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THE BIGGER PICTURE The use of real-world data (RWD) in healthcare has become increasingly important
for evidence generation. However, much detailed patient information is only consistently available in free-
text clinical documents, and manual curation is expensive and time consuming. This paper proposes using
information in medical registries, which are often readily available and capture patient information, as the
basis for patient-level supervision to train deep-learning systems that facilitate general RWD applications.
This proposed approach has potential to make evidence generation scalable and efficient.
An extensive study on 135,107 patients from the cancer registry of a large integrated delivery network (IDN)
comprising healthcare systems in five western US states demonstrates the effectiveness of this approach.
The resulting deep-learning models demonstrate high performance in extracting key tumor attributes, and
error analysis shows that they can even correct errors in registrar labels.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Most detailed patient information in real-world data (RWD) is only consistently available in free-text clinical
documents. Manual curation is expensive and time consuming. Developing natural language processing
(NLP) methods for structuring RWD is thus essential for scaling real-world evidence generation. We propose
leveraging patient-level supervision frommedical registries, which are often readily available and capture key
patient information, for general RWD applications. We conduct an extensive study on 135,107 patients from
the cancer registry of a large integrated delivery network (IDN) comprising healthcare systems in five western
US states. Our deep-learning methods attain test area under the receiver operating characteristic curve
(AUROC) values of 94%–99% for key tumor attributes and comparable performance on held-out data from
separate health systems and states. Ablation results demonstrate the superiority of these advanced deep-
learning methods. Error analysis shows that our NLP system sometimes even corrects errors in registrar
labels.
INTRODUCTION

Electronic medical records (EMRs) offer an unprecedented op-

portunity to harness real-world data (RWD) for accelerating

progress in clinical research and care.1 By tracking longitudinal
This is an open access article und
patient care patterns and trajectories, including diagnoses,

treatments, and clinical outcomes, we can help assess drug ef-

ficacy in real-world settings, facilitate post-market surveillance,

and speed up clinical trial recruitment. However, pertinent infor-

mation about patients often resides in clinical text, such as
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pathology assessments, radiology assessments, and clinical

progress notes. Manual curation to structure such text is expen-

sive and hard to scale.

Natural language processing (NLP) can help accelerate

manual curation.2 In recent years, there have been rapid ad-

vances in general-domain NLP, where state-of-the-art deep

neural networks, such as transformer-based models inclu-

ding bidirectional encoder representations from transformers

(BERT), have demonstrated remarkable success across a wide

range of applications.3,4 Training these sophisticated models,

however, typically requires a large number of annotated exam-

ples. By contrast, prior work in clinical NLP is often limited to

annotating small datasets and training simpler methods.5 Due

to the scarcity of qualified domain experts, annotation is usually

conducted on a small collection of notes, often from a single

institution. Moreover, tomake learning easier, these explorations

typically restrict annotation to single sentences or single notes.

For example, Kehl et al.5 show promising results for applying

NLP to accelerate real-world evidence generation in oncology.

However, while their annotation effort is relatively large among

similar prior efforts, their test set contains only 109 patients

(1,112 patients in the entire annotated dataset). The notes are

limited to radiology reports for lung cancer from a single institu-

tion. Their exploration is limited to convolutional neural networks,

which do not leverage the latest NLP advances, such as lan-

guage model pretraining.6,7

In this article, we propose to bootstrap deep learning for

structuring RWD by using readily available registry data. Med-

ical registries are routinely collected for various diseases, with

oncology being a prominent example. In the US, cancer is a

reportable disease, and cancer centers are required to curate

patient information per national accreditation and clinical qual-

ity requirements. By matching registry entries with their corre-

sponding EMR data, we can assemble a large dataset for

training and evaluating state-of-the-art deep NLP methods.

Gao et al.8,9 also leverage registry data for supervision. How-

ever, like Kehl et al.,5 they restrict classification to individual

pathology reports and exclude tumors associated with multiple

reports. Similarly, Percha et al.10 focus on classifying individual

sentences for breast cancer surgery information. Such

methods are not applicable to the prevalent cases where infor-

mation is scattered across multiple clinical documents and note

types (e.g., pathology reports, radiology reports, progress

notes). Often, information in a single document (e.g., discussion

of a malignant site) is insufficient, and additional context

is required for identifying the correct diagnosis or staging

information.

To the best of our knowledge, our study is the first to explore

cross-document medical information extraction using registry-

derived, patient-level supervision to train deep NLP methods.

Such patient-level supervision is inherently challenging to use

as it comprises only annotations associated with a tumor diag-

nosis, which are not attributable to individual sentences or doc-

uments. Each patient may have dozens of clinical documents,

yielding very long input text spans that are difficult to process

for standard deep-learning methods. Additionally, the collection

of clinical documents spans decades and varies in complete-

ness. Nevertheless, we found that the scale of such self-super-

vised data more than compensates for their noise and technical
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challenges, and our models attain high performance (area under

the receiver operating characteristic curve [AUROC]: 94%–99%)

for extracting core tumor attributes such as site, histology, and

clinical/pathological staging.

