

Non-inferiority Trial

Orathai Munggaranonchai

 In medical research, randomized clinical trials (RCTs) are the gold standard for establishing efficacy of a newly developed drug/treatment method

- Non-Inferiority clinical trial have become a major tool for the evaluation of drugs, devices, biologics and other medical treatment
- Treatment with placebo or with a no-treatment control in a study is not ethical when the effective treatment has already been established.

- Effective medical treatments exist for many medical conditions and are the relevant bar to be surpassed by a new treatment.
- Although some new treatments offer greater efficacy, others may promise greater safety or convenience, or less expense, while providing similar efficacy.

- The concept of good substitution was original rationale for the design of non-inferiority trials.
- These trials span multiple medical and surgical disciplines and diverse treatment strategies.

Non-inferiority Trial

- To evaluate whether a new treatment is non-inferior to or as effective
 as the standard treatment for a particular endpoint.
- Often because standard treatment is associated with greater adverse events or costs compared to the new treatment being studied.
- It is not importance to establish that the new treatment is more
 effective or has similar effects, only that it is adequate to determine
 that it is not inferior to the standard treatment.

Table 1. Comparisons between superiority and non-inferiority trials

	Superiority trails	Non-inferiority trails
Null hypothesis (H_0)	New treatment not superior to standard treatment/ placebo	New treatment inferior to standard treatment
Alternate hypothesis (H_A)	New treatment is better than standard treatment/ placebo	New treatment non-inferior to standard treatment
Type 1 error	Deciding new treatment is better When it is not superior	Deciding new treatment non- inferior when it is inferior
Type 2 error	Deciding new treatment not superior when it it is better	Deciding treatment inferior when it is non-inferior
Type 1 error rate	lpha (significance cut-off)	lpha (significance cut-off)
Type 2 error rate	β (1-power)	eta (1-power)
Significant level	P-value < 0.05 (two-sided)	P-value < 0.025 (one-side)
Non-inferior margin	Not applicable	Predetermined

- Active control
- 2. End-point selection
- 3. Choice of non-inferiority margin
- 4. Assay sensitivity
- Constancy and metrics
- 6. Execution
- 7. Analysis

1. Active control

- One or more prior randomized trials evaluating the superiority of the active control over placebo.
- Active control represents the current standard of care.

- 2. End-point selection
 - End point is selected, and on the basis of prior experience.
 - The expected performance of the active control is derived.

- 3. Choice of non-inferiority margin
 - This margin cannot be greater than the smallest effect size for the active treatment that would be expected in a placebo-controlled trial.

A variety of statistical methods are used to derive the margin

3.1. Fixed margin:

- Estimates of the effect of the active comparator with placebo in previous studies
- Lower bound of 95% CI

- 3.2. The synthesis method (uses the same approach as the fixed method):
 - Accounts for the variability of the treatment effect of active control versus placebo in determining the margin.

- 4. Assay sensitivity
 - The study must be designed to adequately distinguish between effective and ineffective therapies.
 - The study design and conduct would have allowed the active control to be shown to be superior to the placebo.

- 5. Constancy and metrics
 - The design of the new trial preserves the conditions of the trial in which the active control was shown to be effective.
 - This is called the "constancy assumption"

- 5. Constancy and metrics
 - An appropriate metric must be used in the non-inferiority trial.
 - Because the choice between relative and absolute effects can affect both power and validity, this choice must be carefully considered in the design phase of the study.

6. Execution

- Adequate execution of the trial and ascertainment of outcomes.
- Incomplete or inaccurate ascertainment of outcomes, as a result
 of loss to follow-up, treatment crossover or nonadherence, or
 outcomes that are difficult to measure or subjective, may cause
 the treatments being compared to falsely appear similar.

7. Analysis

If some patients did not receive the full course of the assigned treatment.

- Intention to treat (ITT) analysis: in which all patients who
 received the experimental treatment, even if only one dose,
 are included in the statistical tests.
 - May produce a bias toward a false positive conclusion.
 - Narrowing the difference between the treatments.

