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Abstract

Automatically classifying electronic health
records (EHRs) into diagnostic codes has been
challenging to the NLP community. State-of-
the-art methods treated this problem as a multi-
label classification problem and proposed vari-
ous architectures to model this problem. How-
ever, these systems did not leverage the superb
performance of pretrained language models,
which achieved superb performance on natural
language understanding tasks. Prior work has
shown that pretrained language models under-
performed on this task with the regular fine-
tuning scheme. Therefore, this paper aims at
analyzing the causes of the underperformance
and developing a framework for automatic
ICD coding with pretrained language models.
We spotted three main issues through the ex-
periments: 1) large label space, 2) long input
sequences, and 3) domain mismatch between
pretraining and fine-tuning. We propose PLM-
ICD, a framework that tackles the challenges
with various strategies. The experimental re-
sults show that our proposed framework can
overcome the challenges and achieves state-of-
the-art performance in terms of multiple met-
rics on the benchmark MIMIC data.1

1 Introduction

The clinical notes in electronic health records
(EHRs) are written as free-form text by clinicians
during patient visits. The notes can be associated
with diagnostic codes from the International Clas-
sification of Diseases (ICD), which represent diag-
nostic and procedural information of the visit. The
ICD codes are a standardized way to encode infor-
mation systematically and internationally, which
could be used for tracking healthcare statistics,
quality outcomes, and billing.

While ICD codes provide several useful appli-
cations, manually labelling ICD codes has been

1The source code is available at https://github.
com/MiuLab/PLM-ICD.

shown to be very labor-intensive and domain ex-
pertise is required (O’malley et al., 2005). Hence,
automatically assigning ICD codes to clinical notes
has been of broad interest in the medical natural
language processing (NLP) community. Prior work
has identified several challenges of this task, in-
cluding the large number of labels to be classified,
the long input sequence, and the imbalanced la-
bel distribution, i.e., the long-tail problem (Xie
et al., 2019). These challenges make the task
extremely difficult, demonstrating that advanced
modeling techniques are required. With the intro-
duction of deep learning models, we have seen
tremendous performance improvement on the task
of automatic ICD coding (Shi et al., 2017; Xie and
Xing, 2018; Mullenbach et al., 2018; Li and Yu,
2020; Vu et al., 2020; Cao et al., 2020; Liu et al.,
2021; Kim and Ganapathi, 2021; Zhou et al., 2021).
These methods utilized convolutional neural net-
works (CNNs) (Mullenbach et al., 2018; Li and
Yu, 2020; Liu et al., 2021) or recurrent neural net-
works (RNNs) (Vu et al., 2020) to transform the
long text in clinical notes into hidden representa-
tions. State-of-the-art methods employed a label
attention mechanism, i.e., performing attention to
hidden representations independently for each la-
bel, to combat the extremely large label set (Mul-
lenbach et al., 2018; Vu et al., 2020).

Recently, pretrained language models (PLMs)
with the Transformer (Vaswani et al., 2017) archi-
tecture have become the dominant forces for NLP
research, achieving superior performance on nu-
merous natural language understanding tasks (De-
vlin et al., 2019; Liu et al., 2019). These models
are pretrained on large amount of text with various
language modeling objectives, and then fine-tuned
on the desired downstream tasks to perform dif-
ferent functionalities such as classification (Devlin
et al., 2019) or text generation (Radford et al., 2019;
Raffel et al., 2020).

While PLMs demonstrate impressive capabili-
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ties across classification tasks, applying PLMs to
automatic ICD coding is still not well-studied. Pre-
vious work has shown that applying PLMs to this
task is not straightforward (Zhang et al., 2020; Pas-
cual et al., 2021), and the main challenges being:

• The length of clinical notes exceeds the maxi-
mum length of PLMs.

• The regular fine-tuning scheme where we add
a linear layer on top of the PLMs does not per-
form well for multi-label classification prob-
lems with a large label set.

• PLMs are usually pretrained on general-
domain corpora, while clinical notes are very
medical-specific and the language usage is
different.

