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Abstract 

Background: Network Meta‑Analysis (NMA) is a key component of submissions to reimbursement agencies world‑
wide, especially when there is limited direct head‑to‑head evidence for multiple technologies from randomised 
controlled trials (RCTs). Many NMAs include only data from RCTs. However, real‑world evidence (RWE) is also becom‑
ing widely recognised as a valuable source of clinical data. This study aims to investigate methods for the inclusion of 
RWE in NMA and its impact on the level of uncertainty around the effectiveness estimates, with particular interest in 
effectiveness of fingolimod.

Methods: A range of methods for inclusion of RWE in evidence synthesis were investigated by applying them to 
an illustrative example in relapsing remitting multiple sclerosis (RRMS). A literature search to identify RCTs and RWE 
evaluating treatments in RRMS was conducted. To assess the impact of inclusion of RWE on the effectiveness esti‑
mates, Bayesian hierarchical and adapted power prior models were applied. The effect of the inclusion of RWE was 
investigated by varying the degree of down weighting of this part of evidence by the use of a power prior.

Results: Whilst the inclusion of the RWE led to an increase in the level of uncertainty surrounding effect estimates in 
this example, this depended on the method of inclusion adopted for the RWE. ‘Power prior’ NMA model resulted in 
stable effect estimates for fingolimod yet increasing the width of the credible intervals with increasing weight given to 
RWE data. The hierarchical NMA models were effective in allowing for heterogeneity between study designs, however, 
this also increased the level of uncertainty.

Conclusion: The ‘power prior’ method for the inclusion of RWE in NMAs indicates that the degree to which RWE 
is taken into account can have a significant impact on the overall level of uncertainty. The hierarchical modelling 
approach further allowed for accommodating differences between study types. Consequently, further work inves‑
tigating both empirical evidence for biases associated with individual RWE studies and methods of elicitation from 
experts on the extent of such biases is warranted.
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Background
When evaluating new health technologies, traditionally 
data from randomised controlled trials (RCTs) have been 
considered a gold standard and, as such, used in meta-
analysis in the evaluation process of new health tech-
nologies. Recently, there has been a growing interest in 
the use of real-world evidence (RWE) from observational 
studies in health-care evaluation [1, 2]. This is particularly 
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the case in rare disease areas or in conditions where RCT 
design may be less feasible. The inclusion of RWE in a 
network meta-analysis (NMA) of data from RCTs is not 
a straightforward issue, as the effectiveness estimates 
obtained from RWE may be subject to selection bias, due 
to lack of randomisation, and hence use of randomised 
evidence may be preferable. However, the potential 
advantage of RWE, particularly for the purpose of health 
technology assessment (HTA) decision-making, is that it 
can be a substantial source of evidence thus increasing 
the available evidence base as well as better represent-
ing “real-life” clinical practice. To this extent, RWE can 
be used to bridge a gap between efficacy and effective-
ness to ensure that the evaluation process reflects what 
is expected in clinical practice in terms of effectiveness of 
new health technologies. Therefore, recent methodologi-
cal developments focus on appropriate methods of using 
such data.

As part of the IMI GetReal initiative, aiming to incor-
porate real life clinical data into drug development, meth-
odologies were investigated for including such data in the 
later stages of the drug development process (i.e. health 
technology assessment), where data on treatment effec-
tiveness can be included in the meta-analysis to inform 
HTA decision-making [3].

A number of methods have been used to combine evi-
dence from different sources, which include naïve pool-
ing [4], inclusion of external sources of evidence as prior 
information [5, 6], power transform prior approach [7] 
and hierarchical modelling [8]. These methods were 
originally introduced in standard pairwise meta-analysis 
and later generalised by Schmitz et al. (2013) to network 
meta-analysis (NMA) to combine direct and indirect 
evidence from a number of studies investigating effec-
tiveness of a number of treatments [9]. NMA has been 
used routinely in technology assessments conducted by 
many HTA agencies world-wide. It is a particularly useful 
meta-analytic tool when data from head-to-head trials on 
an intervention of interest are limited. NMA is used to 
combine evidence from studies of heterogeneous treat-
ment contrasts and is also known as mixed treatment 
comparisons meta-analysis.