7. Analysis

- Per-protocol (PP) analysis: excludes patients who did not meet the inclusion criteria or did not receive the randomized.
 - Preferable in a non-inferiority trial.
 - May include fewer participants and introduce post randomization bias.

7. Analysis

- Suggest analyzing both ITT and PP.
- Examining the results for consistency.
- Sensitivity analyses may be needed before drawing conclusions about non-inferiority.

- It is recommended that the margin should be pre-specified based on statistical considerations and clinical judgment.
- The fixed-margin method is the method preferred by regulatory authorities.
- It is considered the most straightforward and readily understood approach.

- The method starts by identifying two different measures $(M_1 \text{ and } M_2)$.
- M_1 is the effect of the active control compared with placebo.
- M₁ can be determined based on
 - One or more placebo-controlled trials of the active comparator that have a design similar to the current non-inferiority trial or
 - A meta-analysis of several placebo controlled trials.
 - The latter approach is encouraged because it will result in a pooled,
 more precise effect estimate of the active comparator

- Thus, M_1 is chosen as a conservative estimate (smallest effect size) of the effect of the active comparator.
- Which is the upper bound of the 95% CI of the pooled effect size,
 rather than the point estimate.

- Example, the minimum non-inferiority threshold was selected using data from the meta-analysis by Hart and co-workers.
- Quantifying the effect of warfarin on the prevention of thromboembolic events vs placebo or the absence of treatment, at a RR of 0.38 (95% CI 0.28–0.52).

The procedure for computing the threshold is as follows:

- The reference category is changed, as if the effect of the "placebo or absence of treatment" was being calculated with respect to that of warfarin.
- This effect is the inverse of 0.38, which corresponds to an RR of 2.63
 (95% CI 1.92–3.57); according to the lower 95% CI (1.92), placebo or absence of treatment shows a 92% increase in the risk of stroke (M₁)
- The lower margin of this CI (1.92) is considered the minimum noninferiority threshold for dabigatran.

- Calculate M_2 from M_1 by choosing how much of the treatment effect is judged necessary to be preserved.
- $M_2 = (1-\%) \times M_1$ represents the largest clinically acceptable difference (degree of inferiority) of the test drug compared with the active control
- A consideration that may reflect the seriousness of the outcome, the benefit of the active comparator, and the relative safety profiles of the test drug and the comparator.

- Choosing a higher percentage to be preserved (e.g., 67%, where M_2 is 33% of M_1) results in a stricter or more conservative non-inferiority margin, meaning it is more difficult to conclude non-inferiority.
- A non-inferiority threshold that assumes that warfarin has a hypothetical effect that is just 50% of its real effect is chosen.
- $M_2 = (1-\%) \times M_1$; = $(1-0.5) \times 0.92 = 0.46 = 46\%$
- The minimum non-inferiority threshold is set at 1.46 (a 46% increase in the risk of stroke when moving from warfarin to dabigatran).

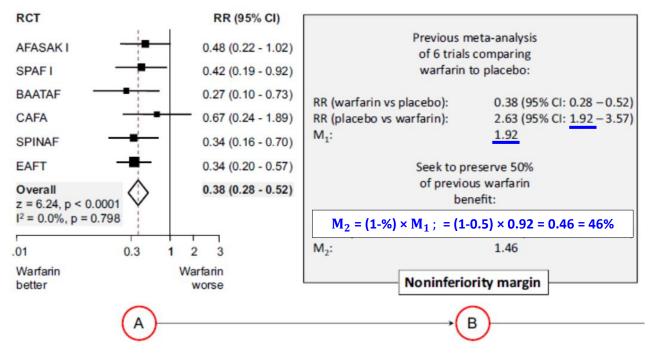
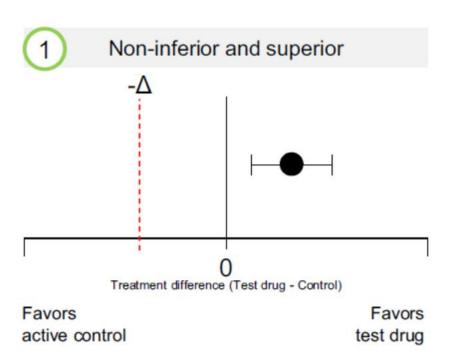
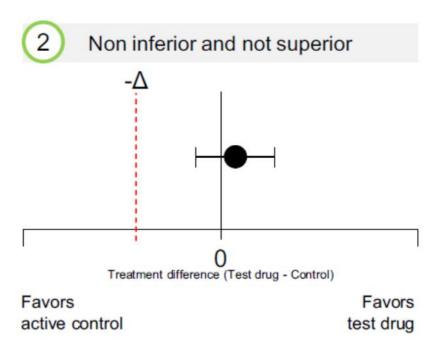