Unlike settings of prior studies,8 sophisticated deep-learning

methods substantially outperform simplistic approaches, with

our top-performing model combining cutting-edge techniques

such as transformers,3 domain-specific pretraining,7 recurrent

neural networks,11 and hierarchical attention.12 Our method

naturally handles longitudinal information, and experiments

show that incorporating multiple document types significantly

improves performance. Neural attention can be used to pinpoint

relevant text spans as extraction rationale and provenance,

which facilitate model interpretation and rapid validation by

human experts. Our model, trained on a health system in one

state, performed comparably for patients from different states,

health systems, and EMR configurations, suggesting good

generalizability.

While our work is motivated by structuring RWD, our method

can also be used to accelerate registry curation. Our deep

learning model not only performs well in abstraction but also at-

tains high accuracy in case finding (identifying patients for can-

cer registry), thus paving theway for end-to-end-assisted cancer

registry curation.

RESULTS

We conduct experiments using data from a large integrated de-

livery network (IDN) with over 28 distinct cancer care centers

across US states. We assemble a dataset with patient-level su-

pervision bymatching comprehensive EMR records (including all

free-text clinical documents in scope here) and cancer registry

records. Patients without a digitized pathology report within

30 days of diagnosis are skipped. This yields a total of 135,107

patients spanning multiple US states between 2000 and 2020.

We use patients in Oregon for the initial exploration (n =

39;064, 29% of patients). We divide patients into ten random

folds. We use six folds for training and development (n =

23;438), two folds for test (n = 7; 745), and two folds for an addi-

tional held-out test set (n = 7;881). We reserve patients from

Washington (n = 36; 900), as well as the remaining states (n =

59;143) for further generalizability tests, with a distinct health

system being used in each state.

Medical abstraction can be formulated as a binary classifica-

tion problem: given clinical text T for a patient, attribute A, and

a particular value a, classify if A’s value as described in T is a

(a can be null if T contains no mention of A). In this article, we

focus on three types of core cancer attributes: tumor site, histol-

ogy, and staging. In each patient instance, the input comprises

pathology report, radiology reports, and operative notes, con-

catenated chronologically.

We use the ICD-O-3 ontology for tumor site and histology. For

staging, we focus on solid tumors and follow AJCC guidelines for

clinical and pathological staging. Both represent cancer pro-

gression using TNM classification (T is tumor size/location, N is

lymph node status, and M is metastasis). Clinical staging is

based on initial diagnosis usingmedical imaging, clinical assess-

ment, and/or biopsy, whereas pathological staging incorporates

more definitive assessments of the tumor size and spread. For



Table 1. Test results for oncology abstraction by our deep

learning system based on PubMedBERT (PubMed) and

OncoBERT (Onco)

AUPRC AUROC Accuracy

PubMed Onco PubMed Onco PubMed Onco

Tumor site 76.7 77.1 99.3 99.2 69.1 69.5

Histology 87.2 87.6 99.4 99.4 81.2 81.2

Clinical T 79.3 81.4 93.9 94.6 70.1 72.0

Clinical N 97.2 97.5 97.2 97.5 91.6 92.3

Clinical M 98.7 99.0 98.7 99.0 94.9 95.2

Pathologic T 87.2 87.6 96.1 96.1 78.6 79.1

Pathologic N 95.3 95.5 95.2 95.4 88.9 88.8

Pathologic M 98.6 98.9 98.6 98.9 95.1 95.6

The ICD-O-3 ontology is used for tumor site and histology. Clinical and

pathological staging use TNM classification (T is tumor size/location; N

is lymph node status; M is metastasis).

Table 2. Generalizability test (AUPRC) on Oregon (OR),

Washington (WA), and other states using our deep learning

models (based on PubMedBERT) trained on Oregon training

OR test OR held out WA Other states

Tumor site 76.7 76.4 73.5 73.0

Histology 87.2 87.6 80.5 78.0

Clinical T 79.3 78.8 73.5 73.5

Clinical N 97.2 97.6 95.4 96.0

Clinical M 98.7 98.8 97.3 97.7

Pathologic T 87.2 88.0 84.3 86.1

Pathologic N 95.3 95.7 92.9 95.1

Pathologic M 98.6 98.6 97.1 97.1

Washington (WA) and other states all use different health systems.

There is only slight degradation for most results, which bodes well for

generalizability of our models. A notable exception is histology, with

up to a nine-point drop. Upon close inspection, this stems from diver-

gence in curation standards on ambiguous cases, with registrars using

different labeling granularity (e.g., non-small cell lung cancer vs. lung

adenocarcinoma).
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simplicity and based on practical utility, we focus on classifying

coarse categories (T: 0–4, in situ; N: 0 vs. 1+; M: 0 vs. 1).

For each attribute, we report the standard AUROC. For sys-

tem comparison, however, AUROC might obscure key perfor-

mance differences in the presence of imbalanced distribution

(e.g., some sites appear much more frequently), so we evaluate

area under the precision-recall curve (AUPRC). Precision and

recall are also known as positive predictive value and sensi-

tivity, respectively. We also report accuracy for completeness.

In all cases, we report micro scores aggregated across all

classes.

