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Object detection VS Image classification

Advantage of object detection Pneumonia

T T,

- Localization
- Detail orientation
- Contextual understanding

- Dynamic monitoring




Object Image Instance
Detection Segmentation Segmentation

Advantage Speed Comprehensive Detail and precision
understanding

Application |dentify fracture in ER Brain MRI scan lung CT scans for
detecting lung nodules
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Object detection model
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Kang, Junhyung & Tariqg, Shahroz & Oh, Han & Woo, Simon. (2022). A Survey of Deep Learning-Based Object Detection Methods and Datasets for

Overhead Imagery. IEEE Access. 10. 1-1. 10.1109/ACCESS.2022.3149052.




- Backbone : Conv. network for feature extraction
- SSD head : Apply multi-scale feature map for

detect objects

;§ - Fast but slightly slower than YOLO
4 g - SSD usually performs badly for small
‘ "'7—:“‘ % objects comparing with other detection
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Figure 3. Architecture of a convolutional neural network with a SSD detector [2]

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu: “SSD: Single Shot

MultiBox Detector”, 2016; arXiv:1512.02325. CAcalowm vf e Lasd


http://arxiv.org/abs/1512.02325
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R-CNN (2013)

R-CNN: Regions with CNN features

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input |2. Extract region 3. Compute 4. Classify
Image proposals (~2k) CNN features regions

Selective search

Girshick, Ross B. et al. “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.” 2014

IEEE Conference on Computer Vision and Pattern Recognition (2013): 580-587.
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-Girshick, Ross B.. “Fast R-CNN.” (2015).

-Ren, Shaoging, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." IEEE transactions on pattern analysis
and machine intelligence 39.6 (2016): 1137-1149.

- projectio?u‘\
Ak

Conv U
feature map

layer ED UFCDS

S bbox
softmax regressor

J

FC : c’:rc

Rol feature
VeCtor For each Rol



Department of Clinical Epidemiology and Biostatistics

Faster R-CNN (2015)

». classifier

Rol pooling - Region proposal network
predicting whether there is an object or not and also predicting
the bounding box of those objects.

- ROI pooling layer
reshape RPN region to fixed size for classification and bound
box regression

feature maps
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“Object detection performance metrics

* Intersection over Union (loU)

- Class prediction :
Positive if loU >=loU threshold

Iterection Negative if loU < loU threshold
overlapping area
loU = 2P g =
union area
Sample loU scores
0.95 0.65 0.25 0
Union Area
> 0.5 Acceptable

> 0.7 Good
> 0.95 Excellent




- Incorrect localization
- Incorrect classification

loU = 0.922 loU = 0.258

loU Threshold = 0.5

False Negative
iy

loU =0.00

True Positives [TP]

Object detections with
loU >= loU threshold

False Positives [FP]

Object detections with
loU < loU threshold

False Negatives [FN]

No objects detected
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Object detection performance metrics

* Accuracy, Precision, F1-score, Recall, Specificity
* Average Precision (AP)

= AUC for precision-recall curve (AUPRC)
- PR Curve is plot between precision and recall with varying 10U threshold

PR ROC curve
»

o Precision (P)=TP / (TP +FF)
PR AUC = 0.50
i 0,50} -Reswine =05 o Recall (R)=TF / (TF +FN)

0.2% B ors
Recalli Tree positive rate




* Mean average precision(mAP)

-The mAP is calculated by finding Average Precision(AP) for each class and then average

over a number of classes.

k=1
AP, = the AP of class k
n = the number of classes

- mAP50 calculates AP at an loU of 0.5 .
- mAP50-95 averages AP calculated at loU thresholds from 0.5 to 0.95 with a step size of 0.05.
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* Detection speed (FPS)

Number of frames processed

FPS =

Total time taken (seconds)

- real-time detector - at least 30 frames per second (FPS)

- smooth performance = at least 60 frames per second (FPS)
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Example use of YOLO in medical images

STBi-YOLO: A Real-Time Object Detection
Method for Lung Nodule Recognition

KEHONG LIU

College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China

K. Liu, "STBi-YOLO: A Real-Time Object Detection Method for Lung Nodule
Recognition," in IEEE Access, vol. 10, pp. 75385-75394, 2022, doi:
10.1109/ACCESS.2022.3192034
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Introduction

* Lung nodules, which can indicate early-stage lung cancer, typically appear as small, round shadows
on CT scans, measuring up to 3 cm in diameter.

* Tiny size nodules are similar to blood vessels.

* This complicates accurate diagnosis, making the screening process inefficient and increasing the risk of
misdiagnosis.

* When applying the YOLO-v5 algorithm to lung CT images, it performs with poor detection accuracy and

low processing speed.
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Lung nodule detection based on STBi-YOLO

Output

YOLOWS
(Head)
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Experimental settings

* Tensorflow deep learning network

GPU:NVIDIA Tesla K80; accelerated using CUDAv11.0 and CuDNNv8.0

The programming language of this model is Python.

Train proposed model (STBI-YOLO), YOLO-v3,YOLO -v4, and YOLO-v5 with the same parameter settings.

Model parameter settings

Parameters Values
weight decay 0.0005

batch size 4
learning rate 0.01

epoch 300
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Experimental dataset

* LUNA16 (high quality lung nodule CT image dataset launched in 2016)
This dataset contains a total of 888 3D lung CT image, 1,186 lung nodules

and 36,378 annotated information by four professional radiologists.

The dataset consists of four main parts:

1) the original CT images

2) the annotation files of lung nodule locations

3) the original CT lung regional segmentation files
4) the diagnosis result files

Train-test-validation =70% : 15% : 15%

https://lunal6.grand-challenge.org/
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Dataset analysis
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FIGURE 10. Experimental results.
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Experimental results

Model Weights/MB mAP/%  Recall/% Detection
speed/FPS
Faster R-CNN 159 91.9 92.5 191
Mask R-CNN 121 73.65 78.3 54
SSD 100.2 75.2 77.0 98
YOLO-v3 235 81.3 82.9 59
YOLO-v4 246 88.4 90.0 41
YOLO-v5s 41.9 90.8 91.1 25

STBi-YOLO 43.6 95.9 96.7 27
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