As a result, the performance of PLMs reported in
the prior work is inferior to the state-of-the-art mod-
els that did not use pre-trained models by a large
margin (Pascual et al., 2021). Their best model
achieved 88.65% in terms of micro-AUC, com-
pared with the state-of-the-art 94.9% from the ISD
model (Zhou et al., 2021). This result highlighted
that the performance of PLMs on this task was still
far from the conventional models.

In this paper, we aim at identifying the chal-
lenges met during applying PLMs to automatic
ICD coding and developing a framework that could
overcome these challenges. We first conduct pre-
liminary experiments to verify and investigate the
challenges mentioned above, and then we propose
proper mechanisms to tackle each challenge. The
proposed mechanisms are: 1) domain-specific pre-
training for the domain mismatch problem, 2) seg-
ment pooling for the long input sequence prob-
lem, and 3) label attention for the large label
set problem. By integrating these techniques to-
gether, we propose PLM-ICD, a framework specif-
ically designed for automatic ICD coding with
PLMs. The effectiveness of PLM-ICD is verified
through experiments on the benchmark MIMIC-3
and MIMIC-2 datasets (Saeed et al., 2011; John-
son et al., 2016). To the best of our knowledge,
PLM-ICD is the first Transformer-based pretrained
language model that achieves competitive perfor-
mance on the MIMIC datasets. We further analyze
several factors that affect the performance of PLMs,
including pretraining method, pretraining corpora,
vocabulary construction, and optimization sched-
ules.

The contributions of this paper are 3-fold:

• We perform experiments to verify and analyze
the challenges of utilizing PLMs on the task
of automatic ICD coding.

• We develop PLM-ICD, a framework to fine-
tune PLMs for ICD coding, that achieves
competitive performance on the benchmark
MIMIC-3 dataset.

• We analyze the factors that affect PLMs’ per-
formance on this task.

2 Related Work

2.1 Automatic ICD Coding
ICD code prediction is a challenging task in the
medical domain. Several recent work attempted to
approach this task with neural models. Choi et al.
(2016) and Baumel et al. (2018) used recurrent
neural networks (RNN) to encode the EHR data
for predicting diagnostic results. Li and Yu (2020)
recently utilized a multi-filter convolutional layer
and a residual layer to improve the performance of
ICD prediction. On the other hand, several work
tried to integrate external medical knowledge into
this task. In order to leverage the information of
definition of each ICD code, RNN and CNN were
adopted to encode the diagnostic descriptions of
ICD codes for better prediction via attention mech-
anism (Shi et al., 2017; Mullenbach et al., 2018).
Moreover, the prior work tried to consider the hi-
erarchical structure of ICD codes (Xie and Xing,
2018), which proposed a tree-of-sequences LSTM
to simultaneously capture the hierarchical relation-
ship among codes and the semantics of each code.
Also, Tsai et al. (2019) introduced various ways of
leveraging the hierarchical knowledge of ICD by
adding refined loss functions. Recently, Cao et al.
(2020) proposed to train ICD code embeddings in
hyperbolic space to model the hierarchical struc-
ture. Additionally, they used graph neural network
to capture the code co-occurrences. LAAT (Vu
et al., 2020) integrated a bidirectional LSTM with
an improved label-aware attention mechanism. Ef-
fectiveCAN (Liu et al., 2021) integrated a squeeze-
and-excitation network and residual connections
along with extracting representations from all en-
coder layers for label attention. The authors also
introduced focal loss to tackle the long-tail predic-
tion problem. ISD (Zhou et al., 2021) employed
extraction of shared representations among high-
frequency and low-frequency codes and a self-
distillation learning mechanism to alleviate the



long-tail code distribution. Kim and Ganapathi
(2021) proposed a framework called Read, Attend,
and Code (RAC) to effectively predict ICD codes,
which is the current state-of-the-art model on this
task. Most recent models focused on developing
an effective interaction between note representa-
tions and code representations (Cao et al., 2020;
Zhou et al., 2021; Kim and Ganapathi, 2021). Our
work, instead, is focusing on the choice of the note
encoder, where we apply PLMs for their superior
encoding capabilities.

