does not provide any information on the sign of the feature
effect. Therefore, we concluded that an iAUC-based feature importance
method does not provide the expected interpretation of the features in
contrast to our prediction-based MS-CPFI feature importance scores.

We also analyzed the results of an iBS-based MS-CPFI, as described
in the supplementary material J.4, and reached the same conclusions.
Thus, we validated that a prediction-based feature importance method
is more relevant for providing a real clinical sense of the interpreta-
tions.

6. Conclusion

We have developed MS-CPFI, a new model-agnostic algorithm for
interpreting any irreversible multi-state model and understanding the
effects of covariates on disease progression. This is the first inter-
pretability algorithm of its kind developed in the context of multi-state
analysis. The use of interpretability methods is crucial for integrating
black-box-based disease progression predictions into a clinical deci-
sion support system. MS-CPFI is particularly useful in personalized
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medicine, providing information on the clinical factors influencing the
evolution of a specific disease.

MS-CPFI extends the class of feature importance algorithms to a
larger class of disease models dealing with time-to-event data, including
the successive occurrence of multiple clinical events. We have derived
the definition of the state-of-the-art PFI algorithm used in RSFs, with
major improvements to better interpret covariate effects and address
limitations of the PFI algorithm in this context. By design, the input
of MS-CPFI are time-dependent and transition-specific risk predictions
and the output is statistical summaries of feature importance for each
transition. By using a new counterfactual perturbation method and
using risk predictions directly instead of model performance, the MS-
CPFI algorithm provides an ordered list of features that are risk factors
or protective factors for each stage of a disease (or transition of a
multi-state process).

We have tested the robustness of MS-CPFI in the case of non-linear
effects of the features on the risks of transition through experiments on
simulated data sets. We have also evaluated MS-CPFI in interpreting an
illness-death black-box model trained on a real dataset on patients with
breast cancer, showing that MS-CPFI can detect clinically important
features for evaluating prognosis in such patients.

In summary, MS-CPFI’s strength lies in its algorithm agnosticism,
allowing interpretation across various multi-state models, and its clin-
ical interpretability, providing insights into risk factors and protective
factors with confidence intervals. However, the current implementation
has limitations that warrant improvement. One limitation involves the
choice of counterfactual scenarios for interpreting the effect of a nu-
merical feature, which should be integrated and automated in the next
version of MS-CPFI. Another limitation is the management of correlated
data, which may introduce bias, and we provide methodologies to
address this in the supplementary material I.4 (Figure I.4.2) Addi-
tionally, MS-CPFI is currently designed to interpret multi-state models
using tabular data, but considerations for other data types, such as
imaging, anatomo-pathological, or connected device data, are essential
for comprehensive patient prognosis evaluation. The algorithm also fo-
cuses on static transition-specific predictions, limiting its applicability.
Future iterations should explore integrating time-varying features and
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dynamic interpretations based on the temporal evolution of patients’
characteristics, enhancing the prediction of patients’ prognosis and
adapting MS-CPFI for this purpose. As a future work and inspired by
SurvShap(t) [44] and SurvLIME [41], we also aim to combine MS-CPFI
with a local interpretability functionality to provide individual feature
importance scores in a multi-state model.
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