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Introduction ~
Q

« Clinical prediction models are used in healthcare to: 'd 00
« predict an outcome value ML
« estimate risk of an outcome (now or in the future) ¢——
« The major methods/approach used to develop prediction models are:
« Statistical method
* Machine learning method
» Predictors use for such models might includes:
» Basic characteristic (age, sex, etc...)
* Measurements (blood pressure, biomarkers, test results)
* Imaging
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Introduction

Reliability T

Relevant predictors
Large sample size
No adjustment to reduce overfitting

Reliability 1

Small sample size relative to number of predictors
Complex model relative to sample size
No adjustment to reduce overfitting
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Introduction

Reliability 1
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« Small sample size relative to number of i
predictors
« Complex model relative to sample size

» No adjustment to reduce overfitting m m
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Volatility R )
Population
e —) Predicted risk 2: 75%
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t « \ ?’ Predicted risk 3: 35%
e o o Predicted risk 4: 32%
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Level of instability

Mean estimated risk

Distribution of estimated risks

Predictions for subgroups

Predictions for individual
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QUANTIFYING INSTABILITY IN MODEL DEVELOPMENT STUDIES

. a1 BOX 1 The bootstrap process to examine instability of predictions from a
BOOtStra p assessment Of I nSta bl | Ity clinical prediction model after model development \

 |n practice when deve|0ping a model researchers will not Context: a prediction model has just been developed using a particular model-
k h “ " risk of h individ I d d building strategy, and the model developers want to examine the potential
nOW_ t e true_ ) ns ) or €ac In IVI_ ual, an SO nee to instability of predictions from this model. To do this using the model
examine |nstab|||ty using bOOtStrapplng. development dataset of N participants, we recommend the following bootstrap
« Some parts of the model-building process may not be easily process is applied:
implemented (automatica”y) in each bootstrap and in these Step 1: Use the developed model to make predictions (;) for each individual
instances, some compromise may be required to make the participant i = 1to N} In the development dataset.

approach practica]l Step 2: Generate a bootstrap sample with replacement, ensuring the same size
(N) as the model development dataset.

Step 3: Develop a bootstrap prediction model in the bootstrap sample, replicating
exactly (or as far as practically possible) the same model-building strategy as used
originally.

Step 4: Use the bootstrap model developed in step 3 to make predictions for each
individual (/) in the original dataset. We refer to these predictions as py;, where b
indicates which bootstrap sample the model was generated in (b =1 to B).

Step 5: Repeat steps 24 a total of (B — 1) times, and we suggest B is at least 200.

Step 6: Store all the predictions from the B iterations of steps 2-5 in a single
dataset, containing for each individual a prediction (p;) from the original model
and B predictions (fi;, Pai,..., Pri) from the bootstrap models.

Step 7: Summarize the instability in model predictions, including prediction
instability plots, calibration instability plots, and the mean absolute predictor

\ error (MAPE), see main text. J
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QUANTIFYING INSTABILITY IN MODEL DEVELOPMENT STUDIES

Numerical summaries and graphical presentations of instability

~
» Prediction from multiple boot strap sample can be used for instability plots and measures.
* Prediction instability plot
« Calibration instability plot
« Mean absolute predictor error (MAPE)
« MAPE instability plot
. J
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QUANTIFYING INSTABILITY IN MODEL DEVELOPMENT STUDIES

Prediction instability plot \

» Instability of a prediction model is reflected by
variability of individual-level predictions from the
B bootstrap models.

« Plot is B predicted values (y-axis) for each
individual against their original predicted value
(x-axis).

« A 95% range could be presented for each
individual, defined by the 2.5th and 97.5th Prediction

percentile of prediction values. instability
plot

(a) Logistic regression forcing all 27 predictors

—

8
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6

estimated risk from bootstrap models

0 2 4 6 8 1
estimated risk from developed model
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QUANTIFYING INSTABILITY IN MODEL DEVELOPMENT STUDIES

Calibration instability plot ~
» Just overlap all calibration curve for all B model =
onto the same curve.
« The wider the spread of the B calibration curves, —
the greater the instability %
« With many curves the plot may be dense and 3
unclear, and so displaying a random sample of gw
100 or 200 will often be fine. '§
g«
g
Q
S
o
0 2 4 6 8 1
estimated risk of original (dash) and bootstrap (solid) models
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QUANTIFYING INSTABILITY IN MODEL DEVELOPMENT STUDIES