2.2 Pretrained Language Models

Using pretrained language models to extract con-
textualuzed representations has led to consistent
improvements across most NLP tasks. Notably,
ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019) showed that pretraining is effective for
both LSTM and transformer (Vaswani et al., 2017)
models. Variants have been proposed such as XL-
Net (Yang et al., 2019), RoBERTa (Liu et al., 2019).
These models are pretrained on large amount of
general domain text to grasp the capability to model
textual data, and fine-tuned on common classifica-
tion tasks.

To tackle domain-specific problems, prior work
adapted such models to scientific and biomedical
domains, including BioBERT (Lee et al., 2019),
ClinicalBERT (Alsentzer et al., 2019), PubMed-
BERT (Gu et al., 2020) and RoBERTa-PM (Lewis
et al., 2020). These models are pretrained on
domain-specific text carefully crawled and pro-
cessed for improving the downstream performance.
The biomedical-specific PLMs reported improved
performance on a variety of biomedical tasks, in-
cluding text mining, named entity recognition, rela-
tion extraction, and question answering (Lee et al.,
2019).

While PLMs achieved state-of-the-art perfor-
mance on various tasks, applying PLMs to large-
scale multi-label classification is still a challeng-
ing research direction. Chang et al. (2019) pro-
posed X-BERT, a framework that is scalable to
an extremely large label set of a million labels.
Lehečka et al. (2020) showed that the modeling ca-
pacity of BERT’s pooling layers might be limited
for automatic ICD coding. Pascual et al. (2021)
also demonstrated inferior performance when ap-
plying BERT to this task and pointed out several
challenges to be addressed. Specifically, the au-
thors proposed 5 truncation and splitting strategies

Model Length Macro-F Micro-F

LAAT
4000 9.9 57.5
512∗ 6.8 47.3

BERT 512∗ 2.8 38.9

Table 1: Results of LAAT and BERT on MIMIC-3 with
different maximum input lengths (%). ∗The length is
number of words for LAAT and number of tokens for
BERT, so their performance cannot directly compara-
ble.

to tackle the long input sequence problem. Their
proposed All splitting strategies is similar to our
segment pooling mechanism. However, without
the label attention mechanism, the model failed to
learn.

Zhang et al. (2020) proposed BERT-XML, an
extension of BERT for ICD coding. The model
was pretrained on a large cohort of EHR clinical
notes with an EHR-specific vocabulary. BERT-
XML handles long input text by splitting it into
chunks and performs prediction for each chunk
independently with a label attention mechanism
from AttentionXML (You et al., 2019). The predic-
tions are finally combined with max-pooling. Our
proposed framework, PLM-ICD, shares a similar
idea with BERT-XML that we also split clinical
notes into segments to compute segment represen-
tations. The main difference is that we leverage
an improved label attention mechanism and we
use document-level label-specific representations
rather than chunk level representations as in BERT-
XML. In Section 5, we demonstrate that PLM-ICD
can achieve superior results on the commonly used
MIMIC-3 dataset compared with BERT-XML.

3 Challenges for PLMs

In this section, we discuss 3 main challenges for
PLMs to work on automatic ICD coding and con-
duct experiments to verify the severity of the chal-
lenges.

3.1 Long Input Text

Pretrained language models usually set a maximum
sequence length as the size of their positional en-
codings. A typical value is set to 512 tokens after
subword tokenization (Devlin et al., 2019). How-
ever, clinical notes are long documents which of-
ten exceed the maximum length of PLMs. For in-
stance, the average number of words in the MIMIC-



Model Codes Macro-F Micro-F

LAAT
50 66.6 71.5

Full 9.9 57.5

BERT
50 61.5 65.4

Full 3.2 40.9

Table 2: Results of LAAT and BERT on MIMIC-3 with
full codes and top-50 codes (%).

3 dataset is 1,500 words, or 2000 tokens after sub-
word tokenization.

