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• Clinical prediction models are used in healthcare to:

• predict an outcome value

• estimate risk of an outcome (now or in the future)

• The major methods/approach used to develop prediction models are:
• Statistical method

• Machine learning method

• Predictors use for such models might includes:
• Basic characteristic (age, sex, etc…)

• Measurements (blood pressure, biomarkers, test results)

• Imaging

Introduction
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Predictor used
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development 

approach
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Introduction

Reliability Reliability

• Relevant predictors

• Large sample size

• No adjustment to reduce overfitting

• Small sample size relative to number of predictors

• Complex model relative to sample size

• No adjustment to reduce overfitting
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Introduction

Reliability

• Small sample size relative to number of 

predictors

• Complex model relative to sample size

• No adjustment to reduce overfitting
Instability
Volatility
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Introduction
Instability
Volatility

Population

Sample Sample Sample
Different:

• Weights

• Predictors selected

• Parameters

• etc…
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Introduction
Instability
Volatility

Population

Sample Sample Sample

Patient 1

Predicted risk 1: 15%

Predicted risk 2: 75%

Predicted risk 3: 35%

Predicted risk 4: 32%
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Level of instability

Mean estimated riskLevel 1:

Level 2: Distribution of estimated risks

Level 3: Predictions for subgroups

Level 3: Predictions for individual

Population

Group

Individual
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Quantifying Stability
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QUANTIFYING INSTABILITY IN MODEL DEVELOPMENT STUDIES

Bootstrap assessment of instability

• In practice when developing a model researchers will not 

know the “true” risk of each individual, and so need to 

examine instability using bootstrapping.

• Some parts of the model-building process may not be easily 

implemented (automatically) in each bootstrap and in these 

instances, some compromise may be required to make the 

approach practical.
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QUANTIFYING INSTABILITY IN MODEL DEVELOPMENT STUDIES

Numerical summaries and graphical presentations of instability

• Prediction from multiple boot strap sample can be used for instability plots and measures.

• Prediction instability plot

• Calibration instability plot

• Mean absolute predictor error (MAPE) 

• MAPE instability plot
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QUANTIFYING INSTABILITY IN MODEL DEVELOPMENT STUDIES

Prediction instability plot

• Instability of a prediction model is reflected by 

variability of individual-level predictions from the 

B bootstrap models.

• Plot is B predicted values (y-axis) for each 

individual against their original predicted value 

(x-axis).

• A 95% range could be presented for each 

individual, defined by the 2.5th and 97.5th 

percentile of prediction values.
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QUANTIFYING INSTABILITY IN MODEL DEVELOPMENT STUDIES

Calibration instability plot

• Just overlap all calibration curve for all B model 

onto the same curve.

• The wider the spread of the B calibration curves, 

the greater the instability

• With many curves the plot may be dense and 

unclear, and so displaying a random sample of 

100 or 200 will often be fine.
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QUANTIFYING INSTABILITY IN MODEL DEVELOPMENT STUDIES

Mean absolute predictor error (MAPE)

• Mean Absolute Prediction Error = the mean absolute 

difference between the bootstrap model predictions and the 

original model prediction

• Then we can calculate the average MAPE from all 

individual

• As average MAPE may obfuscate large individual variability 

in some subgroup, MAPE should always be accompanied 

by an instability plot of individual-level MAPE values.
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Experiment
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Experiment setup

Simulated data

• Generated with logistic regression.

• An individual's true logit event risk is determined by a single 
predictor, X.

• X is drawn from normal distribution N(0,4) with mean 0 and 

standard deviation of 2. 

• c-statistic of about 0.86 in the population based on X.

• The outcome, Y is generated from Bernoulli(pi).
• Logit(pi) = Linear predictor (β0)+(β1) X 

• where β0 = 0 and β1 = 1 

• Logit(pi) = X

• pi =
1

1+𝑒−𝑋

• For each sample, also draw 10 noise variable Z1 to from N(0, 1).

• Sample size (n) for evaluation = 100 (though also consider 50, 

385, 500, 1000, and 5000 in further experiment).