Deep learning effectively extracts key oncology
attributes
Table 1 shows test results for extracting key oncology attri-

butes. By incorporating state-of-the-art advances such as

PubMedBERT and OncoBERT, our deep-learning system at-

tains high performance across the board, even for tumor

site and histology, where the system has to distinguish among

hundreds of labels. Despite the large parameter space, our

system is robust in experiments, with standard deviations

across two random runs smaller than 1% for all tasks.

Generalizability
To assess generalizability, we evaluate the held-out set and

find that model performance is nearly identical. We further eval-

uate our model, trained on the Oregon training set, on patients

from Washington and other states. Each state has a distinct

cancer registry system, operated independently and governed

by state laws. Therefore, held-out states offer a particularly

good test for generalizability (see Table 2). The results are com-

parable for most attributes, with only slight degradation. Histol-

ogy, however, shows a large performance decrease (87.2 vs.

80.5 and 78). Manual analysis shows that much of this drop

is attributable to differences in curation standards, with regis-

trars from different systems using different labeling granularity,

e.g., non-small cell lung cancer (8,046) vs. adenocarcinoma

(8,140), with the latter being the most common type of the

former. Clinical tumor (T) staging also shows a noticeable per-

formance decrease (79.3 vs. 73.5). Manual analysis shows that
this performance drop largely stems from a higher proportion of

highly ambiguous cases (e.g., borderline categories between

stages 2 and 3).

System comparison
Table 3 compares our deep-learning systems with prior ap-

proaches formedical abstraction. Anontology-aware rule-based

system (matching against class lexicon and known aliases) per-

forms poorly, demonstrating that entity recognition alone is inad-

equate for such challenging tasks. Deep-learning methods

perform substantially better, with BERT-based approaches out-

performing convolutional neural networks (CNNs), especially for

the most challenging tasks such as site, histology, and clinical/

pathological T staging. Hierarchical attention network (HAN)/

gated recurrent unit (GRU) and transformer-based language

models each contribute significantly, with our best system gain-

ing 5.1 points for site, 3.2 points for histology, and 7.2 points for

clinical T over GloVe+CNN.

Domain-specific pretraining is especially impactful. By pre-

training entirely on oncology notes, OncoBERT further improves

over PubMedBERT, which is already pretrained on biomedical

text. Compared with general-domain BERT, our best system

with OncoBERT gains 2.0 points for site and 4.4 points for clinical

T staging.

Ablation study
We incorporate three types of clinical documents as input: pathol-

ogy reports, radiology reports, and operative notes. In ablation

study, we find that having all three helps, presumably because

this increases robustness in case some relevant notes aremissing

or not yet digitized (e.g., scanned PDFs). In other words, adding

radiology reports on top of pathology reports increased the

AUPRCby3.4 absolutepoints for tumor site extraction,with the in-

clusion of operative notes providing an additional one-point gain.

By default, we use [�30, 30] days around diagnosis, which works

reasonably well in general. For pathological staging, however, a

larger window is helpful, as relevant information often comes
Patterns 4, 100726, April 14, 2023 3



Table 3. Comparison of test AUPRC scores for oncology abstraction by various NLP systems

Site Histology Clin. T N M Path. T N M

Ontology 19.4 19.2 – – – – – –

BOW 62.8 76.6 70.4 96.6 98.4 72.1 90.7 98.9

OncoGloVe+CNN 72.0 84.4 74.2 96.5 98.6 83.9 93.1 98.5

OncoGloVe+HAN/GRU 74.0 85.9 76.2 97.1 98.7 86.4 94.2 98.5

BERT+HAN/GRU 75.1 86.2 77.0 96.6 98.4 86.4 94.4 98.2

PubMedBERT+HAN/GRU (ours) 76.7 87.2 79.3 97.2 98.7 87.2 95.2 98.6

OncoBERT+HAN/GRU (ours) 77.1* 87.6* 81.4* 97.5* 99.0* 87.6* 95.5* 98.9*

Ontology, ontology-aware rule-based system; BOW, logistic regression with bag-of-word features; OncoGloVe, 100-dimensional GloVe embedding

pretrained on oncology notes.

*Highest performance for each abstraction task (column).

Table 4. Comparison of test results in case finding with two self-

supervision schemes

Self-supervision

Train positive

instances

Train negative

instances Test F1

Default 37,207 13,123 91.4

+ Hard negatives 37,207 22,959 97.3
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from a tumor surgical resection that may be several months after

an initial tissue biopsy or fine-needle aspiration-based diagnosis,

e.g., using [�30, 90] days as input improves the AUPRC by over

four absolute points for pathological T staging (87.2 vs. 91.8).

Case finding
In medical abstraction, we are given patients with cancer and

asked to extract key tumor attributes. By contrast, the goal of

case finding is to determine if a patient should be included for

cancer registry. Cancer providers are obligated to submit

abstraction for these patients to the registry within a time limit.

Therefore, it’s important to identify such cases as soon as

possible and to start the abstraction process. We assemble a

case-finding dataset using patients in the cancer registry. For

positive cases, we identify patients with cancer with at least a pa-

thology report on the day of diagnosis. For negative cases, we

randomly sample non-cancer patients. This yields 62,090 posi-

tive and 8,460 negative patients.We divide them into train/devel-

opment/test by 60%/20%/20%, with 12,418 positive and 1,692

negative patients in the test set.