The aim of this paper is to investigate the use of NMA 
to combine estimates obtained from both RCTs and 
RWE using methods that differentiate between the study 
designs to account for the potential inherent biases pre-
sent in RWE. A range of methods for combining RCT 
data with RWE in an NMA setting are discussed, which 
include naïve pooling, hierarchical modelling and power 
transform prior approach. The hierarchical model has 
been extended here to include power transform priors. 
The methodology is applied to an illustrative example 
in relapsing-remitting multiple sclerosis (RRMS) [10]. 

A systematic literature review was carried out to iden-
tify sources of data, from both RCTs and RWE, on the 
effectiveness of disease modifying therapies (DMTs) 
used in RRMS patients. The results from the review and 
extracted data were subsequently used to illustrate how 
the three methodologies can be used to combine the data 
from the two types of sources of evidence and to com-
pare their impact on the treatment effect estimates and 
resulting uncertainty.

Methods
Illustrative example and sources of evidence
In a motivating example, DMTs used in patients with 
RRMS were considered. A systematic review was carried 
out to identify studies, both randomised and observa-
tional, of different DMTs with a main focus on effective-
ness of fingolimod to illustrate how the inclusion of RWE 
in NMA would impact the estimates of effectiveness of 
fingolimod in the context of a technology appraisal. The 
literature search was limited to studies reported prior 
to January 2010, when fingolimod was given licencing 
authorisation. Data were extracted on the effect of each 
treatment on relapse rate. Search terms utilised is avail-
able in Additional file 1.

Network meta‑analysis
A random-effects NMA model with adjustment for 
multi-arm trials [11] was used as the base case meta-
analytic model. To investigate the effect of fingolimod on 
relapse rate, the number of relapses rik in each study i and 
treatment arm k was modelled as count data following 
the Poisson distribution [12],

where Eik is the exposure time in person years and γik 
is the rate at which events (relapses) occur in arm k for 
study i. Following a standard generalized linear model 
approach, the conjugate log link was used with random 
true treatment effect differences δibk between treatments 
k and b which are assumed to follow a common normal 
distribution:

Assuming consistency in the network (which means 
that, for example, average treatment effect difference dAC, 
between treatments A and C, equals the sum of average 
treatment effect differences dAB, between treatments A 
and B, and dBC, between treatments B and C) allows us 
to represent treatment effect for each treatment contrast 

(1)rik ∼ Poisson(γikEik)

(2)log (γik) = µib + δibk Ik �=b

(3)δibk ∼ N
(

dbk , σ
2
)



Page 3 of 9Jenkins et al. BMC Med Res Methodol          (2021) 21:207  

dbk in the network as a difference of basic parameters 
which are average treatment effects of each treatment in 
the network compared to a common reference treatment 
1; dbk = d1k − d1b. Adopting a Bayesian approach to esti-
mating the parameters of Eqs. (1)-(3) requires that prior 
distributions are placed on the model parameters: the 
baseline study effects, μib, for example, the uniform dis-
tribution μib~Uniform(−10, 10), on the basic parameters, 
d1k~Uniform(−10, 10) and on the between-study vari-
ance σ~Uniform(0, 2).

For multi-arm studies, correlation between treatment 
effects relative to a common baseline treatment is taken 
into account by assuming true treatment effects δi(bkn) 
follow a common multivariate normal distribution which 
can be represented as series of univariate conditional dis-
tributions as follows:

where n = 2, …, p in the (p + 1)-arm study of p treatment 
effect estimates relative to the reference treatment.

Naïve pooling approach
The above NMA model was initially used to combine 
data from RCTs with RWE by including the observational 
studies at ‘face-value’. Data from all studies, regardless of 
the study design, were combined in the NMA described 
above.

This model was then extended to account for the differ-
ences between the designs of the studies as described in 
the following sections.