• True overall risk of an outcome = 0.5

Prediction model

• Logistic regression model with n sample

• with LASSO regularization

• with 10-fold cross-validation

• Using 11 predictors (X and Z1 to Z10).

• Use the developed model to predict 

100,000 other samples generated with the 

same process.

• Random forest is also examined.

Repeat 1,000 times Total 1,000 models
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• The bare minimum requirement

• n = 50

• 95% of mean estimated risks = 0.36 - 0.64

• n = 100

• 95% of mean estimated risks = 0.42 - 0.58

• n = 5,000

• 95% of mean estimated risks = 0.49 - 0.51

• The smaller the development dataset, the greater the 

instability in a model's mean estimated risk, 

• Downstream consequence is miscalibration between 

the mean estimated and mean observed risk in the 

population (also known as miscalibration-in-the-large). 

• Method to estimate minimum sample size to estimate 

the mean risk within 0.05 of the true value has been 

proposed (Riley et al., 2019a, 2020).

Mean estimated riskLevel 1:

https://onlinelibrary.wiley.com/doi/full/10.1002/bimj.202200302#bimj2511-bib-0031
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• With n = 100, distribution of predicted risk (from 

100,000 samples) can be very different.

• Downstream consequence is also miscalibration.

Distribution of estimated risksLevel 2:
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Distribution of estimated risksLevel 2:

• Calibration curve for each model developed with different N.
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Distribution of estimated risksLevel 2:

• More predictors (5 true predictors and 10 noise in this case) require larger samples.
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Distribution of estimated risksLevel 2:

• Instability demonstrated by mean absolute prediction error (MAPE)



Clinical Epidemiology and Biostatistics | Slide 24Experiment

• Even if level 1 and 2 is stable, there may be instability 

in subgroups.

• Consider the subgroup with X value < −1 for models 

developed with n=100, variability is between 0.1-0.3

• Especially relevant for algorithmic fairness.

Predictions for subgroupsLevel 3:
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• Often more severe than other level.

• Is a huge concern in actual clinical usage.

• For the same sample (selected randomly), predicted 

risk from 1,000 models developed with n=100 range 

from 0.2-0.8

• This is seriously unreliable.

Predictions for individualLevel 4:
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Predictions for individualLevel 4:
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Predictions for individualLevel 4:

Minimum sample size 385 calculated according 
to (Riley et al., 2019a, 2020) which is stable in 

level 1 and 2 still shows a lot of variability. 
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Experiment 2: Other cases for instability

Data

• GUSTO-I dataset

• Contains individual participant level information on 30-day mortality following an acute myocardial infarction

• Goal: predict risk of death by 30 days

• N = 40,830

• Event = 2,851 death by 30 days (overall risk = 0.07)

• Predictors:

• Sex (0 = male, 1 = female)

• Age (years)

• Hypertension (0 = no, 1 = yes)

• Hypotension (0 = no, 1 = yes)

• Tachycardia (0 = no, 1 = yes)

• Previous Myocardial Infarction (0 = no, 1 = yes) 

• ST Elevation on ECG (number of leads).
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Experiment 2: Other cases for instability

Unpenalized logistic regression forcing in seven predictors

• Large sample size

• 40,830 participants

• 2851 deaths

• 407 Events per Predictor Parameter (EPP)

• Small sample size

• 300 participants

• 21 deaths

• 3 EPP
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Experiment 2: Other cases for instability

Unpenalized logistic regression forcing in seven predictors

• Large sample size

• 40,830 participants

• 2851 deaths

• 407 Events per Predictor Parameter (EPP)

• Small sample size

• 300 participants

• 21 deaths

• 3 EPP
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Experiment 2: Other cases for instability

Many noise variables and the LASSO

• In this experiment, additional 20 noise variables 

generated from N(0,1) were added to the model (total 27 

predictors).

• N = 752 participants, 53 deaths, 2 EPP

• LASSO has been employed to reduce overfitting in high-

dimensional data with low EPP. However, in this case, 

even with LASSO, the variability was still huge.
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Experiment 2: Other cases for instability

Many noise variables and the LASSO

• In this experiment, additional 20 noise variables 

generated from N(0,1) were added to the model (total 27 

predictors).