To demonstrate that this is a detrimental problem
for PLMs, we conduct experiments on MIMIC-3
where the input text is truncated to 512 words for
the strong model LAAT (Vu et al., 2020), and 512
tokens for BERT. The results are shown in Table 1.
Both models perform worse when the input text
is truncated, showing that simple truncation does
not work for the long input text problem. Note that
the same trend can be found for other models for
ICD coding. The results reported by Pascual et al.
(2021) also show similar problem where the trun-
cation methods such as Front-512 and Back-512
performed much worse than models with longer
input context.

3.2 Large Label Set

Automatic ICD coding is a large-scale multi-label
text classification (LMTC) problem, i.e., finding
the relevant labels of a document from a large set
of labels. There are about 17,000 codes in ICD-9-
CM and 140,000 codes in ICD-10-CM/PCS, while
there are 8921 codes presented in the MIMIC-3
dataset. PLMs utilize a special token and extract
the hidden representation of this token to perform
classification tasks. For example, BERT uses a
[CLS] token and adds a pooling layer to trans-
form its hidden representation into a distribution
of labels (Devlin et al., 2019). However, while this
approach achieves impressive performance on typ-
ical multi-class classification tasks, it is not very
suitable for LMTC tasks. Lehečka et al. (2020)
showed that making predictions based on only the
representation of [CLS] token results in inferior
performance compared with pooling representa-
tions of all tokens, and hypothesized that this is
due to the lack of modeling capacity of using the
[CLS] token alone.

To examine the PLMs’ capability of perform-
ing LMTC, we conduct experiments on MIMIC-3

in two settings, Full and Top-50. The Full
setting uses the full set of 8,921 labels, while the
Top-50 uses the top-50 most frequent labels. We
report the numbers for LAAT directly from Vu et al.
(2020). For the BERT model, we use the segment
pooling mechanism to handle the long input, which
is detailed in Section 4.2. We aggregate the hid-
den representations of the [CLS] token for each
segment with mean-pooling as the document rep-
resentation. The final prediction is obtained by
transforming the document representation with a
linear layer.

The results are shown in Table 2. BERT achieves
slightly worse performance than LAAT in the
Top-50 setting. However, in the Full setting,
BERT performs significantly worse compared with
LAAT. The results suggest that using BERT’s
[CLS] token for LMTC is not ideal, and advanced
techniques for LMTC are required for PLMs to
work on this task.

3.3 Domain Mismatch

Normally, PLMs are pretrained on large amount
of general-domain corpora which contains billions
of tokens. The corpora is typically crawled from
Wikipedia, novels (Zhu et al., 2015), webpages, and
web forums. Prior work has shown that the domain
mismatch between the pretraining corpus and the
fine-tuning tasks could degrade the downstream
performance (Gururangan et al., 2020).

Specifically for the biomedical domain, sev-
eral pretrained models have been proposed which
are pretrained on biomedical corpora to mitigate
the domain mismatch problem (Lee et al., 2019;
Alsentzer et al., 2019; Gu et al., 2020; Lewis et al.,
2020). These models demonstrate improved perfor-
mance over BERT on various medical and clinical
tasks, showing that domain-specific pretraining is
essential to achieve good performance.

4 Proposed Framework

The task of ICD code prediction is formulated as a
multi-label classification problem (Kavuluru et al.,
2015; Mullenbach et al., 2018). Given a clinical
note of |d| tokens d = {t1, t2, · · · , t|d|} in EHR,
the goal is to predict a set of ICD codes y ⊆ Y ,
where Y denotes the set of all possible codes. Typ-
ically, the labels are represented as a binary vector
y ∈ {0, 1}|Y|, where each bit yi indicates whether
the corresponding label is presented in the note.

The proposed framework PLM-ICD is illus-
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Figure 1: Illustration of our proposed framework. Left: domain-specific pretraining, where a PLM is pretrained
on text from specific domains with a language modeling objective. Right: PLM encodes segments of a document
separately, and a label-aware attention mechanism is to aggregate the segment representations into label-aware
document representations. The document representations are linear-transformed to predict ICD codes.

trated in Figure 1. The details of the components
are described in this section.