A patient may have clinical documents on multiple days. In

case finding, a classification instance comprises a patient’s clin-

ical documents in a given day, and the ultimate goal is to identify

the moment of cancer diagnosis (when registry curation starts).

For evaluation, we adopt a patient-level metric that mirrors

real-world applications. For each patient, we return the first

day with positive classification. For patients with cancer, the

case-finding decision is deemed correct if the first day of positive

classification is within [�7, 30] days of diagnosis. For non-cancer

patients, the case-finding decision is deemed correct if all clas-

sifications are negative. The [�7,30] window is chosen based on

consultations with subject-matter experts, as information about

cancer diagnosis may not be recorded exactly on the diagnosis

date. We report the F1 score, which is the harmonic mean of

precision (positive predictive value) and recall (sensitivity). Spe-

cifically, F1 = 2=ð1 =precision + 1 =recallÞ.
For self-supervision, we explore the two settings as des-

cribed in the experimental procedures. In both cases, positive

instances comprise patients with cancer on the diagnosis date.

By default, negative instances comprise of randomly chosen

days among non-cancer patients. Additionally, we randomly

sample days at least a week before diagnosis (up to a year

before) among patients with cancer, subject to the condition

that clinical documentations are available on the given days.
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This yields 9,836 instances as hard negative examples to add

to the training set. With the base setting, we attain a test F1

score of 91.4. As shown in Table 4, by incorporating hard nega-

tive examples, we substantially improve the test F1 score to

97.3, gaining six absolute points.

DISCUSSION

Error analysis
We conduct manual analysis on sample errors. Some stem from

annotation inconsistency, where registrars actually agree with

our system classifications upon close inspection. Others stem

from missing notes. After adjusting for annotation inconsistency

and missing input, the real test performance of our deep-learning

system is even higher. For example, by analyzing 50 error exam-

ples for tumor site classification, we found that a significant pro-

portion of them stemmed from incorrect annotations, based on

which we could estimate that the real test AUPRC is about 91.6

(vs. 76.7).

Assisted curation
We envision that NLP extraction can serve as a candidate to help

accelerate curation. The attention mechanism in transformer-

based models provides a straightforward approach to identify

extraction rationale. Effectively, the aggregate representation

of the input text is the weighted sum of token representations

in the top layer, with the weights (derived from self-attention to

the special ½CLS� token) signifying relative importance of individ-

ual tokens in the final classification decision. While there is no

guarantee that attention provides explanation,13 in practice, we

find that tokens with the highest attention weights are conducive

to assisted curation and generally conform with what human ex-

perts would consider as extraction rationale. As an example, Fig-

ure 1 highlights tokens with high attention weights for the

example text in Figure 2A and two variations. While the attention

may not entirely align with individual human intuition, it broadly



Figure 1. Examples of observed attention patterns and predictions from the tumor site model

(A) The attention pattern for the example shown in Figure 2A, with darker color signifying higher attention weight. The tumor site model correctly identifies C22.1

(intrahepatic bile duct) due to the cholangiocarinoma histology (indicating cancer of the bile duct). To probe themodel understanding further, inferencewas run on

modified text.

(B) The description was changed to a generic ‘‘carcinoma’’ diagnosis. While the attention is more diffuse, the model places the highest attention on the ‘‘liver’’

section and correctly identifies C22.0 (liver) as the tumor site.

(C) The ‘‘carcinoma’’ diagnosis was moved to the ‘‘gallbladder’’ section, and the model now correctly identifies the site as C23.9 (gallbladder), with attention now

focusing on this section.
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conforms to the extraction rationale and enables quick veri-

fication. Figure 3 shows a research prototype that we have

developed for assisted curation, which is in test use by selected

clinical users. For each attribute, the interface displays the

extraction rationale by highlighting individual notes and text

spans with the highest neural attention weight for final classifica-

tion. In preliminary studies, tumor registrars can verify a candi-

date extraction in 1–2 min, either ascertaining its correctness

or fixing the label in the interface. A thorough evaluation of this

system is out of the scope for this article, andwe leave it to future

work.

Fairness
To assess fairness in our models over subpopulations, we con-

ducted a performance evaluation for each gender and ethnicity

subgroup in the test set (two folds of Oregon patients). Note

that the gender and ethnicity information was never used by

any of our models during training. Following disparate impact

metric (80% rule),14 equal performance was observed on almost

all scenarios, except for tumor site abstraction on the subgroup
‘‘Native Hawaiian or Other Pacific Islander.’’ Using accuracy as

the evaluation metric, model performance for tumor site abstrac-

tion is 69% of that for the subgroup ‘‘White or Caucasian’’ (48.3

vs. 69.6). We next investigate if this instance of underperform-

ance stems from any bias in our training process. In particular,

even though ethnicity is not explicitly specified during training,

relevant information may be present in the notes and discerned

by the model. Similarly, ethnic stereotypes and biases may be

reflected in pretrained embeddings.15,16 To test if these might

have contributed to the above case of underperformance, we

applied a standard protected health information (PHI) extraction

model to extract ethnicity-revealing tokens such as geography

or surname. We then identified tokens receiving top attention

from the tumor site abstraction model and compared the two

sets. We found that less than 2% of top-attention tokens were

ethnicity-related tokens, which means that it is unlikely that the

tumor site abstraction model overfitted to ethnicity information,

resulting in modeling bias.