• N = 752 participants, 53 deaths, 2 EPP

• LASSO has been employed to reduce overfitting in high-

dimensional data with low EPP. However, in this case, 

even with LASSO, the variability was still huge.
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Experiment 2: Other cases for instability

LASSO and uniform shrinkage with a minimum sample size

• Using minimum sample size criteria (Riley et al.,

2020) with 7 predictors

• Assuming a Cox–Snell R2 of 0.08

• Targeting a uniform shrinkage factor of 0.9

• N = 752 participant, 53 deaths, 7.5 EPP

• The two models, demonstrate similar variability, 

suggesting that the choice of penalization 

approach is less important as the sample size 

increases.
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Experiment 2: Other cases for instability

Random forests and hyperparameter tuning

• Instability also applies to modeling approaches 

other than (penalized) regression, such as 

random forests.

• Use the same sample as previously

• N = 752 participant, 53 deaths, 7.5 EPP

• With the same number of trees (100), limiting the 

depth to 3 reduce instability.

• Automate hyperparameter tuning (third row) 

increase instability as compared to pre-chosen 

parameter.
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Experiment 2: Other cases for instability

Impact of data splitting for recalibration

• A holdout dataset is sometimes used to 

recalibrate developed model.

• To examine stability of this approach, we 

randomly split the 752 participants into two parts

• N = 452 for developing the random forest 

(Tree number = 100, depth = 3)

• Then follow by recalibration with N = 300

• The bootstrap approach include the recalibration 

process.

• MAPE increase from 0.019->0.045, mainly due to 

splitting the dataset, which reduces the sample 

size.
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Further role of stability assessment

examining stability in subgroups
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Further role of stability assessment

c-statistic

• c-statistic can also be calculated and plotted for each bootstrap model to show instability.
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Further role of stability assessment

Clinical utility

• For directing clinical decision making, a certain threshold value will be decided which when exceed may take some 

action (such as treatment).

• A decision curve can be used to display a model's net benefit across the range of chosen threshold values.
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Further role of stability assessment

Clinical utility
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Further role of stability assessment

Classification and risk grouping

• Classification index for each individual can be calculated from the proportion of bootstrap models that give a different 

classification (i.e., above rather than below the threshold, or below rather than above the threshold) than the original 

model. Classification stability plot plots the index with the predicted risk from the original mode.
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Further role of stability assessment

Classification and risk grouping
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Further role of stability assessment

Classification and risk grouping
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Discussion
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Discussion

Bootstrap quality

• Popular model development methods like the LASSO do not resolve issues of small sample sizes and low EPP.

• Bootstrapping is an important method for checking stability

• However, bootstrap only examines instability in the population that the development dataset was 

sampled from.

• If the sample size is too small, impact of outliers in the bootstrap process may be large.

• Some aspect of model development can also be hard to automated.
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Discussion

Level of instability

• At the bare minimum, a model should demonstrate stability at levels 1 and 2

• Mean estimated risk

• Distribution of estimated risk

• Minimum sample size (and number of predictor parameters) for model development should target precise 

estimation of the overall risk in the population, low overfitting, and small average MAPE.

• For level 3 and 4 (group and individual stability), large samples size are required, which is not always possible for 

rare outcomes.

• Data sharing and individual participant data meta-analysis may help to address this 

• Regardless of sample size, stability checks should always be undertaken and reported.
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Discussion

Stability in the context of clinical decision

• Instability in individual-level predictions and classifications is inevitable and to be expected.

• A model may still have population-level benefit even with instability at the individual level.

• We may desire greatest stability in regions of risk relevant to clinical decision making and be willing to accept lower 

stability in other regions where miscalibration is less important. 

• Example: recurrence of venous thromboembolism

• Predicted risks between about 0.03 - 0.20 have been suggested to warrant clinical action.

• Slight to moderate instability in ranges of highest risk (0.5–1) is potentially acceptable

• Decision curve stability plot can help with this.
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