How to Enhance LLM with Retrieval-Augmented Generation (RAG)

Cholatid Ratanatharathorn, MD

PhD student, Data Science for Healthcare and Clinical Informatics Department of Clinical Epidemiology and Biostatistics

LLM Hallucination Causes

Data-Related Causes:

Flawed Data Sources (1): Poor-quality data sources can introduce misinformation and biases. This includes imitative falsehoods, duplication biases, and social biases.

Knowledge Boundaries (2): LLMs might lack specific domain knowledge or up-to-date information, leading to incorrect or outdated responses.

Inferior Data Utilization (3): reliance on spurious correlations or difficulties in complex knowledge.

⁽¹⁾ Lin et al. (2022); Lee et al. (2022a); Bender et al. (2021)

⁽²⁾ Singhal et al. (2023); Katz et al. (2023); Onoe et al. (2022)

⁽³⁾ Mallen et al. (2023); Zheng et al. (2023); Liu et al. (2023e)

LLM Hallucination Causes

Training-Related Causes:

Pre-Training Issues: During pre-training, the model might face architectural flaws. (1)

Inference-Related Causes:

Decoding Strategies: The randomness inherent in decoding strategies, such as sampling, can introduce errors. Higher temperatures in sampling can lead to increased hallucinations. (2)

Decoding Representation: The top-layer representation used for predicting the next token might have limitations. Insufficient context attention may be a cause of irrelevant answers.

⁽¹⁾ Lewis PSH, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. Adv Neural Inf Process Syst. 2020;33: virtual.(2) Singhal et al. (2023); Katz et al. (2023); Onoe et al. (2022)

⁽³⁾ Dziri N, Madotto A, Zaïane O, Bose AJ. Neural path hunter: Reducing hallucination in dialogue systems via path grounding. Proc 2021 Conf Empir Methods Nat Lang Process. 2021;2197-2214. Online and Punta Cana, Dominican Republic: Association for Computational Linguistics.

How to improve it?

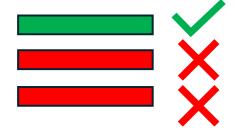
Individual or organization-level

- Better prompt
- Finetune
- RAG

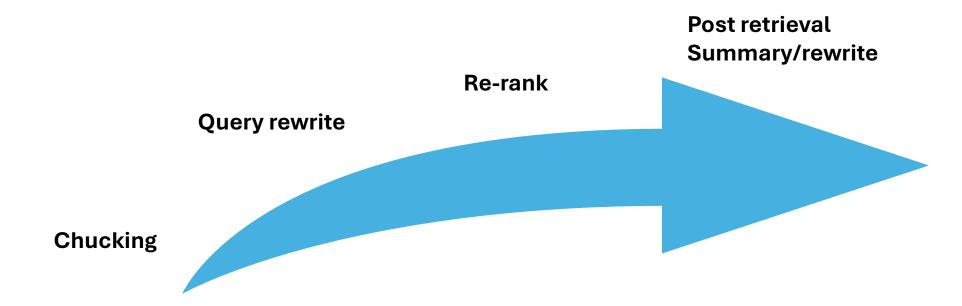
What is RAG?

- Retrieval retrieve the data from (vector) database
- •Augmentation use the retrieved data to augment prompt for LLM
- Generation LLM generate the output/answer

Benefit of RAG


Drawdown of (naïve) RAG

Irrelevant/missing information retrieval



Single task/question

The next step of RAG

Example of use case

Question: How can we improve SNOMED CT coding with LLM and advance RAG?

What is SNOMED CT?

(Systematized Nomenclature of Medicine Clinical Terms)

- •Comprehensive Coverage: More than 300,000+ concepts which cover a wide range of clinical concepts including diseases, procedures, symptoms, and findings.
- •Interoperability: Enhances data sharing and interoperability between different healthcare systems and providers.
- •Standardization: Provides a standardized language for clinical terms, reducing ambiguity and improving communication.

For research, statistics, and reimbursement

How to code it nowadays?

- A coder/physician has to select a code manually.
- Some SNOMED CT code was mapped to other standards e.g. ICD10, ICD9

Can LLM, which understands some context, help this out?

