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Abstract 
Importance: The study highlights the potential of large language models, specifically GPT-3.5 and GPT-4, in processing complex clinical data 
and extracting meaningful information with minimal training data. By developing and refining prompt-based strategies, we can significantly 
enhance the models’ performance, making them viable tools for clinical NER tasks and possibly reducing the reliance on extensive annotated 
datasets.
Objectives: This study quantifies the capabilities of GPT-3.5 and GPT-4 for clinical named entity recognition (NER) tasks and proposes task- 
specific prompts to improve their performance.
Materials and Methods: We evaluated these models on 2 clinical NER tasks: (1) to extract medical problems, treatments, and tests from clini-
cal notes in the MTSamples corpus, following the 2010 i2b2 concept extraction shared task, and (2) to identify nervous system disorder-related 
adverse events from safety reports in the vaccine adverse event reporting system (VAERS). To improve the GPT models' performance, we 
developed a clinical task-specific prompt framework that includes (1) baseline prompts with task description and format specification, (2) annota-
tion guideline-based prompts, (3) error analysis-based instructions, and (4) annotated samples for few-shot learning. We assessed each 
prompt's effectiveness and compared the models to BioClinicalBERT.
Results: Using baseline prompts, GPT-3.5 and GPT-4 achieved relaxed F1 scores of 0.634, 0.804 for MTSamples and 0.301, 0.593 for VAERS. 
Additional prompt components consistently improved model performance. When all 4 components were used, GPT-3.5 and GPT-4 achieved 
relaxed F1 socres of 0.794, 0.861 for MTSamples and 0.676, 0.736 for VAERS, demonstrating the effectiveness of our prompt framework. 
Although these results trail BioClinicalBERT (F1 of 0.901 for the MTSamples dataset and 0.802 for the VAERS), it is very promising considering 
few training samples are needed.
Discussion: The study’s findings suggest a promising direction in leveraging LLMs for clinical NER tasks. However, while the performance of 
GPT models improved with task-specific prompts, there's a need for further development and refinement. LLMs like GPT-4 show potential in 
achieving close performance to state-of-the-art models like BioClinicalBERT, but they still require careful prompt engineering and understanding 
of task-specific knowledge. The study also underscores the importance of evaluation schemas that accurately reflect the capabilities and per-
formance of LLMs in clinical settings.
Conclusion: While direct application of GPT models to clinical NER tasks falls short of optimal performance, our task-specific prompt frame-
work, incorporating medical knowledge and training samples, significantly enhances GPT models' feasibility for potential clinical applications.
Key words: prompt engineering; large language models; clinical named entity recognition; GPT-3.5; GPT-4. 

Introduction
Electronic health records (EHRs) contain a vast quantity of 
unstructured data, including clinical notes, which can offer 
valuable insights into patient care and clinical research.1

However, manually extracting pertinent information from 
clinical notes presents a challenge, as it is labor-intensive and 
time-consuming. To address these challenges, researchers 
have developed various natural language processing (NLP) 
techniques for automating the clinical information extraction 
process. Clinical named entity recognition (NER) is a critical 
clinical NLP task focusing on recognizing boundaries of 

clinical entities (ie, words/phrases) and determining their 
semantic categories, such as medical problems, treatment, 
and tests.2 With the help of advancements in clinical NER, 
the time and effort required for manual chart review and cod-
ing by health professionals can be significantly reduced, thus 
improving patient care efficiency, and accelerating clinical 
research.3

Early clinical NER systems often depend on predefined lex-
ical resources and syntactic/semantic rules derived from 
extensive manual analysis of text.4 Over the past decade, 
machine learning-based approaches have gained popularity 
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in clinical NER research.5 Current popular clinical informa-
tion extraction systems, such as cTAKES and CLAMP, are 
hybrid systems that integrate rule-based and machine 
learning-based techniques.6 Nevertheless, a bottleneck in 
building machine learning-based clinical NER models is to 
develop large, annotated corpora, which often require 
domain experts and take a long time to build. More recently, 
transformer-based large language models (LLMs) have 
emerged as the leading method for developing clinical NLP 
applications. Bidirectional Encoder Representations from 
Transformers (BERT) is a widely used pretrained language 
model that learns contextual representations of free text.7