Instead, we conclude that the most likely explanation is

random fluctuation stemming from the very small sample
Patterns 4, 100726, April 14, 2023 5



Figure 2. An example of semantics tumor site extraction

Simple NLP methods are not sufficient to handle complex semantics in general medical abstraction, as can be seen in the example of tumor site extraction.

(A) Named entity recognition (NER) is not enough; many candidate sites may be present, but the correct tumor site must be associated with a positive diagnosis.

(B) Abstraction may require cross-document extraction; in this example, the location is described in an imaging report, whereas the positive diagnosis is

documented in a pathology report. Our sophisticated transformer-based model can classify them correctly and identify relevant rationale via attention. In these

examples, blue underlining shows body sites, and green, orange, and red underlining show indications of negative, possible, and positive cancer diagnoses,

respectively.
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size of the test set for this subgroup (only 29 patients). Specif-

ically, we conducted additional evaluations using all reserved

data from other locations. This resulted in over an order of

magnitude more data across all subgroups, and we observed

less than 3% difference between ‘‘Native Hawaiian or Other

Pacific Islander’’ and other subgroups. This suggested that

the performance gap we observed in the original test set likely

stemmed from statistical noise due to the small sample size for

this subgroup other than fundamental bias in modeling and

training.

Limitations of the study
Our study focuses on medical abstraction of key diagnosis

information as curated in cancer registry. Future work should

explore extraction of treatment and outcome information, as

well as other diagnostic information such as biomarkers. Cancer

registries focus on complete curation of ‘‘analytical cases,’’ i.e.,

patients with both initial diagnosis and treatment occurring

within a given healthcare system. The models may perform

less well for patients who are initially diagnosed elsewhere and

then referred to the given network, e.g., due to missing digitized

reports. In many such cases, PDFs or scanned documents are

still available. We are exploring the use of state-of-the-art docu-

ment image understanding methods, such as LayoutLM,17 with

initial promising results. Our immediate exploration of assisted

curation focuses on accelerating case identification and medical

abstraction, but it also opens up opportunities for interactive

learning to continuously improve machine reading based on

user feedback. In addition to improving abstraction accuracy,

this can potentially help calibrate attention weights for extraction
6 Patterns 4, 100726, April 14, 2023
rationale.18 Pretraining can also be further improved by incorpo-

rating domain knowledge, such as from the UnifiedMedical Lan-

guage System (UMLS).19,20

Toward scaling RWD curation
Manual curation of complex clinical records and EMR data is

expensive and time consuming. The healthcare network repre-

sented in this study hires several dozen full-time registrars for

cancer registry abstraction. Curation is limited to analytic cases

(i.e., those first treated in a given cancer center), which are

required for reporting, thus skipping a large swath of patients.

Despite such restrictions and significant investment, there is still

significant delay for a majority of the patients. To estimate the

extent of curation backlog, we analyze two snapshots of a can-

cer registry that are 8 months apart. Among newly curated cases

in the second snapshot, 23,670 are diagnosed before the first

snapshot ends. They have a median of 324 days between diag-

nosis and the first snapshot end date. Many cases are curated

over a year after diagnosis. By leveraging assisted curation

with candidate abstractions generated by our deep NLP system,

we can accelerate cancer registry abstraction and reduce

backlog. Given promising results in the preliminary study, we

are now exploring integration of assisted curation to the registry

abstraction workflow.

NLP-based machine reading also helps scale RWD curation.

The healthcare network in our study has over 1.2 million pa-

tients with cancer with digitized pathology reports within

30 days of diagnosis. However, only 135,107 of them have

been curated in the cancer registry. By applying our NLP sys-

tem to all patients, we instantly expand structured RWD for



Figure 3. Cancer NLP-assisted curation system

Our cancer-assisted curation system. Left: extracted oncology attributes. Middle: extraction rationale based on attention weights. Right: full notes. Patient in-

formation has been deidentified.
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the network by an order of magnitude. In future work, we plan

to expand the scope of curation by applying self-supervised

learning to extracting other key information for real-world evi-

dence, such as treatments and key clinical outcomes.21–24 A

particularly exciting research frontier lies in studying response

to immunotherapy, such as check-point inhibitors (CPIs). In

preliminary study, we find that self-supervised NLP methods

can immediately identify and abstract over an order of magni-

tude more patients treated with CPIs compared with prior

manual efforts that took many months.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to the cor-

responding authors, Carlo Bifulco (carlo.bifulco@providence.org) and Hoifung

Poon (hoifung@microsoft.com). All other queries can be directed to the lead

contact, Hoifung Poon (hoifung@microsoft.com).

Materials availability

This study did not generate any physical materials.

Data and code availability

The EMR data for this study are not made publicly available due to privacy and

compliance considerations established by the research protocol. Queries

about these data should be directed to the corresponding authors indi-

cated above.