4.1 Domain-Specific Pretraining
Automatic ICD coding is a domain-specific task
where the input text consists of clinical notes writ-
ten by clinicians. The clinical notes contain many
biomedical terms, and understanding these terms
is essential in order to assign ICD codes accurately.
While general PLMs are pretrained on large amount
of text, the pretraining corpora usually does not
contain biomedical text, not to mention clinical
records.

In order to mitigate the domain mismatch prob-
lem, we propose to utilize the PLMs that are
pretrained on biomedical and clinical text, e.g.,
BioBERT (Lee et al., 2019), PubMedBERT (Gu
et al., 2020), and RoBERTa-PM (Lewis et al.,
2020). These PLMs are specifically pretrained for
biomedical tasks and proven to be effective on vari-
ous downstream tasks. We take the domain-specific
PLMs and fine-tune them on the task of automatic
ICD coding. We can plug-and-play the domain-
specific PLMs since their architectural design and
pretraining objective are identical to their general-
domain counterparts. This makes our framework
agnostic to the type of PLMs, i.e., we can apply
any transformer-based PLMs as the encoder.

4.2 Segment Pooling
In order to tackle the long input text problem de-
scribed in Section 3.1, we propose segment pool-
ing to surpass the maximum length limitation of
PLMs. The segment pooling mechanism first splits
the whole document into segments that are shorter

than the maximum length, and encodes them into
segment representations with PLMs. After encod-
ing segments, the segment representations are ag-
gregated as the representations for the full docu-
ment.

More formally, given a document d =
{t1, t2, ..., t|d|} of |d| tokens, we split it into |s|
consecutive segments si of c tokens:

si = {tj | c · i ≤ j < c · (i+ 1)}

The segments are fed into PLMs separately to com-
pute hidden representations, then concatenated to
obtain the hidden representations of all tokens:

H = concat(PLM(s1), · · · , PLM(s|s|))

The token-wise hidden representations H can then
be used to make prediction based on the whole
document.

4.3 Label-Aware Attention

To combat the problem of a large label set, we pro-
pose to augment the PLMs with the label-aware
attention mechanism proposed by Vu et al. (2020)
to learn label-specific representations that capture
the important text fragments relevant to certain la-
bels. After the token-wise hidden representations
H are obtained, the goal is to transform H into
label-specific representations with attention mecha-
nism.

The label-aware attention takes H as input and
compute |Y| label-specific representations. This
mechanism can be formulated into 2 steps. First, a
label-wise attention weight matrix A is computed



as:

Z = tanh(VH)

A = softmax(WZ)

where V and W are linear transforms. The ith row
of A represents the weights of the ith label, and
the softmax function is performed for each label
to form a distribution over all tokens. Then, the
matrix A is used to perform a weighted-sum of H
to compute the label-specific document representa-
tion:

D = HA>

where Di represents the document representations
for the ith label.

Finally, we use the label-specific document rep-
resentation D to make predictions:

pi = sigmoid(〈Li,Di〉)

where Li is a vector for the ith label, 〈·〉 represents
inner product between two vectors, pi is the pre-
dicted probability of the ith label. Note that the
inner product could also be seen as a linear trans-
form with output size 1. We can then assign labels
to a document based on a predefined threshold t.

The training objective is to minimize the binary
cross-entropy loss L(y,p):

− 1

|y|

|y|∑
i=1

(
yi logpi + (1− yi) log(1− pi)

)
.

5 Experiments

In order to evaluate the effectiveness of our pro-
posed framework, we conduct experiments and
compare the results with the prior work.

5.1 Setup

We evaluate PLM-ICD on two benchmark datasets
for ICD code prediction.

• MIMIC-2 To be able to directly compare
with the prior work (Mullenbach et al., 2018;
Li and Yu, 2020; Vu et al., 2020), we evalu-
ate PLM-ICD on the MIMIC-2 dataset (Saeed
et al., 2011). We follow the setting from Mul-
lenbach et al. (2018), where 20,533 sum-
maries are used for training, and 2,282 sum-
maries are used for testing. There are 5,031
labels in the dataset.