Mean absolute predictor error (MAPE)

\
« Mean Absolute Prediction Error = the mean absolute B
difference between the bootstrap model predictions and the
original model prediction o
B Fo P A.
MAPE for individual i — =2=117% ~ P | y
B MAPE G-
instability =
« Then we can calculate the average MAPE from all plot
individual 8-
Y1 Xi—1|Pk — Bl TR
average MAPE = BN . _| W—«; : ,
e s 0 2 4 6 8 1
« As average MAPE may obfuscate large individual variability estimated risk from developed model
iIn some subgroup, MAPE should always be accompanied r— T
by an instability plot of individual-level MAPE values. MAPE
J
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Simulated data

Experiment setup

Generated with logistic regression.
An individual's true logit event risk is determined by a single
predictor, X.

* X is drawn from normal distribution N(0,4) with mean 0 and

standard deviation of 2.

« c-statistic of about 0.86 in the population based on X.
The outcome, Y is generated from Bernoulli(pi).

» Logit(pi) = Linear predictor (30)+(B1) X

« wherep0=0andp1=1
« Logit(pi) = X
1

* P= 1+e—X
For each sample, also draw 10 noise variable Z, to from N(O, 1).
Sample size (n) for evaluation = 100 (though also consider 50,
385, 500, 1000, and 5000 in further experiment).
True overall risk of an outcome = 0.5

\

\

Prediction model

Logistic regression model with n sample

« with LASSO regularization

« with 10-fold cross-validation

» Using 11 predictors (X and Z, to Z,,).
Use the developed model to predict
100,000 other samples generated with the
same process.
Random forest is also examined.

J

Y

Repeat 1,000 times  Total 1,000 models
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Level 1: Mean estimated risk ~\

. : LEVEL 1: INSTABILITY IN MEAN ESTIMATED RISK
« The bare minimum requirement

* n=50 (a) Distribution of the mean estimated risk from 1000

* 95% of mean estimated risks = 0.36 - 0.64 example models, for model development sample sizes of 50,
e n=100 100, 385, 500, 1000 and 5000

* 95% of mean estimated risks = 0.42 - 0.58 _—T
- n=5,000 T Neges

* 95% of mean estimated risks = 0.49 - 0.51 i eer. N=500
 The smaller the development dataset, the greater the | =

instability in a model's mean estimated risk,
« Downstream consequence is miscalibration between
the mean estimated and mean observed risk in the

population (also known as miscalibration-in-the-large). i,r"é
* Method to estimate minimum sample size to estimate k

the mean risk within 0.05 of the true value has been 3&

proposed (Riley et al., 2019a, 2020). ‘{4

k Mean estimated risk ‘

Experiment Clinical Epidemiology and Biostatistics | Slide 19


https://onlinelibrary.wiley.com/doi/full/10.1002/bimj.202200302#bimj2511-bib-0031

Level 2: Distribution of estimated risks ~\
LEVEL 2: INSTABILITY IN DISTRIBUTION OF ESTIMATED RISKS

« With n = 100, distribution of predicted risk (from
100,000 samples) can be very different.
« Downstream consequence is also miscalibration.

(b) Distribution of estimated risks from two example models
developed using a sample size of 100, which gave very
different distributions

0 2 4 6 8 1
estimated risk

Example model1 ————- Example model 2

. J
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Level 2: Distribution of estimated risks

\
- Calibration curve for each model developed with different N.
| == = Het00 N=1000 N=5000
‘ |
3.
-
. E 5
&7 4 3
/ _/" 4
. 4 /
; estlmlated risk : . 100 05

Experiment
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Level 2: Distribution of estimated risks

« More predictors (5 true predictors and 10 noise in this case) require larger samples.