Let's try with LLM alone first

Prompt crafting

Role assign

What to do

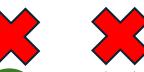
 You are a helpful medical coder assistant. Extract clinical terms from the following medical note if it's an observation, interpret and use the correct clinical term, but send only a list of clinical terms and SNOMED CT code. Do not send any thinking process.

Example RR 40/min -> Tachypnea Sodium 130 mg/dl-> Hyponatremia

Few-shot

Input: case pt 40 yr male came to ED with diarrhea, vomit and bloody stool BT 40 C RR 24/min PR 120/min BP 89/50 mmHg Abdomen - soft, not tender

IMP: infective diarrhea INPUT


List of clinical terms and SNOMED CT code: Desired OUTPUT

GPT 40

- 1. Diarrhea 267036007
- 2. Vomiting 422400008
- Bloody stool 86615007
- 4. Fever 386661006
- 5. Tachypnea 230145002
- 6. Tachycardia 3424008
- 7. Hypotension 45007003
- 8. Infective diarrhea 310861008

- 1. Diarrhea SNOMED CT: 117681000119100
- 2. Vomiting SNOMED CT: 422587008
- Bloody stool SNOMED CT: 431855005
- Fever SNOMED CT: 386725007
- 5. Tachypnea SNOMED CT: 267036007
- 6. Tachycardia SNOMED CT: 10200004
- 7. Hypotension SNOMED CT: 271327008
- 8. Infective diarrhea SNOMED CT: 13270003

Example of RAG method

Extract clinical term

RAG retrieval

RAG re-rank

LLM Generation

RAG retrieval

RAG re-rank

LLM Generation

You are a helpful medical coder assistant. Extract clinical terms from the following medical note if it's an observation, interpret and use the correct clinical term, but send only a list of clinical terms and SNOMED CT code. Do not send any thinking process. Example RR 40/min -> Tachypnea Sodium 130 mg/dl-> Hyponatremia

Input: case pt 40 yr male came to ED with diarrhea, vomit and bloody stool BT 40 C RR 24/min PR 120/min BP 89/50 mmHg Abdomen - soft, not tender IMP: infective diarrhea

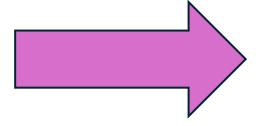
Separate each clinical term by a new line. List of clinical terms:

Vomiting

Diarrhea

Bloody stool

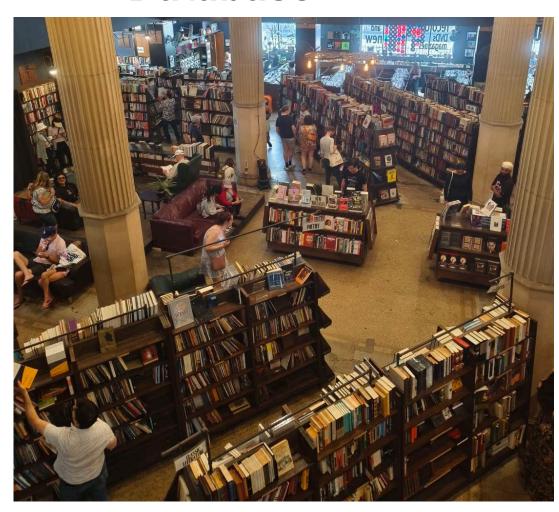
Fever


Tachypnea

Tachycardia

Hypotension

Infective diarrhea

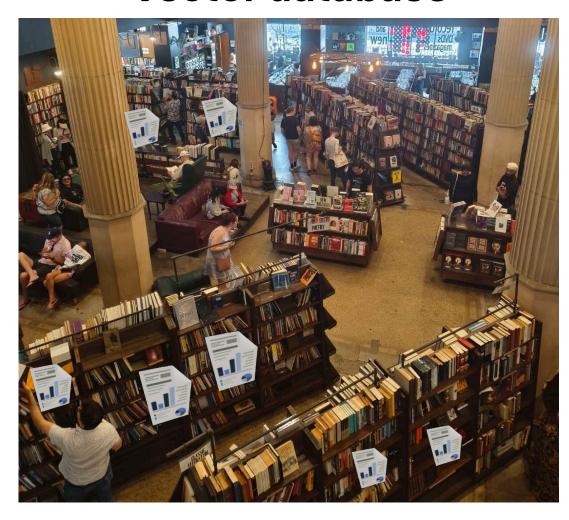

386661006 Fever (finding)

3424008 Tachycardia (finding)

233604007 Pneumonia

38362002 Dengue (disorder)

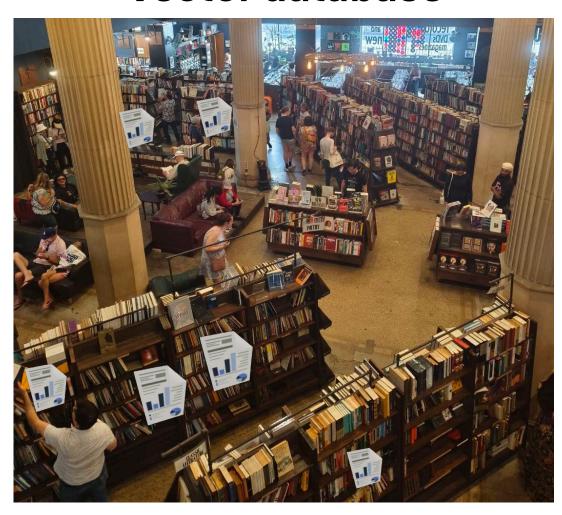
Database


Bi-encoder

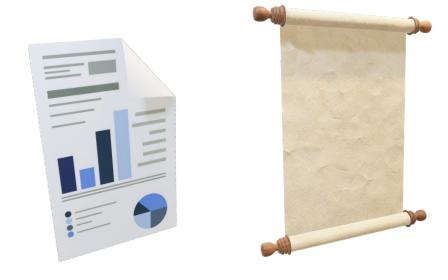
Compress <u>each book</u> into a vector

Embedding

Vector database



QUERY = the data that you want



An embedding represents query

Vector database

QUERY = the data that you want

Similar score = 0.222

Similar score = 0.929

Similar score = 0.829

Similar score = 0.729

Similar score = 0.629

Similar score = 0.229


Extract clinical term

RAG retrieval

RAG re-rank

LLM Generation

QUERY = the data that you want

386661006 Fever (finding)

3424008 Tachycardia (finding)

233604007 Pneumonia

38362002 Dengue (disorder)

Bi-encoder

Embedding

386661006 [0.223,0.366,0.55,...,0.14]

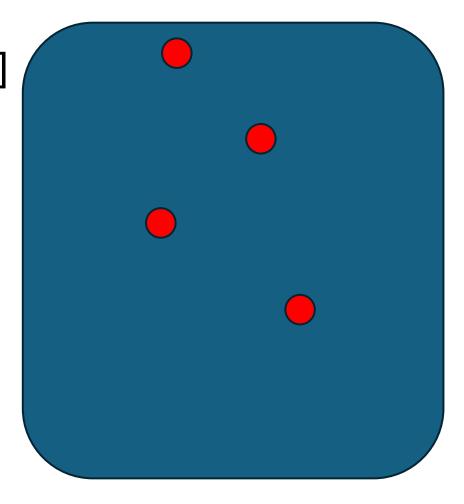
3424008 [0.233,0.766,0.45,...,0.67]

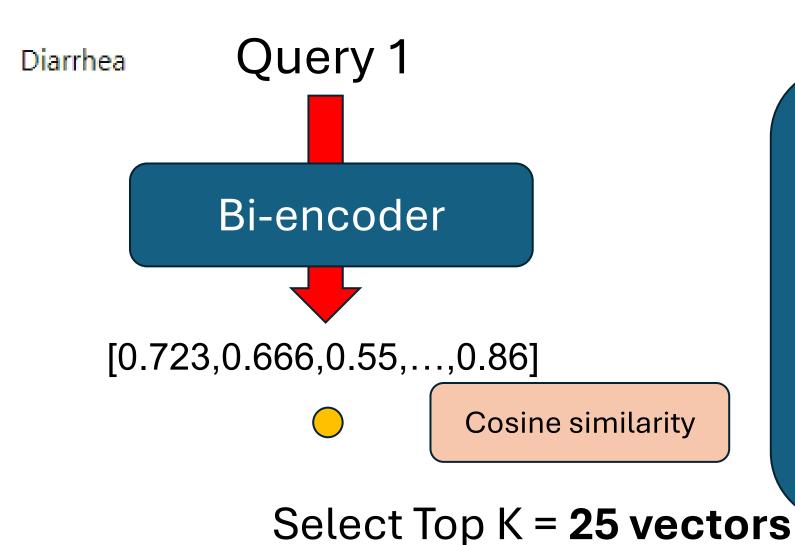
233604007 [0.523,0.366,0.55,...,0.69]