• MIMIC-3 The Medical Information Mart
for Intensive Care III (MIMIC-3) (Johnson
et al., 2016) dataset is a benchmark dataset
which contains text and structured records
from a hospital ICU. We use the same setting
as Mullenbach et al. (2018), where 47,724 dis-
charge summaries are used for training, with
1,632 summaries and 3,372 summaries for val-
idation and testing, respectively. There are
8,922 labels in the dataset.

The preprocessing is done by following the steps
described in Mullenbach et al. (2018) with their
provided scripts 2. Detailed training setting is pro-
vided in Appendix A.

5.2 Evaluation
We evaluate our methods with commonly used met-
rics to be directly comparable to previous work.
The metrics used are macro F1, micro F1, macro
AUC, micro AUC, and precision@K, where K =
{5, 8, 15}.

5.3 Results
We present the evaluation results in this section. All
the reported scores are averaged over 3 runs with
different random seeds. The results of the com-
pared methods are taken directly from their original
paper. We mainly compare our model, PLM-ICD,
with the models without special code description
modeling. The performance of models with special
code description modeling, i.e., HyperCore, ISD,
and RAC, are also reported for reference.

5.3.1 MIMIC-3
The results on MIMIC-3 full test set are shown in
Table 3. PLM-ICD achieves state-of-the-art per-
formance among all models in terms of micro F1
and all precision@k measures, even though we do
not leverage any code description modeling. All
the improvements are statistically significant. RAC
performs best on AUC scores and macro F1. We
note that the techniques proposed by RAC are com-
plementary to our framework, and it is possible to
add the techniques to further improve our results.
However, this is out of the scope of this paper.

5.3.2 MIMIC-2
The results on MIMIC-2 test set are shown in Ta-
ble 4. PLM-ICD achieves state-of-the-art perfor-
mance among all models in terms of micro F1 and

2https://github.com/jamesmullenbach/
caml-mimic

https://github.com/jamesmullenbach/caml-mimic
https://github.com/jamesmullenbach/caml-mimic


Model AUC F1 P@k
Macro Micro Macro Micro P@5 P@8 P@15

CAML (2018) 89.5 98.6 8.8 53.9 - 70.9 56.1
DR-CAML (2018) 89.7 98.5 8.6 52.9 - 69.0 54.8
MultiResCNN (2020) 91.0 98.6 8.5 55.2 - 73.4 58.4
LAAT (2020) 91.9 98.8 9.9 57.5 81.3 73.8 59.1
JointLAAT (2020) 92.1 98.8 10.7 57.5 80.6 73.5 59.0
EffectiveCAN (2021) 91.5 98.8 10.6 58.9 - 75.8 60.6

PLM-ICD (Ours) 92.6 (.2) 98.9 (.1) 10.4 (.1) 59.8† (.3) 84.4† (.2) 77.1† (.2) 61.3† (.1)

Models with Special Code Description Modeling
HyperCore (2020) 93.0 98.9 9.0 55.1 - 72.2 57.9
ISD (2021) 93.8 99.0 11.9 55.9 - 74.5 -
RAC (2021) 94.8 99.2 12.7 58.6 82.9 75.4 60.1

Table 3: Results on the MIMIC-3 full test set (%). The best scores among models without special code description
modeling are marked in bold. The best scores among all models are italic. The values in the parentheses are the
standard variation of runs. † indicates the significant improvement with p < 0.05.

Model AUC F1 P@k
Macro Micro Macro Micro P@5 P@8 P@15

CAML (2018) 82.0 96.6 4.8 44.2 - 52.3 -
DR-CAML (2018) 82.6 96.6 4.9 45.7 - 51.5 -
MultiResCNN (2020) 85.0 96.8 5.2 46.4 - 54.4 -
LAAT (2020) 86.8 97.3 5.9 48.6 64.9 55.0 39.7
JointLAAT (2020) 87.1 97.2 6.8 49.1 65.2 55.1 39.6

PLM-ICD (Ours) 86.8 (.2) 97.3 (.1) 6.1 (.1) 50.4† (.2) 67.3† (.2) 56.1† (.2) 39.9 (.2)