[ N=100 N=200 [ N=500 N=888 ] N=1000 | N=5000

H1 juniysun

observed

H1juniys

osse|

) 0.25 )5 ) 1 00 25 o ™ 1.0 0 ). 25 ) %0 ). 79 1 0.0 ).29 L 075 1 ) 00 24 ).50 75 100 O ) 2% ) %0 175 10
k estimated risk _)
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Level 2: Distribution of estimated risks

Instability demonstrated by mean absolute prediction error (MAPE)
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Level 3: Predictions for subgroups ~

Even if level 1 and 2 is stable, there may be instability LEVEL 3: INSTABILITY IN ESTIMATED RISK FOR A SUBGROUP

. Ig Suk_)é]rOl{[ES. b ith X | < -1 f del (c) Distribution of the mean estimated risk for the subgroup
onsiaer e subgroup WI_ " V{f‘ ue or moaels of individuals with X < -1, as derived from 1000 example
developed with n=100, variability is between 0.1-0.3 models each developed using a sample size of 100.

» Especially relevant for algorithmic fairness.

2
estimated risk

. J
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Level 4: Predictions for individual

» Often more severe than other level.

LEVEL 4: INSTABILITY IN ESTIMATED RISK FOR INDIVIDUAL

* |Is a huge concern in actual clinical usage. (d) Distribution of estimated risk from 1000 example models
« For the same sample (selected randomly), predicted (each developed using a sample size of 100 participants) for
risk from 1,000 models developed with n=100 range one particular individual whose true risk is 0.5
from 0.2-0.8

» This is seriously unreliable.

2 4 6 8 1

estimated risk

~N
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Level 4:

Predictions for individual
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Predictions for the same individual
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Level 4: Predictions for individual N

np = 50
y "’”wwgq

0754

‘1
- v

gandividual

Minimum sample size 385 calculated according
to (Riley et al., 2019a, 2020) which is stable in
level 1 and 2 still shows a lot of variability.

Predictions fg

L) ¥ L) T L) L] T L) L) Ll T L) ¥ L] L) L L] ¥ L) L) L) ¥ L) ¥ L L) ¥
p=01 p=02 p=03 p=04 p=05 p=06 p=07 p=08 p=09 p=01 p=02 p=03 p=04 p=05 p=06 p=07 p=08 p=09 p=01 p=02 p=03 p=04 p=05 p=06 p=07 p=08 p=09
\ True risk for nine individuals' /
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Experiment 2: Other cases for instability

w

« GUSTO-I dataset
« Contains individual participant level information on 30-day mortality following an acute myocardial infarction
» Goal: predict risk of death by 30 days
« N =40,830
 Event = 2,851 death by 30 days (overall risk = 0.07)
* Predictors:
« Sex (0 =male, 1 =female)
* Age (years)
» Hypertension (0 = no, 1 = yes)
» Hypotension (0 = no, 1 = yes)
» Tachycardia (0 = no, 1 = yes)
* Previous Myocardial Infarction (O = no, 1 = yes)
« ST Elevation on ECG (number of leads).
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Experiment 2: Other cases for instability

Unpenalized logistic regression forcing in seven predictors

. Large sample size Small sample size
° Large Sample S|Ze 40830 patients, 2851 events 300 patients 21 events
.. EPP =407 EPP=3

* 40,830 participants )
« 2851 deaths )

» 407 Events per Predictor Parameter (EPP) 2 £

« Small sample size e
° - - P d.ct. o2

300 participants ey |2
« 21 deaths plot | 2 >

- 3EPP

: 4 o 2 b & | 3 I & % %
estimated risk from developed model

Calibration g . 7 g |

instability | % | ¥l

plot 3 3
g g

£ i

esunéa:ea nskéﬂ original %dash) an;s boolstrabé(soud) midels estirémted nsk'gr ongmal'?aasn) andeboolslvabe(sohd) m<1>de|s

. J
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Experiment 2: Other cases for instability

Unpenalized logistic regression forcing in seven predictors

\
« Large sample size
* 40,830 participants
« 2851 deaths 7 aa
» 407 Events per Predictor Parameter (EPP)
« Small sample size 2 2
» 300 participants
« 21 deaths MAPE | & g
« 3 EPP instability | = i
plot P
D 0 38
S < fi}.
% 2.3 % .5 | F B L & .5 1
estimated nsk from developed model estimated nsk from developed model
Average 0.0027 0.032
MAPE
g J
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Experiment 2: Other cases for instability

Many noise variables and the LASSO ~\

(a) Logistic regression forcing all 27 predictors (b) Logistic regression with a LASSO penalty

- -

 In this experiment, additional 20 noise variables i
generated from N(0,1) were added to the model (total 27
predictors).