Figure 1. Steps in evaluating a non-inferiority trial comparing a direct oral anticoagulant (dabigatran) to warfarin.

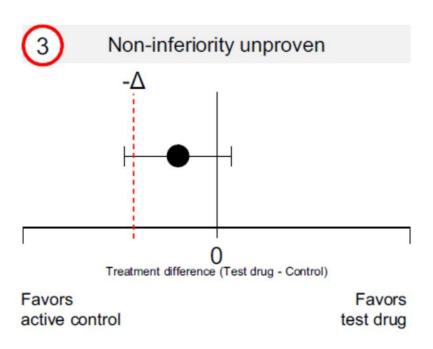
A Results of the meta-analysis used to compute the minimum non-inferiority threshold B computation of the non-inferiority margin according to the fixed margin method

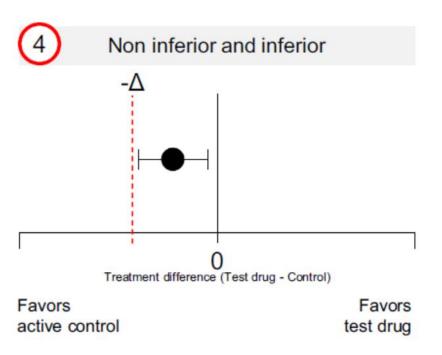


How to interpretation of non-inferiority study

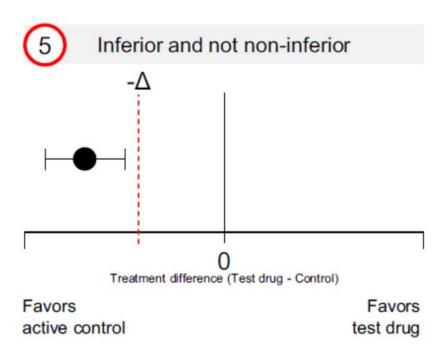

A non-inferiority trial can have several types of outcomes:

- 1. Non-inferior and superior
- 2. Non-inferior and not superior
- 3. Non-inferiority unproven (Inconclusive)
- 4. Non inferior and inferior
- 5. Inferior and not non-inferior


- The results of the non-inferiority trial are compared with the prespecified non-inferiority margin.
- If the bound of the 95% CI for the effect estimate is smaller than the non-inferiority margin, non-inferiority is concluded


- The new treatment is noninferior and also superior to the control
- When the CI sits wholly above zero

- The new treatment is noninferior, but not superior, to the control
- When the CI spans zero but lies wholly above – Δ


- The new treatment is neither non-inferior nor superior
- When the CI straddles both zero
 and Δ

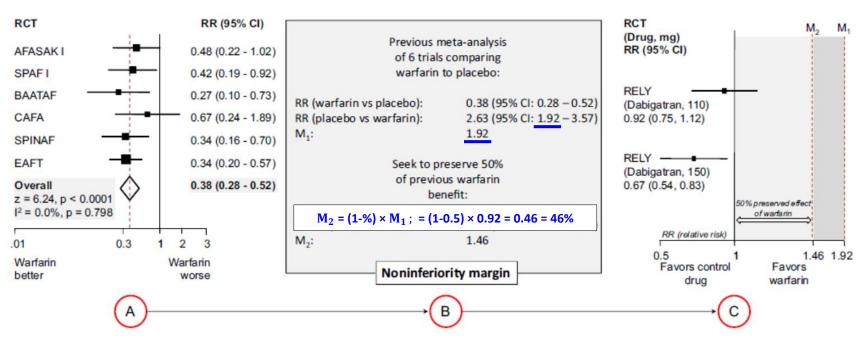
- The new treatment has the CI tucking between zero and Δ
- It illustrates the case of both non-inferiority and inferiority