The PubMedBERT foundation model and its pretraining algorithm are

detailed in Gu et al.7 PubMedBERT is made publicly available: https://aka.

ms/pubmedbert. OncoBERT reflects a similar domain-specific pretraining

approach as PubMedBERT but is trained on EMR data. While this model is

not made available due to privacy and compliance considerations, the same
approach can be used to train an analogous model at any site using the

EMR data available.

Additional source code supporting this study is made available at GitHub

(https://github.com/microsoft/cancernlp) and has been archived at Zenodo.25

Human subjects/IRB, data security, and patient privacy

This work was performed under the auspices of an institutional review board

(IRB)-approved research protocol (Providence protocol ID 2019000204) and

was conducted in compliance with human subjects research and clinical

data management procedures—as well as cloud information security policies

and controls—administered within Providence St. Joseph Health. All study

data were integrated, managed, and analyzed exclusively and solely on Prov-

idence-managed cloud infrastructure. All study personnel completed and

were credentialed in training modules covering human subjects research,

use of clinical data in research, and appropriate use of IT resources and

IRB-approved data assets.

Methods

Abstraction

Medical abstraction can be formulated as information extraction in NLP.

Given clinical text T for a patient and attribute A, the goal is to extract A’s

value as described in T (or the absence thereof), which can be framed as

a binary classification problem (by enumerating all possible values a). In

most prior work, T is a sentence or a clinical note, and A’s value only has

a few choices (e.g., the presence or absence of active cancer5). By contrast,

we consider the most general setting, where T comprises all notes for a pa-

tient and A’s range may number in the hundreds, e.g., there are 310 classes

for tumor site and 556 for histology in ICD-O-3, and a patient may have many

notes (Figure 4).

In general, abstraction presents substantial challenges for NLP systems.

Relevant information may manifest in myriad variations (Figure 5). Named-en-

tity recognition (NER) is not enough, as abstraction is more about extracting

underlying relations, e.g., abstracting a tumor site is not about recognizing
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Figure 4. Patient clinical document time series

Patients with cancer typically have many clinical documents for a tumor diagnosis, with key information scattered among these documents.
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site mentions but is about determining if the patient has malignancy at the

given site on a given date (Figure 2A). Moreover, abstraction may require infor-

mation integration across multiple clinical documents (Figure 2B).

With patient-level supervision from medical registries, our machine-

learning setting can be regarded as a form of distant supervision or, more

generally, as self-supervision,26 as the labels cannot be attributed to a

sentence or even a clinical document. However, given the aforementioned

complex linguistic phenomena in medical abstraction, we do not generate

noisy training examples by associating a label with a specific text span

(e.g., individual sentences with the presence of relevant entities), as in stan-

dard distant supervision. Instead, we combine all clinical documents for a

patient as input and rely on the deep-learning method to automatically iden-

tify pertinent sentences and notes.

Related work

Traditional clinical NLP systems are often rule based, e.g., leveraging regular

expressions and domain lexicons from ontologies.27 They require significant

efforts to build and may be vulnerable to linguistic variations and ambiguities.
Figure 5. Variations in medical abstraction

Relevant information for medical abstractionmaymanifest in myriad variations, as

position.
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Consequently, machine-learning methods have seen increasing adoption.28

Traditional learning-based NLP methods require users to provide feature tem-

plates for classification, whereas modern deep-learning methods forgo this

requirement and can automatically transform input text into a neural feature

representation (a real-number vector).5,6,8,9,29

Deep learning for medical abstraction

Figure 6 shows a general deep-learning architecture for medical abstraction.

Medical documents are ordered temporally and converted into a sequence

of sentences. They are tokenized and converted into a neural representation

by an embedding module where each token is turned into a real-number

vector. The vectors are then updated by a contextualization module and

combined into a fixed-length feature vector by an aggregation module,

which the classification module uses as input to produce the final

classification.

In prior work applying deep learning to medical abstraction, the embedding

module generally uses simple context-free embedding such as word2vec30 or

GLoVE.31 Contextualization is usually done by CNN, which runs a sliding
seen in specification of tumor site in breast cancer with laterality and clockwise



Figure 6. A general neural architecture for medical abstraction

Clinical documents are concatenated by chronological order and converted into a token sequence, which is then transformed into a sequence of neural vectors

by the embedding and contextualization modules, before being converted into a fixed-length feature vector by an aggregation module for final classification.
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window over the tokens and generates output vectors using a shared neural

network, with aggregation done by pooling.

Recently, there has been substantial progress in deep NLPmethods. Trans-

former,32 with its multi-layer, multi-head self-attentionmechanism, has proven

very effective in modeling long-range dependencies and leveraging GPU

parallelism. Contextualized embedding from language model pretraining3,33

is much more powerful than context-free embedding such as Word2Vec and

GLoVe at extracting semantic information from unlabeled text and modeling

variations/ambiguities. While the bulk of pretraining work focuses on general

domains such as newswire and the Web, domain-specific pretraining has

proven beneficial for specialized domains such as biomedicine by prioritizing

learning of biomedical terms in relevant biomedical contexts.7,34,35

In this article, we conduct a thorough study of advanced deep NLP tech-

niques in medical abstraction (Figure 6, blue). Some prior work investigated

deep NLP in simplistic settings (e.g., classifying individual pathology re-

ports) and concluded that advanced techniques such as transformer do

not help their tasks.8 By contrast, we find that in the real-world setting of

cross-document medical abstraction, advanced NLP techniques can

confer significant benefit in combating the prevalent noises and linguistic

complexities.