Power prior approach
To take into account the differences in study design 
between RCTs and observational studies, a ‘power 
transform prior’ approach was adopted [7]. This 
approach allows down-weighting of the RWE, thus 
making the data from this type of studies contrib-
ute less compared to data obtained from the RCTs. 
This is achieved by introducing a down-weighting fac-
tor, alpha (α), which the likelihood contribution of the 
RWE studies is raised to the power of. Alpha (α) is then 
varied between zero and one, with zero meaning that 
RWE is entirely discounted in the NMA, and with one 
indicating that all RWE is considered at ‘face-value’, 
which is assumed to be the same for each RWE study 
included in the network. The impact of different levels 
of weighting on the results of the NMA is performed by 

(4)δi(bk1) ∼ Normal
(

d(bk1), σ 2
)

(5)

�i(bkn) ∣

⎛⎜⎜⎜⎝

�i(bk1)

⋮

�i(bkn−1)

⎞⎟⎟⎟⎠
∼ Normal

�
d(bkn) +

1

n

n−1�
t=1

�
�i(bkt ) − d(bkt )

�
,
(n + 1)

2n
�
2

�

considering a series of values for alpha. The results are 
then summarised both in terms of the effect estimates 
(and their associated level of uncertainty) and the rank-
ings that the treatments received (based on these effect 
estimates).

Considering the annualised relapse rate ratio (ARRR) 
and assuming δ = log(ARRR ), the overall joint posterior 
distribution is given by,

where L(θ| Y) is the likelihood of θ given data Y. 
Assuming a standard random-effects NMA model, we 
combine the likelihood contribution of RWE, raised 
to the power of alpha, with the likelihood of the RCT 
data. Together with the prior distributions for the basic 
parameters, this gives the overall posterior distribution 
with RWE discounted by the parameter alpha. Assum-
ing that the number of relapses follow a Poisson distri-
bution, the RWE log likelihood (LL) in (1) becomes

where h indexes the different values of α.

Hierarchical model approach
An alternative approach to allowing differentiation 
between study designs in NMA is introducing another 
level in a Bayesian hierarchical model, modelling the 
between-study heterogeneity of treatment effects 
within each study design (RCT or RWE) and across 
study designs. The hierarchical model by Schmitz et al. 
(2012) was adapted to model count data using a Pois-
son distribution. Assuming j = 1, 2 where 1 represents 
the RCT data and 2 represents the RWE then Eq. (1) 
now becomes,

And, similarly as in the general NMA model, using the 
log link function Eq. (2) becomes

The data from the two sources of evidence, RCT data 
and RWE data, are modelled separately at the within-
study and within-design level. Similarly, as in Schmitz 
et  al. (2013) assuming the treatment effects from RCT 
and RWE evidence are exchangeable, the study designs 
pecific estimates are combined to estimate an overall 
measure of treatment effect using random-effects [9]. 

(6)P(δ|RCT ,RWE) ∝ L(δ|RCT )× L(δ|RWE)αP(δ)

(7)LLikh = log

(

γikh
rikhe−γikh

rikh!

)αh

(8)LLikh = αh
(

rikh log (γikh)− γikh − log (rikh!)
)

(9)r
j
ik ∼ Poisson

(

γ
j
ikE

j
ik

)

(10)log
(

γ
j
ik

)

= µ
j
ik + δ

j
ibk Ik �=b
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Thus, if δ1ibk and δ2ibk represent the treatment effect of 
treatment k against a reference treatment b, based on the 
RCT evidence and RWE respectively, then,

where dbk is the mean treatment effect of treatment k 
compared to a reference treatment b and σ2 is the vari-
ance representing the between-studies heterogeneity. 
Prior distributions need to be placed on the parameters 
of the model, for example, the following “vague” prior 
distributions:

This model was further extended by adopting a power 
prior approach at the within-study level for RWE (level 
one) by down weighting the likelihood contribution of 
the RWE by the factor alpha, as in Eq. (6), in the hier-
archal model in order to provide a further sensitivity 
analysis. Combining average underlying study effects 
δ1ibk from RCTs with down-weighted effects δ2ibk from 
RWE produces an overall pooled ARRR combined 
effects dbk.

(11)δ1ibk ∼ N
(

dbk , σ
2
)

(12)δ2ibk ∼ N
(

dbk , σ
2
)

dbk ∼ Uniform(−10, 10)

σ ∼ Uniform(0, 2)

Implementation and model fit
All models were implemented in WinBUGS version 1.4.3 
[13]. The first 10,000 simulations were discarded for all 
models as a burn-in. The main analyses were based on 
additional 20,000 iterations in order to ensure conver-
gence. Convergence was investigated by visually inspect-
ing the trace and history plots. Model fit was evaluated 
using the total residual deviance and the DIC for each net-
work size [6]. Between-study heterogeneity was assessed 
using the standard deviation across random-effects mod-
els. Inconsistency was assessed by assessing residual devi-
ance and performing node splitting analysis [14].