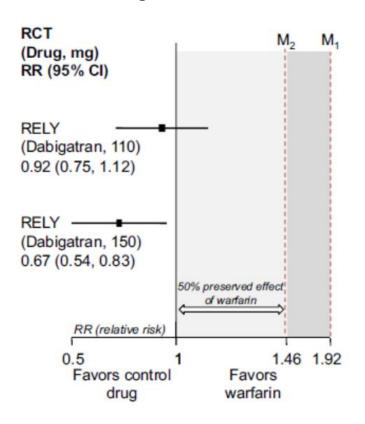
Outcome of Non-inferiority Trial

 The new treatment shows inferiority

Example

Example




Figure 2. Steps in evaluating a non-inferiority trial comparing a direct oral anticoagulant (dabigatran) to warfarin.

A Results of the meta-analysis used to compute the minimum non-inferiority threshold

B computation of the non-inferiority margin according to the fixed margin method

C results of the RE-LY trial proving non-inferiority of dabigatran vs warfarin

Example

- To conclude that dabigatran is not inferior to warfarin, the upper limit of the 95% CI of the effect of treatment should not exceed 1.46 (M₂).
- The effect of treatment show that non-inferiority margins are below the 50% preserved effects reference non-inferiority margin.
- Thus, the conclusion of non-inferiority is established.
- The RR and CI for this treatment arm sit wholly below 1
- Dabigatran 150 mg superior to warfarin at reducing stroke or systemic embolism.

- Two methods of choosing the non-inferior margin statistically can be used:
 - Relative risk difference
 - Absolute risk difference

Relative risk difference

- A ratio of end point events on the new treatment to that on standard treatment is given as the non-inferior margin.
- The advantage of this method is that the event rate of the standard treatment does not need to be assumed.
- Non-inferiority is declared if the upper boundary of the 95% CI of the trial does not exceed that margin.

Absolute risk difference

- Non-inferiority can be declared if the absolute difference in end points between the new and standard treatment is less than a predefined value.
- This method entails an assumption on the event rate on standard treatment.

Absolute risk difference

- The actual event rate during the trial of the standard treatment is often lower than the assumed event rate.
- This will lead to a higher relative difference as the noninferior margin and an underpowered trial, favouring noninferiority.

 Using relative risk difference has the advantage of guarding against unrealistically optimistic claims of non-inferior if the standard treatment event rate is lower than expected.

Sample size for non-inferiority

Test for non-inferiority

 H_0 : The new treatment is **inferior** to the standard treatment

$$H_0: \mu_T - \mu_C \leq -d$$

$$H_0: \mu_T - \mu_C \le -d$$
 $H_0: P_T - P_C \le -d$

 H_A : The new treatment is **non-inferior to** the standard treatment

$$H_A: \mu_T - \mu_C > -d$$
 $H_A: P_T - P_C > -d$

$$H_A: P_T - P_C > -d$$

-d is a non-inferior margin which indicates how much new treatment can be inferior to standard treatment, but it is still considered non-inferior

Test for non-inferiority

- Two independent means
- Cross-over design
- Two independent proportion

Conclusion

- Noninferiority trials evaluate a new treatment against standard treatment to demonstrate that the new treatment is no worse than standard treatment.
- Interpretation of noninferiority trials requires consideration of the choice of the
 non-inferiority margin and deficiencies in trial design that may diminish the
 estimated difference between the new treatment and standard treatment.
- Clinicians should also be careful to draw appropriate inferences from noninferiority trials

Thank you