For embedding, we use the state-of-the-art biomedical neural language

model PubMedBERT.7 The input to a neural language model consists of text

spans, such as sentences, separated by special tokens ½SEP�. To address

the problem of out-of-vocabulary words, neural language models generate a

vocabulary from subword units36,37 by greedily identifying a small set of sub-

words that can compactly form all words in a given corpus. BERT3 is a state-

of-the-art language model based on transformer,32 which is pretrained by

predicting held-out words in unlabeled text. While most BERT models were

pretrained on general-domain text,3,4 PubMedBERT instead uses a biomedi-

cine-specific vocabulary and was pretrained on biomedical literature from

scratch. We also pretrained an oncology-specific OncoBERT on EMRs from

over onemillion patients with cancer and explored its use in oncology abstrac-

tion. The pretraining was the same as in PubMedBERT7 except that the text

comprises oncology notes rather than PubMed papers.

Self-attention requires pairwise computation among tokens, which scales

quadratically in input text length. Consequently, standard BERT models

typically limit input length (e.g., 512 tokens). This is not a problem for

restricted settings such as sentence-level or document-level abstraction in

prior work, but it poses a substantial challenge in the general setting, as pa-

tient-level, cross-document input has a median length of over 4,000 tokens.

To handle such long text, we use GRU11 for contextualization and HAN12 for

aggregation. GRU helps propagates information beyond BERT’s default

length limit, and HAN provides better aggregation than pooling by weighing

relevant tokens higher. The classification module is a standard linear layer

followed by softmax, which produces multi-nomial probabilities among

possible labels.
Our investigation differs in three important aspects. First, we consider a pre-

viously unexplored problem formulation. To the best of our knowledge, we are

the first to explore cross-document medical abstraction, which poses signifi-

cant challenges as mentioned in the article.

Second, standard deep-learning methods cannot handle long text spans as

required in cross-document abstraction. We propose a novel combination of

three cutting-edge deep-learning techniques for tackling these challenges in

cross-document abstraction, as mentioned above and highlighted in blue in

Figure 6. Specifically, we leverage a transformer-based, domain-specific foun-

dation model (PubMedBERT or OncoBERT) to generate good sentence-level

encoding, then use a recurrent neural network (GRU) to propagate information

across sentences, and finally summarize information across multiple

documents using HAN. As shown in ablation study (e.g., Table 3), this unique

combination outperforms all prior deep-learning approaches, with all three

components contributing significantly.

Finally, we propose to leverage patient-level labels readily available in can-

cer registry for supervision, whereas prior work on medical abstraction re-

quires sentence-level or note-level annotations that are harder to acquire

at scale.

Case finding

Case finding can be framed as binary classification over a patient’s clinical

documents from a given day. We use the same architecture as in Figure 6

and find it similarly effective. (The models are learned separately for case

finding vs. abstraction. We conducted preliminary experiments on multi-task

learning but did not find a significant difference in performance, as each task

has abundant training data.)

Case finding poses a distinct self-supervision challenge.We can easily iden-

tify positive examples from the registry (patients with their diagnosis dates).

However, it is less clear how to identify negative examples. We explore two

self-supervision schemes. Initially, we randomly sample non-cancer patients

and days from their medical history with pathology reports. This yields a clas-

sifier with good sensitivity (recall) but often incorrectly flags prediagnosis days

for a patient with cancer, causing a high false-positive rate. To address this

problem, we experiment with adding hard negative examples from patients

with cancer by sampling days before diagnosis. The resulting classifier not

only distinguishes patients with cancer from non-cancer patients but also

identifies the time of initial diagnosis, as required for case finding. Together

with abstraction, we can thus help accelerate cancer registry curation end-

to-end.

AUTHOR CONTRIBUTIONS

H.P. and C.B. conceived of the project and research design; S.P., M.W., R.R.,

R.T., N.U., T.N., M.L., and Y.G. conducted research and performed experi-

ments; S.L. and R.W. contributed to research design and prepared clinical

data; P.T. oversaw project management and coordination; B.P., N.V., T.N.,
Patterns 4, 100726, April 14, 2023 9



ll
OPEN ACCESS Article
C.B., and H.P. provided oversight and leadership for the research. All authors

contributed to the preparation, review, and editing of the manuscript.

DECLARATION OF INTERESTS

The scope of this work is strictly within research exploration and does not

involve any Microsoft product or commercial sponsorship. However, by way

of disclosure, S.P., M.W., R.R., R.T., N.U., M.L., Y.G., N.V., T.N., and H.P.

are employees of Microsoft, as denoted in the authorship.

INCLUSION AND DIVERSITY

We support inclusive, diverse, and equitable conduct of research.

Received: September 27, 2022

Revised: November 11, 2022

Accepted: March 14, 2023

Published: April 14, 2023

REFERENCES

1. Rudrapatna, V.A., and Butte, A.J. (2020). Opportunities and challenges in

using real-world data for health care. J. Clin. Invest. 130, 565–574.