Results
Network structure
Figure  1 illustrates the network diagram of direct com-
parisons between interventions in both the RWE and 
RCT data. The nodes represent individual interventions 
analysed and the interconnecting lines represent the 
direct comparisons between interventions. The num-
bers along the lines represent the number of studies for 
each comparison in either the RCTs or RWE. In total 
there were 23 studies included, 14 of them being RCTs. 
One may expect the RWE studies to have a larger sample 
size. However, in this example the average sample size in 
each arm for the RWE was 186 participants, compared to 
the 288 participants in the RCT arms. The list of stud-
ies in the NMA is included in Additional file 2 with data 
extracted reported in Additional file 3.

Fig. 1 Network diagram including A randomised controlled trials (RCT) and B real‑world evidence (RWE) studies for the treatment of relapsing 
remitting multiple sclerosis. Nodes (circles) in the diagram represent treatments included in the network meta‑analysis, with node sizes being 
proportional to the number of subjects in each treatment arm. Edges (lines between nodes) represent the direct comparisons available between 
treatments with thickness of edges being proportional to the number of direct comparisons available. Numbers along edges represent the number 
of studies directly comparing treatments
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Naive pooling using standard NMA
Table 1 shows the annualised relapse rate ratios (ARRRs) 
(95% credible intervals) for an NMA of RCTs only (lower 
triangle) and an NMA of both sources of evidence with 
no adjustments for study design (upper triangle). As seen 
in Table 1, the ARRRs comparing all treatments vs. pla-
cebo are less than one, indicating a relative reduction in 
ARRRs for all active treatments compared to placebo.

When NMA treatment effect estimates are based on 
both sources of evidence, the levels of uncertainty can 
increase. For example, when comparing the effective-
ness of fingolimod 0.5 mg with Avonex the 95% credible 
interval of the ARRR increased from (1.64 to 2.38) when 
using only RCT data, to (1.44 to 2.52) when combined 
data from both sources of evidence were used. This is 
likely to be due to the increased between-study hetero-
geneity, when the two different sources of evidence were 
combined.

Power prior
The impact of the ‘power transform prior’ approach on 
the estimates of ARRRs (of each treatment compared to 
placebo) obtained from an NMA including both RCTs 
and RWE can be seen in Fig. 2. The ARRRs of each active 
treatment compared to placebo are shown for a range of 
values of the down-weighting factor (alpha) between zero 
(maximum down-weighting, i.e. RWE not included) and 
one (RWE considered at ‘face-value’) (Additional file 4). 
It can be seen that for most of the active treatments 
there is relatively little impact of assigning increasing 
weight to the RWE in terms of the point estimates for 
the ARRRs. However, the impact on uncertainty around 

these estimates was noticeable. For example, consider-
ing fingolimod 0.5 mg compared to placebo (Fig.  2) for 
alpha value of 0.001, ARRR (95% credible interval) esti-
mated was 0.42 (0.36, 0.50) while an alpha value of 1.0 
resulted in ARRR of 0.41 (0.32, 0.53). Whilst the point 
estimate remains fairly stable, the 95% credible inter-
val widen as more weight is given to the RWE. This 
may seem counter-intuitive, as more evidence is being 
included in the analysis, and therefore uncertainty lev-
els would be expected to decrease. However, in this 
random-effects NMA, the between-study heterogene-
ity increased when including RWE, reflecting the differ-
ences observed between RCTs and RWE studies. This is 
represented by an increased between-study variance and 
in turn increased uncertainty in specific treatment effect 
estimates (see the last column of the Table in Additional 
file 4). However, because this applies consistently across 
all treatments the net impact, in terms of treatment rank-
ings, is minimal as can be seen in Fig. 3.