N =752 participants, 53 deaths, 2 EPP

« LASSO has been employed to reduce overfitting in high- | meatin
dimensional data with low EPP. However, in this case, s
even with LASSO, the variability was still huge.

8
1
8

6
1
6

4
4
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2

estimated risk from bootstrap models
2
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estimated risk from bootstrap models
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Experiment 2: Other cases for instability

Many noise variables and the LASSO ~\

 In this experiment, additional 20 noise variables 2 2
generated from N(0,1) were added to the model (total 27 § N
predictors). g gne
« N =752 participants, 53 deaths, 2 EPP e ————
+ LASSO has been employed to reduce overfitting in high- imsasiey | =.| e 3
dimensional data with low EPP. However, in this case, " P A
even with LASSO, the variability was still huge. g‘i gf?
JRF T T * cslmowrakrom cedopeamose |
Average 0.038 0.029
MAPE
g J
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Experiment 2: Other cases for instability

LASSO and uniform shrinkage with a minimum sample size

\
° US|ng m|n|mum Sample S|Ze C”tena (R”ey et al’ (a] logistic regression with LASS0O (a) unpt:nalisehd IaEisticr:grezsionfo.ll:lfowed by
. . uniform shrinkage of predictor effects
2020) with 7 predictors : T
« Assuming a Cox—Snell R? of 0.08 ) .
« Targeting a uniform shrinkage factor of 0.9 : :
« N =752 participant, 53 deaths, 7.5 EPP brediction N
« The two models, demonstrate similar variability, e
suggesting that the choice of penalization i i
approach is less important as the sample size o | Nl
increases. 0 priazdictad risi;lrn:!rn de‘.;glaaednb%al ! o prfdiuled'isf[mlndevglupedrnégwl
MAPE ; ;
instability E %
plot N . L. - L
Average 0.019 0.018
MAPE
g J
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Experiment 2: Other cases for instability

Random forests and hyperparameter tuning

Instability also applies to modeling approaches
other than (penalized) regression, such as
random forests.
Use the same sample as previously

« N =752 participant, 53 deaths, 7.5 EPP
With the same number of trees (100), limiting the
depth to 3 reduce instability.
Automate hyperparameter tuning (third row)
increase instability as compared to pre-chosen
parameter.

Observed risk in the bootstrap samples Estimated risk in the bootstrap samples

Instability index

Random Forest (defaults)

Random Forest (max.depth=3) tuned Random Forest

a1t
<

- ’
- ’
! ’
- ’
’
s’ q "
I' ’
’ I’
’ 9 ’
': 140 7l ¢l -
4 i1 / )18
’ s ! 13
Estimated risk from the developed model
Random Forest (defaults) Random Forest (max.depth=3) ] tuned Random Forest
/ V7 /
/
pr .
Y Y
4 #
Estimated risk from the developed model
Random Forest (defauts) Random Forest (max.depth=3) ‘ tuned Random Forest
e

- 0"7 .

Estimated risk from the<developed model
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&

Impact of data splitting for recalibration

Experiment 2: Other cases for instability

A holdout dataset is sometimes used to
recalibrate developed model.

To examine stability of this approach, we
randomly split the 752 participants into two parts

* N = 452 for developing the random forest

(Tree number = 100, depth = 3)

« Then follow by recalibration with N = 300
The bootstrap approach include the recalibration
process.

MAPE increase from 0.019->0.045, mainly due to
splitting the dataset, which reduces the sample
size.

Prediction instability plot

4 6 8 1

estimated risk from bootstrap models
2
L

]

MAPE (mean 0.045)

2 4 8 8 1
estimated risk from developed model

Calibration instability plot

instability index
2 3

1
.