2. Wei, C.-H., Harris, B.R., Li, D., Berardini, T.Z., Huala, E., Kao, H.-Y., and

Lu, Z. (2012). Accelerating literature curation with text-mining tools: a

case study of using pubtator to curate genes in pubmed abstracts.

Database 2012, bas041.

3. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: pre-

training of deep bidirectional transformers for language understanding.

Proc. of 2019 NAACL-HLT, Volume 1 (Long and Short Papers),

4171–4186.

4. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,

Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: a robustly optimized

bert pretraining approach. Preprint at arXiv. https://doi.org/10.48550/

arXiv.1907.11692.

5. Kehl, K.L., Elmarakeby, H., Nishino, M., Van Allen, E.M., Lepisto, E.M.,

Hassett, M.J., Johnson, B.E., and Schrag, D. (2019). Assessment of

deep natural language processing in ascertaining oncologic outcomes

from radiology reports. JAMA Oncol. 5, 1421–1429. https://doi.org/10.

1001/jamaoncol.2019.1800.

6. Bear Don’t Walk IV, O.J., Sun, T., Perotte, A., and Elhadad, N. (2021).

Clinically relevant pretraining is all you need. J. Am. Med. Inform. Assoc.

28, 1970–1976. https://doi.org/10.1093/jamia/ocab086.

7. Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama, N., Liu, X., Naumann, T.,

Gao, J., and Poon, H. (2021). Domain-specific languagemodel pretraining

for biomedical natural language processing. ACM Trans. Comput.

Healthc. 3, 1–23.

8. Gao, S., Alawad,M., Young,M.T., Gounley, J., Schaefferkoetter, N., Yoon,

H.J., Wu, X.C., Durbin, E.B., Doherty, J., Stroup, A., et al. (2021).

Limitations of transformers on clinical text classification. IEEE J.

Biomed. Health Inform. 25, 3596–3607. https://doi.org/10.1109/JBHI.

2021.3062322.

9. Gao, S., Qiu, J.X., Alawad, M., Hinkle, J.D., Schaefferkoetter, N., Yoon,

H.J., Christian, B., Fearn, P.A., Penberthy, L., Wu, X.C., et al. (2019).

Classifying cancer pathology reports with hierarchical self-attention net-

works. Artif. Intell. Med. 101, 101726. https://doi.org/10.1016/j.artmed.

2019.101726.

10. Percha, B., Pisapati, K., Gao, C., and Schmidt, H. (2021). Natural language

inference for curation of structured clinical registries from unstructured

text. J. Am. Med. Inform. Assoc. 29, 97–108. https://doi.org/10.1093/ja-

mia/ocab243.

11. Cho, K., van Merri€enboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., and Bengio, Y. (2014). Learning phrase representations us-

ing RNN encoder–decoder for statistical machine translation. In

Proceedings of the 2014 Conference on Empirical Methods in Natural
10 Patterns 4, 100726, April 14, 2023
Language Processing (EMNLP) (Association for Computational

Linguistics), pp. 1724–1734. https://doi.org/10.3115/v1/D14-1179.

12. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., and Hovy, E. (2016).

Hierarchical attention networks for document classification. Proc. of

2016 NAACL-HLT, 1480–1489. https://doi.org/10.18653/v1/N16-1174.

13. Jain, S., and Wallace, B.C. (2019). Attention is not explanation. In

Proceedings of NAACL.

14. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., and

Venkatasubramanian, S. (2015). Certifying and removing disparate

impact. In Proceedings of the 21th ACM SIGKDD international conference

on knowledge discovery and data mining, pp. 259–268.

15. Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embed-

dings quantify 100 years of gender and ethnic stereotypes. Proc. Natl.

Acad. Sci. USA 115, E3635–E3644.

16. Rodolfa, K.T., Salomon, E., Haynes, L., Mendieta, I.H., Larson, J., and

Ghani, R. (2020). Case study: predictive fairness to reduce misdemeanor

recidivism through social service interventions. In Proceedings of the

2020 Conference on Fairness, Accountability, and Transparency,

pp. 142–153.

17. Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., and Zhou, M. (2020). Layoutlm:

pre-training of text and layout for document image understanding. In

Proceedings of KDD.

18. Bao, Y., Chang, S., Yu,M., and Barzilay, R. (2018). Derivingmachine atten-

tion from human rationales. In Proceedings of EMNLP.

19. Hao,B., Zhu,H., and Paschalidis, I. (2020). Enhancing clinical BERTembed-

ding using a biomedical knowledge base. In Proceedings of the 28th

International Conference on Computational Linguistics (International

Committee on Computational Linguistics), pp. 657–661. https://doi.org/

10.18653/v1/2020.coling-main.57.

20. Zhang, S., Cheng, H., Vashishth, S., Wong, C., Xiao, J., Liu, X., Naumann,

T., Gao, J., and Poon, H. (2021a). Knowledge-rich self-supervised entity

linking. Preprint at arxiv. https://doi.org/10.48550/arXiv.2112.07887.

21. Ratner, A.J., De Sa, C.M., Wu, S., Selsam, D., and Ré, C. (2016). Data pro-
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