Models with Special Code Description Modeling
HyperCore (2020) 88.5 97.1 7.0 47.7 - 53.7 -
ISD (2021) 90.1 97.7 10.1 49.8 - 56.4 -

Table 4: Results on the MIMIC-2 test set (%). EffectiveCAN (2021) and RAC (2021) did not report results on
MIMIC-2. The best scores among models without special code description modeling are marked in bold. The
best scores among all models are italicized. The values in the parentheses are the standard variation of the runs. †
indicates that the improvement is statistically significant with p < 0.05.

all precision@k measures, similar to the results on
MIMIC-3. All the improvements are statistically
significant except for P@15.

In sum, these results show that PLM-ICD is gen-
eralizable to multiple datasets, achieving state-of-
the-art performance on multiple metrics on both
MIMIC-3 and MIMIC-2.

6 Analysis

This section provides analysis on factors that affect
PLM’s performance on automatic ICD coding.

Model Macro-F Micro-F

PLM-ICD 10.4 59.8
(a) - domain pretraining 8.9 54.2
(b) - segment pooling 7.2 54.6
(c) - label attention 4.6 48.0

Table 5: Ablation results on the MIMIC-3 full test set
(%).

6.1 Ablation Study

To verify the effectiveness of the proposed tech-
niques, we conduct an ablation study on MIMIC-3
full test set. The results are presented in Table 5.

The first ablation we perform is discarding



Model Macro-F Micro-F F̂

RoBERTa-PM 10.4 59.8 1.35
BioBERT 9.1 57.9 1.60
ClinicalBERT 8.8 57.8 1.60
PubMedBERT 9.2 59.5 1.41

Table 6: Results with different PLMs on the MIMIC-3
full test set (%). F̂ is the fragmentation ratio.

domain-specific pretraining. In this setting, we
use the pretrained RoBERTa-base model as the
PLM, and fine-tune it for ICD coding. As shown
in row (a), the performance slightly degrades after
discarding domain-specific pretraining. This re-
sult demonstrates that domain-specific pretraining
contributes to the performance improvement.

The second ablation we perform is discarding
segment pooling. In this setting, we replace our
segment pooling with the one proposed by Zhang
et al. (2020) They applied label attention and made
code predictions for each segment separately, and
aggregated the predictions with max-pooling. As
shown in row (b), replacing our segment pooling
results in worse performance. This result indicates
that our proposed segment pooling is more effective
for aggregating segment representations.

The third ablation is removing the label atten-
tion mechanism. We fall back to the normal PLM
paradigm, i.e., extracting representations of the
[CLS] token for classification. This setting is iden-
tical to the one described in Section 3.2, where we
aggregate the representation of the [CLS] token
for each segment with mean-pooling, and obtain
the final prediction by transforming the aggregated
representation with a linear layer. As shown in row
(c), removing label attention mechanism results in
huge performance degradation. The micro F1 score
degrades by 11.8% absolute, while the macro F1
score degrades more than half. This result demon-
strates that the label attention mechanism is crucial
to ICD coding, which is an observation aligned
with the prior work (Mullenbach et al., 2018).

6.2 Effect of Pretrained Models

While we have shown that domain-specific pretrain-
ing is beneficial to ICD coding, we would like to
explore which domain-specific PLM performs the
best on this task. We conduct experiments with dif-
ferent PLMs, including BioBERT (Lee et al., 2019),
ClinicalBERT (Alsentzer et al., 2019), PubMed-
BERT (Gu et al., 2020), and RoBERTa-PM (Lewis

Model Macro-F Micro-F

LAAT 10.4 59.8
CAML 8.7 58.1
BERT-XML 8.2 56.9

Table 7: Results with different attention mechanisms
on the MIMIC-3 full test set (%).

Model Macro-F Micro-F

Ours 10.4 59.8
HIER-BERT 2.8 42.7
Longformer 5.1 51.6

Table 8: Results with different strategies for tackling
the long input problem on the MIMIC-3 full test set
(%).

et al., 2020).
The results are presented in Table 6. RoBERTa-

PM achieves the best performance among the 4
examined PLMs This result is in line with the re-
ported results on the BLURB leaderboard (Gu et al.,
2020), which is a collection of biomedical tasks.