38362002 [0.723,0.666,0.55,...,0.86]

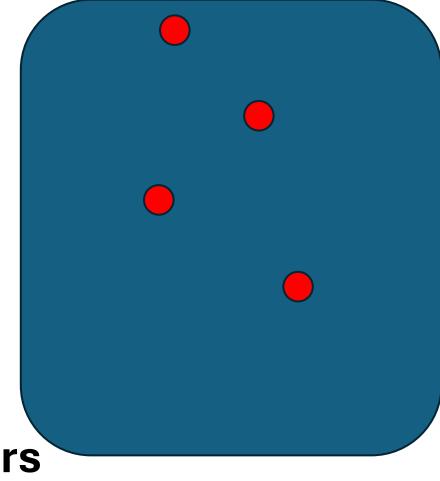
Bi-encoder

Embedding


386661006 [0.223,0.366,0.55,...,0.14]


3424008 [0.233,0.766,0.45,...,0.67]

233604007 [0.523,0.366,0.55,...,0.69]


38362002 [0.723,0.666,0.55,...,0.86]

Vector database

Vector database

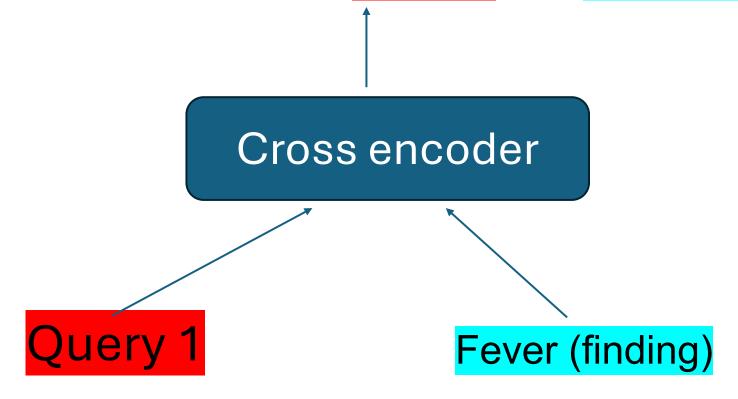
Extract clinical term

RAG retrieval

RAG re-rank

LLM Generation

QUERY = the data that you want



Select Top K = **25 vectors**

Relevance score of Query 1 and Fever (finding)

RAG re-rank RAG retrieval Bi-Encoder Cross-Encoder Cosine-Similarity Already in the vector database 0...1 Classifier pooling pooling BERT BERT BERT Sentence A Sentence A Sentence B Sentence B Query

RAG retrieval

RAG re-rank

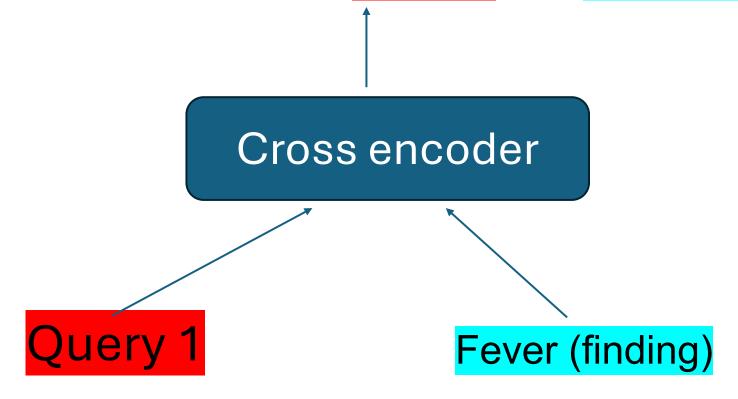
LLM Generation

QUERY = the data that you want

Relevance score = 0.829

Relevance score = 0.829

Relevance score = 0.729


Relevance score = 0.329

Select Top K = **25 vectors**

Relevance score of Query 1 and Fever (finding)