Utilizing BERT as the foundation, domain-specific language 
models like BioBERT, PubMedBERT (trained on biomedical 
literature), and ClinicalBERT (trained on the MIMIC-III 
dataset) have been further developed.8–10 These models have 
been applied to clinical NER tasks via transfer learning (ie, 
fine-tuning the models on clinical NER corpora), and have 
shown improved performance with fewer annotated sam-
ples.8–10

Generative Pre-trained Transformers (GPT) represent 
another type of LLM capable of generating human-like 
responses based on textual input. In November 2022, 
OpenAI unveiled GPT-3.5,11 a groundbreaking language 
model that quickly garnered interest from researchers and 
technology enthusiasts. As an extension of GPT-3, GPT-3.5 
serves as a conversational agent adept at following complex 
instructions and generating high-quality responses across var-
ious scenarios. Besides its conversational skills, GPT-3.5 has 
exhibited remarkable performance in many other NLP tasks, 
such as machine translation and question-answering,12 even 
in zero-shot or few-shot learning scenarios,13 where the 
model can be applied to new tasks without using annotated 
samples or with a very small number of annotated samples. 
On March 18, 2023, OpenAI released GPT-4, one of the 
most advanced NLP models at the time, which has demon-
strated even greater capabilities and performance improve-
ments over GPT-3.5.14

As interest in GPT models continues to surge, numerous 
studies are currently exploring the wide range of possibilities 
offered by these LLMs. One prominent example of GPT 
models for medicine is that GPT-3.5 passed the US medical 
license exam with about 60% accuracy, which has further 
sparked the potential use of GPT-3.5 and GPT-4 in the medi-
cal domain.15 More applications of GPT-3.5 and GPT-4 in 
healthcare have also been discussed.16–23 With those motiva-
tions, this study aims to investigate the potential of GPT 
models for clinical NER tasks.

Meanwhile, prompt engineering has emerged as a crucial 
aspect of utilizing GPT models effectively for various NLP tasks. 
Prompt engineering involves designing input prompts that guide 
the model to generate desired outputs, thereby improving its 
performance on specific tasks.24 Several studies have explored 
prompt engineering for GPT models in open-domain settings, 
demonstrating its effectiveness in enhancing the model's per-
formance across a range of tasks.25,26 In the biomedical 
domain, some work has been done on prompt engineering for 
GPT models, focusing on tasks such as biomedical question- 
answering, text classification, and NER.27–29 However, to the 
best of our knowledge, no work has been conducted on prompt 
engineering for GPT models specifically targeting NER tasks in 
clinical texts. This highlights the need for further investigation 

into the potential of GPT models and prompt engineering tech-
niques for clinical NER applications.

The contributions of this study are 3-fold. First, we pro-
posed a prompt framework for clinical NER by incorporating 
entity definitions, annotation guidelines, and annotated sam-
ples, and demonstrated its effectiveness on 2 NER tasks (eg, 
improving the performance of the GPT models by up to 
�20% and making it more competitive to fine-tuned models 
such as BioClinicalBERT). Second, we discussed how the 
recent LLMs such as GPT models will change the develop-
ment of NER systems in the medical domain. This is impor-
tant because LLMs show a great potential for developing 
generalizable clinical NER systems without substantial anno-
tation efforts. Finally, this study also established a novel 
benchmark to evaluate the performance of the LLMs, GPT- 
3.5 and GPT-4, for the task of clinical NER. We leveraged 2 
distinct clinical NER tasks as benchmarks, namely the 2010 
i2b2 concept extraction task30 and the nervous system 
disorder-related event extraction task.31 All code and data-
sets are made publicly available to the community.

Methods
Task overview
This study mainly aims to quantify the capabilities of GPT- 
3.5 and GPT-4 for the clinical NER tasks, as defined in the 
2010 i2b2 concept extraction task30 and the nervous system 
disorder-related event extraction task,31 and propose clinical 
task-specific prompts to improve their performance. The 
i2b2 concept extraction task involves identifying and classify-
ing key medical concepts such as problems, treatments, and 
tests from patient reports, for example, recognizing “lung 
cancer” as a problem, “chemotherapy” as a treatment, and 
“CT scan” as a test. The nervous system disorder-related 
events extraction task, on the other hand, aims to extract 
nervous system disorder-related events from safety reports in 
the vaccine adverse event reporting system (VAERS). Unlike 
typical EHRs which provide comprehensive patient histories 
and treatment details, the VAERS dataset is primarily focused 
on postvaccination adverse events, for example, recognizing 
“neurological exam” as an investigation and “tremors” as a 
nervous adverse event. The MTSamples dataset was used for 
the first task, and the VAERS dataset was used for the second 
task (see details in the “Datasets” section).