We also report the fragmentation ratio, i.e., the
number of tokens per word after subword tokeniza-
tion as (Chalkidis et al., 2020). We observe that the
PLMs with vocabulary trained on biomedical texts
(RoBERTa-PM and PubMedBERT) perform better
than the ones inherited vocabulary from BERT-base
(BioBERT and ClinicalBERT). The framentation
ratio also shows that models with custom vocabu-
lary suffer less on the over-fragmentation problem.

6.3 Effect of Label Attention Mechanisms

We conduct experiments with different label atten-
tion mechanisms and report the results in Table 7.
We compare the label attention mechanisms from
LAAT (Vu et al., 2020), CAML (Mullenbach et al.,
2018) and BERT-XML (Zhang et al., 2020). The
results show that the label attention used in LAAT
is best-suited to our framework.

6.4 Effect of Long Input Strategies

We also conduct experiments to verify the effect
of different strategies for tackling the long input
problem. As shown in Table 8, our proposed seg-
ment pooling outperforms HIER-BERT (Chalkidis
et al., 2019) and Longformer (Beltagy et al., 2020),
demonstrating the effectiveness of our proposed
method.



Max Segment Macro-F Micro-FLength Length

6144 128 9.2 60.0
3072 256 9.4 59.2
3072 128 9.2 59.6
3072 64 8.2 59.3
3072 32 6.9 57.8

Table 9: Results with different maximum lengths on
the MIMIC-3 full dev set (%).

6.5 Effect of Maximum Length

We conduct experiments where we alter the max-
imum length of the documents and segments to
explore the different choices of maximum lengths.
The results are shown in Table 9.

When fixing the maximum length of the docu-
ments to 3,072, we observe that longer segments re-
sults in better performance until the segment length
reaches 128. Using a longer maximum document
length such as 6144 results in slightly better perfor-
mance. However, longer sequences require more
computation. Considering the trade-off between
computation and accuracy, we set maximum docu-
ment length to 3,072 and segment length to 128 as
our defaults.

6.6 Effect of Optimization Process

Similar to the prior work (Sun et al., 2019), we also
notice that the fine-tuning process is sensitive to the
hyperparameters of the optimization process, e.g.,
batch size, learning rate, and warmup schedule.

With several preliminary experiments conducted
on these factors, we observe that the learning rate
and the warmup schedule greatly affects the per-
formance. When we reduce learning rate to 2e-5,
the model performs 3% worse than using the de-
fault parameters in terms of micro F1. The warmup
schedule is crucial in our framework. When we
use constant learning rate throughout training, the
model performs about 4% worse. We do not ob-
serve clear difference between different scheduling
strategies.

6.7 Best Practices

With the above analyses, we provide a guideline
and possible future directions for applying PLMs
to ICD coding or tasks with similar properties:

• With the input length exceeding the maximum
length of PLMs, segment pooling can be used
to extract representations of all tokens. PLMs

with longer input length or recurrence could
be explored in the future.

• The representation of the [CLS] token might
be insufficient when dealing with LMTC prob-
lems. A label attention mechanism could be
beneficial in such scenarios.

• The pretraining corpora plays an important
role for domain-specific tasks.

• The hyperparameters of the optimization pro-
cess greatly affect the final performance, so
trying different parameters is preferred when
the performance is not ideal.

7 Conclusion

In this paper, we identify the main challenges of
applying PLMs on automatic ICD coding, includ-
ing the long text input, the large label set and the
mismatched domain. We propose PLM-ICD, a
framework with PLMs that tackles the challenges
with various techniques. The proposed frame-
work achieves state-of-the-art or competitive per-
formance on the MIMIC-3 and MIMIC-2 datasets.
We then further analyze factors that affect PLMs’
performance. We hope this work could open up the
research direction of leveraging the great potential
of PLMs on ICD coding.
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