Select Top K = **25 vectors**

Relevance score of Query 1 and Tachycardia (finding)

Cross encoder Query 1 Tachycardia (finding)

- 0.633 Relevance score of Query 1 and Salmonella infection
- 0.133 Relevance score of Query 1 and Tachycardia (finding)
- 0.733 Relevance score of Query 1 and IBS

- 0.866 Relevance score of Query 1 and Infective diarrhea
- 0.033 Relevance score of Query 1 and Dengue

25 Cosine similarity

- 0.866 Relevance score of Query 1 and Infective diarrhea
- 0.733 Relevance score of Query 1 and IBS
- 0.633 Relevance score of Query 1 and Salmonella infection

- 0.133 Relevance score of Query 1 and Tachycardia (finding)
- 0.033 Relevance score of Query 1 and Dengue

25 Cosine similarity Top 5 reranked

GPT 40 mini

Top 5 from

reranked RAG

Select the best document for the clinical term **QUERY1** from the following options:

Option 1:Code: 15223002 Description: Clinical A

Option 2:Code: 12223355 Description: Disease B

Option 3:Code: 22330000 Description: Disease C

Option 4:Code: 22555668 Description: Disease D

Option 5:Code: 55335555 Description: Laboratory A

Please choose the best option and provide the code and description.

example Output: (Option 1) 11200025556 - Clinical term one-shot

Output:

Final answer! (Option 1) 3424008: Tachycardia (finding)

Query for: Tachycardia

```
Querying for term: Tachycardia
                                                       RAG retrieval
1 - 276796006 : Atrial tachycardia (disorder)
2 - 74615001 : Tachycardia-bradycardia (disorder)
3 - 25569003 : Ventricular tachycardia (disorder)
4 - 82838007 : Irregular tachycardia (disorder)
5 - 6456007 : Supraventricular tachycardia (disorder)
6 - 278482008 : Atrioventricular tachycardia (disorder)
7 - 6285003 : Tachyarrhythmia (disorder)
8 - 426300009 : Tachycardia-induced cardiomyopathy (disorder)
9 - 3424008 : Tachycardia (finding)
10 - 708124001 : Recurrent ventricular tachycardia (disorder)
11 - 233894001 : Incessant atrial tachycardia (disorder)
12 - 233907003 : Induced ventricular tachycardia (disorder)
    12026006 : Paroxysmal tachycardia (disorder)
    233897008 : Re-entrant atrioventricular tachycardia (disorde
    426525004 : Sustained ventricular tachycardia (disorder)
    426761007 : Electrocardiogram: supraventricular tachycardia
17 - 233896004 : Re-entrant atrioventricular node tachycardia (di
    233893007 : Re-entrant atrial tachycardia (disorder)
    413342000 : Neonatal tachycardia (disorder)
    164895002 : ECG: ventricular tachycardia (finding)
    69730002 : Idiojunctional tachycardia (disorder)
    195070000 : Paroxysmal atrioventricular tachycardia (disorde
23 - 49982000 : Multifocal atrial tachycardia (disorder)
24 - 234225006 : Pacemaker re-entrant tachycardia (disorder)
25 - 66657009 : Paroxysmal ventricular tachycardia (disorder)
```

RAG re-rank

```
== Reranked ==
1 (old rank 9) - 3424008 : Tachycardia (finding)
2 (old rank 8) - 426300009 : Tachycardia-induced cardiomyopathy
3 (old rank 2) - 74615001 : Tachycardia-bradycardia (disorder)
4 (old rank 7) - 6285003 : Tachyarrhythmia (disorder)
5 (old rank 13) - 12026006 : Paroxysmal tachycardia (disorder)
```

LLM Generation

Final answer - 3424008 : Tachycardia (finding)