The prompt components used for GPT models and the pri-
mary workflow of our study are depicted in Figure 1. We 
proposed task-specific prompts (see details in the “Prompt 
engineering” and “Evaluation” sections) to both GPT-3.5 
and GPT-4 on the 2 tasks and evaluated the performance 
based on the output. Error analysis was then performed on 
the training set to identify prevalent errors, and error 
analysis-based instructions targeting these errors were added 
to help the models correct the errors. Performance of 
different models was finally evaluated using the independent 
test set.

Datasets
Two clinical NER datasets were used in our study, including 
(1) MTSamples, a set of 163 fully synthetic discharge summa-
ries from MTSamples, which was annotated according to the 
annotation guidelines from the 2010 i2b2 challenge, which 
aims at extracting Medical Problem, Treatment, and Test,30

and (2) the VAERS corpus, a set of 91 publicly available 
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safety reports in VAERS, aiming at extracting nervous system 
disorder-related events.31

The MTSamples dataset is fully synthetic, meaning that it 
has been artificially generated and contains no real patient 
information. The VAERS dataset, on the other hand, is 
derived from publicly available postmarket safety reports 
that are anonymized and do not contain personally identifi-
able information. So, no sensitive data were sent to OpenAI 
API, making this study free of privacy concerns. Upon consul-
tation, it was determined that our study did not require IRB 
approval.

The 2 datasets were split into training, validation, and test 
subsets. The training and validation subsets served the pur-
pose of fine-tuning the BioClinicalBERT model. Annotated 
samples in prompts were randomly sampled from the training 
sets. The training sets were also used for error analysis to 
optimize our prompt strategies. The test subsets, however, 
were reserved exclusively for evaluating the final perform-
ance and for comparative analysis. A descriptive statistic of 
entities in these datasets is presented in Table 1.

Models
We fine-tuned NER models using BioClinicalBERT,32 to 
serve as baselines of traditional supervised learning 
approaches. We present results for supervised learning on 
both the MTSamples test set and the VAERS test set. The 
model weights were initialized using the transformers pack-
age, available at https://huggingface.co/emilyalsentzer/Bio_ 
ClinicalBERT.32,33 The hyperparameters employed during 
model training included a learning rate of 5e − 5, a training 
batch size of 4, 20 epochs, and a weight decay of 0.01 using 
the AdamW optimizer.34 In addition to fine-tuning NER 
models using BioClinicalBERT, we also employed a tradi-
tional machine learning approach for comparison. We uti-
lized a Conditional Random Field (CRF) model with word 
features, including Bag-of-word, capitalization of letters in 
words, and prefixes and suffixes of words.35

Regarding the GPT models, we used the specific versions 
GPT-3.5-turbo-0301 and GPT-4-0314 for reproducibility. 
Temperature in a generative language model refers to a 
parameter that controls the randomness in the model's pre-
dictions, typically ranging from 0 (completely deterministic) 
to 1 or higher (increasingly random and diverse outputs). 
The temperature parameter for GPT models was set to 0 to 
minimize randomness in response generation. A lower tem-
perature value restricts the model's tendency to take creative 
leaps, thereby ensuring more predictable and consistent out-
puts. This is crucial in clinical NER tasks where accuracy 
and reliability of information extraction are paramount. In 
our setup, the GPT models were interacted with in a “user” 
role. This role simulates a real-world user interaction with 
the model, where the “user” inputs prompts and the model 
generates responses accordingly. This approach reflects a 
typical use-case scenario for these models in practical appli-
cations. All input and output datasets along with prompt 
variants are included with Jypter notebooks that can inter-
face with the OpenAI API in our GitHub repository. At the 
time of this study, costs of GPT-3.5 per 1k tokens were 
approximately $0.03 for input and $0.06 for output. Costs 
of GPT-4 per 1k tokens were approximately $0.001 for 
input and $0.002 for output. Because of privacy issues, 
notes containing Personal Identifiable Information (PII) 
could not be used in this experiment and should not be used 
with the GPT API.