Hierarchical model and hierarchical power prior model
Table  2 shows the results of adopting a hierarchical 
NMA which includes an additional level of hierarchy 
corresponding to the study design. Although the point 
estimates from the hierarchical model are in a broad 
agreement with the results presented above using a sim-
pler ‘power transform approach’, it can be seen that the 
levels of uncertainty (in terms of the width of the cred-
ible intervals) are generally greater. For example, in com-
parison to placebo, natalizumab had an ARRR of 0.41 
(0.30, 0.57) when using a power prior approach when 
alpha is 1 (Fig. 2), while an ARRR of 0.40 (0.26, 0.70) in 

Table 1 Matrix table of annualised relapse rate ratios (95% credible intervals) for network meta‑analysis (NMA) using naïve pooling 
random‑effects  modelsa

For the NMA of RCTs (lower triangle), ARRRs are reported as rows vs columns (i.e., Natalizumab vs placebo ARRR 0.32 (0.26, 0.38). For the NMA of RCTs and RWEs (upper 
triangle), ARRRs are reported as columns vs rows (i.e., Natalizumab vs placebo ARRR 0.41 (0.29, 0.57)
a  Lower triangle consists of results from NMA of randomised controlled trials (RCTs) only and upper triangle consists of results from naïve-pooling NMA of RCTs and 
real-world evidence (RWE)



Page 6 of 9Jenkins et al. BMC Med Res Methodol          (2021) 21:207 

the hierarchical model (upper triangle in Table 2). This is 
due to the fact that the hierarchical model explicitly takes 
into account the differences between study designs, thus 
allowing for additional variability across studies. Extend-
ing the Hierarchical model to include ‘power transform 
prior’ approach ARRR effect estimates for a range of 
alpha values are included in Additional file 5. These dif-
ferences in credible intervals were further observed in 
comparison to the power prior approach estimates. How-
ever, including RWE using the hierarchical model did not 
have any impact on the estimate of effectiveness for fin-
golimod (0.5 mg and 1.25 mg), which was due to the lack 
of RWE for this treatment and the nature of the model 
allowing for additional variability.

Discussion
As previous research has suggested, there are differ-
ences between RCTs and RWE studies [15]. However, the 
results from this study did not show that including the 

RWE simply over- or underestimated the treatment effect 
for each treatment, but rather that there was both over- 
and underestimation for different treatments, supporting 
previous findings [9].

This study has further extended the methods intro-
duced by Schmitz et al. (2013) by adapting them to model 
count data with the Poisson likelihood as well as extend-
ing the hierarchical model to down-weight the observa-
tional studies using a modified power prior approach. 
Both the hierarchical model and the modified hierarchi-
cal model are useful as they account for the heterogeneity 
between study designs and potential bias in RWE studies 
in the case of the latter [16]. However, the results of these 
analyses did not differ significantly from the naïve pool-
ing results or basic power transform prior results for this 
illustrative example. They also produced wider credible 
intervals due to the increased between-study design het-
erogeneity when including RWE. Whilst the hierarchical 
models may be considered more appropriate (in that they 

Fig. 2 Annualised relapse rate ratios with 95% credible intervals for all active treatments compared to placebo for values of the down‑weighting 
factor (alpha) using the ‘power prior’ model
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account for differences in sources of heterogeneity) care 
needs to be taken, and it is advised to compare the results 
with those from the naïve pooling in a sensitivity analysis 
to assess how results differ in practice.

In our illustrative example the inclusion of RWE 
increased the overall level of uncertainty in the treatment 
effects, supporting previous findings [9]. For example, 
when looking at the effectiveness of fingolimod 0.5 mg 

in the general population, greater heterogeneity was 
observed across different RWE studies, resulting in addi-
tional uncertainty around the effectiveness of fingolimod 
in the combined analysis in comparison to the effective-
ness based on the carefully selected population in RCTs. 
The inclusion of RWE may increase the overall level of 
heterogeneity, and thus the uncertainty in estimated 
treatment effects – as was the case here. Thus, further 

Fig. 3 Heat map displaying rankings for each treatment (based on absolute annualised relapse rates) for values of the down‑weighting factor 
(alpha) using ‘power prior’ model. Orange represents highest ranking and purple represents lowest ranking

Table 2 Matrix table of annualised relapse rate ratios (95% credible intervals) for network meta‑analysis (NMA) using hierarchical 
models including randomised controlled trials and real‑world  evidencea

For the hierarchical NMA of RCTs (lower triangle), ARRRs are reported as rows vs columns (i.e., Natalizumab vs placebo ARRR 0.35 (0.14, 0.74). For the hierarchical NMA 
of RCTs and RWEs (upper triangle), ARRRs are reported as columns vs rows (i.e., Natalizumab vs placebo ARRR 0.40 (0.26, 0.70)
a  Lower triangle consists of results from NMA of randomised controlled trials (RCTs) only and upper triangle consists of results from hierarchical NMA of RCTs and 
real-world evidence (RWE)
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evaluation of such methods in other settings, including 
the use of simulation studies, is warranted, and exten-
sion of the hierarchical modelling approach to allow for 
different types of RWE, either by inclusion of study-level 
covariates or by adding an extra level into the hierarchy, 
may ameliorate any potential increase in uncertainty 
regarding the treatment effects due to increased hetero-
geneity due to a broader evidence base [17–19].