0 2 4 6 & 1
estimated risk from developed model

ik In original datatset
4 ] 8 1

observed ri

2

=)

0

T T T T
2 4 8 8 1
eatimated risk of original (dash) and bootetrap (20ld) modele

Calibration instability plot when using all 752 participants for
model development without recalibration

abserved risk in original dalatset

T T T
L] 2 4 B B 1
eslimatesd risk of original (dash) and bootstrap {solid) models
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Further role of stability assessment

examining stability in subgroups

Figure S5: Instability plots and measures to examine fairness of a LASSO prediction model in males and females separately (see Section 5.1)
Males Females
i An
e ]
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4 8
8y | i
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e
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Further role of stability assessment

c-statistic can also be calculated and plotted for each bootstrap model to show instability.

Figure S6: Histogram of C-statistics from applying the LASSO model in Section 5.2 to the bootstrap samples
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C statistic
G J
Experiment Clinical Epidemiology and Biostatistics | Slide 37



Further role of stability assessment

Clinical utility ~N

» For directing clinical decision making, a certain threshold value will be decided which when exceed may take some
action (such as treatment).
« Adecision curve can be used to display a model's net benefit across the range of chosen threshold values.
L
o
2.
oS
c§
[}
m
2 4
g g =%
Nde”—\
Treat all \
= Treat none \
O‘I% S‘I’/o 1 OI% 1 5.% 20'% 25|%
\ Threshold Probability )

Experiment
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Further role of stability assessment

Clinical utility ~\

Large sample size Small sample size
40830 patients, 2851 events 300 patients 21 events
EPP =407 EPP=3
Decision curves 9 | 9
instability plot % § '
3 g
78 £g-
: 2
: H
§ g
fo go
.§° g
: E
| §
c & | 2§ |
°_ T T T T T T !
"o 2 4 6 8 1
risk threshold
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Further role of stability assessment

Classification and risk grouping ~N

» Classification index for each individual can be calculated from the proportion of bootstrap models that give a different
classification (i.e., above rather than below the threshold, or below rather than above the threshold) than the original
model. Classification stability plot plots the index with the predicted risk from the original mode.

Classification - -
instability plot
(based on
- - 4 m
clasifying £ x
. . e ° °
individuals as £ <
<0.1or >0.1) Z 0 % od -,
z 2 o
c c v,
£ < 2 - 'lj-.'t
8 8 e
= = P 3
7] 7] ies
& 4 2% 32
© S . s :.
® N N o ':'. e
A
(= - oo o o 4 ;
0 2 4 6 8 1 0 2 4 6 8 1
estimated risk from developed model estimated risk from developed model

Error Analysis Clinical Epidemiology and Biostatistics | Slide 40



Further role of stability assessment

Classification and risk grouping ~N

Figure S7: Classification instability plots for various models from the case studies of Section 4.
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Further role of stability assessment

Classification and risk grouping ~N

Minimum recommended Minimum recommended Minimum recommended
752 patients, 53 events 752 patients, 53 events 752 patients, 53 events
7 predictor parameters 7 predictor parameters 7 predictor parameters

LASSO Uniform Random forest
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Discussion
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Bootstrap quality ~\

» Popular model development methods like the LASSO do not resolve issues of small sample sizes and low EPP.
» Bootstrapping is an important method for checking stability
« However, bootstrap only examines instability in the population that the development dataset was
sampled from.
« If the sample size is too small, impact of outliers in the bootstrap process may be large.
« Some aspect of model development can also be hard to automated.
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Level of instability ~\

At the bare minimum, a model should demonstrate stability at levels 1 and 2
* Mean estimated risk
« Distribution of estimated risk
« Minimum sample size (and number of predictor parameters) for model development should target precise
estimation of the overall risk in the population, low overfitting, and small average MAPE.
 Forlevel 3 and 4 (group and individual stability), large samples size are required, which is not always possible for
rare outcomes.
- Data sharing and individual participant data meta-analysis may help to address this
* Regardless of sample size, stability checks should always be undertaken and reported.
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Stability in the context of clinical decision ~\

Instability in individual-level predictions and classifications is inevitable and to be expected.

A model may still have population-level benefit even with instability at the individual level.

We may desire greatest stability in regions of risk relevant to clinical decision making and be willing to accept lower
stability in other regions where miscalibration is less important.

« Example: recurrence of venous thromboembolism
Predicted risks between about 0.03 - 0.20 have been suggested to warrant clinical action.

« Slight to moderate instability in ranges of highest risk (0.5-1) is potentially acceptable
« Decision curve stability plot can help with this.
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