Implications for decision makers are that the methods 
can allow them to undertake assessments on a larger evi-
dence base, and which includes a wider range of patient 
demographics and clinical characteristics. The inclusion 
of RWE in appraising health technologies can provide a 
larger (and possibly more representative) evidence base 
for decision-making; however, HTA analysts and deci-
sion-makers will need to consider on case-by-case basis 
whether or not the available RWE is sufficiently credible, 
whether this type of analysis is acceptable, and how the 
results should be interpreted and ultimately used.

Limitations
There are a number of limitations of this study that 
need to be recognised. First, the sample sizes of RWE 
studies were smaller compared to the larger RCTs avail-
able for RRMS, which may have had an impact on the 
uncertainty of effect estimates when weighting stud-
ies. Second, this study has only utilised one illustrative 
example and results may differ in other clinical area. 
While this may be the case, it remains of importance 
to compare the analysis of combined RCT and RWE 
data to the traditional NMA of RCT data alone to 
investigate the degree of effectiveness vs. efficacy gap. 
Thirdly, a Poisson likelihood was used to analyse this 
data. It is possible that the increased uncertainty could 
be reduced by utilising a negative binomial likelihood 
which can account for potential over dispersion when 
modelling count data. Fourth, meta-regression was not 
considered in this study. While meta-regression may 
explain some of the between-study heterogeneity, it 
may be limited both by the covariate information avail-
able and/or the number of studies in the NMA. Fifth, 
the NMAs in this particular example included aggre-
gate level data only. Access to individual patient data 
from RWE would allow for adjustment of the results 
for potential allocation bias, potentially reducing the 
between-study heterogeneity and consequently the 
uncertainty around the pooled effectiveness estimates. 
However, obtaining IPD from observational studies can 
often be difficult due to the regulations around sharing 
such data. Further research would be needed to assess 
the impact of utilising IPD from observational studies. 
Finally, extraction of count data analysed with exact 
Poisson likelihood was considered more appropriate 

than, for example, extracting data on adjusted ARRRs 
(with modelling based on the normal approximation). 
However, this has its limitations as this prevents adjust-
ment of treatment effects for confounding factors, 
which would only be possible with data at the IPD level.

Conclusions
While the ‘power transform prior’ NMA as well as hier-
archical NMA models had little impact on ARRR effect 
estimates, the degree of inclusion of RWE in the NMAs 
impacted the level of uncertainty around these effect 
estimates, likely as a result of increased between-study 
heterogeneity. The hierarchical NMA models provided 
another level of uncertainty, accounting to the differing 
study types (i.e. RCTs and RWE). Therefore, a compre-
hensive simulation study is required to investigate the 
ability of these models to correctly estimate treatment 
effects whilst also accounting for biases introduced by 
using RWE in different scenarios.

RWE can provide valuable data for HTA decision-
making and in this paper we have illustrated a number 
of formal approaches for incorporating such data in evi-
dence synthesis. Further, RWE can provide additional 
information, particularly in the case of rare diseases 
where clinical trial data are limited. Inclusion of RWE in 
meta-analysis can also be useful in clinical development 
planning as in Martina et  al. (2018), who showed that 
inclusion of non-randomised data in meta-analysis can 
help inform the design of a future trial and potentially 
reduce the number of patients required as part of a drug 
development programme [20]. However, the added value 
of RWE should be considered on a case-by-case basis.
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power prior model with between study heterogeneity standard deviation 
estimates.

Additional file 5. Annualised relapse rate ratios (95% credible intervals) 
of each active treatment compared to placebo for values of the down‑
weighting factor (alpha) between zero (total down‑weighting, i.e. RWE not 
included) and one (RWE considered at ‘face‑value’) using the hierarchical 
power prior model.
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