Prompt engineering
For GPT models, we proposed a task-specific prompt includ-
ing the following components:

1) Baseline prompt with task description and format speci-
fication: This component provides the LLMs with basic 
information about the tasks we are instructing them to 
perform and in what format the LLMs should output 
results. We instructed the models to highlight the named 
entities within an HTML file using <span> tags with a 

Figure 1. An overview of the study workflow.

Journal of the American Medical Informatics Association, 2024, Vol. 00, No. 0                                                                                                           3 

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/advance-article/doi/10.1093/jam
ia/ocad259/7590607 by Library and Inform

ation C
enter, M

ahidol U
niversity user on 17 April 2024

https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT


class attribute indicating the entity types. This allows the 
output from GPT models to be easily converted into a 
traditional Inside-Outside-Beginning format, which 
allows for a direct comparison of NER performance 
with findings from existing studies. 

2) Annotation guideline-based prompts: This component 
contains entity definitions and linguistic rules derived 
from annotation guidelines. Entity definitions offer com-
prehensive, unambiguous descriptions of an entity 
within the context of a given task. They play an instru-
mental role in steering the LLM toward the precise iden-
tification of entities within text documents. We noticed 
that the model's predictions often differed substantially 
from the gold standard in terms of grammatical struc-
ture. For example, discrepancies may arise concerning 
what types of phrases to be included (eg, noun phrases 
or adjective phrases). To enhance the model's perform-
ance, we referred to and incorporated rules in the anno-
tation guidelines to address these issues. 

3) Error analysis-based instructions: In addition to the orig-
inal annotation guidelines, we also incorporated addi-
tional guidelines following error analysis of GPT 
outputs using the training data. For example, we noticed 
that GPT models often tend to annotate consultation 
procedures as test entities. To prevent this, we incorpo-
rated a specific rule stating, “Consultation procedures 
should not be annotated as tests.” 

4) Annotated samples: To further assist the LLMs in under-
standing the task and generating accurate results, we 
provided a set of annotated samples to improve its per-
formance in a few-shot learning setting. We randomly 
selected either 1 or 5 annotated examples (1- or 5-shot 
learning) from the training set and formatted them 
according to the task description and entity markup 
guide. 
For instance, given a sentence “He had been diagnosed 
with osteoarthritis of the knees and had undergone 
arthroscopy years prior to admission,” with “osteoarthritis 
of the knees” and “arthroscopy” annotated as medical 
problem and test entities, we incorporated this sentence 
into the prompt using the following format: 

### Examples 
Example Input: He had been diagnosed with osteoar-
thritis of the knees and had undergone arthroscopy 
years prior to admission. 
Example Output: He had been diagnosed with <span 
class¼“problem”>osteoarthritis of the knees</span> and 

had undergone <span class¼“test”>arthroscopy</span>
years prior to admission. 

We compared the effectiveness of different prompt components 
by incrementally incorporating annotation guideline-based 
prompts, error analysis-based instructions, and annotated 
samples as shown in Table 2 (see the complete prompts for 2 
datasets in Supplementary Material S1.1).

Evaluation
The performance of the models was evaluated using Precision 
(P), Recall (R), and F1 scores, following the same evaluation 
script in the 2010 i2b2 challenge.30 These scores were com-
puted based on both exact-match and relaxed-match criteria. 
In the context of an exact match, an extracted entity should 
have identical token boundary and entity type as that in the 
gold standard. For relaxed match, an extracted entity that 
exhibits overlap in text and shares the same entity type with 
the gold standard is acceptable.

Results
Zero-shot performance with different prompts
The performance evaluation of GPT-3.5 and GPT-4 in zero- 
shot settings using different prompts is detailed in Table 3 and  
Figure 2. Following the integration of annotation guideline- 
based prompts and error analysis-based instructions, we noticed 
an improvement in the performance metrics of both GPT mod-
els, across each dataset and under each evaluation criteria. Inter-
estingly, we found these 2 components to have a more 
pronounced effect on the performance of GPT-3.5 than on 
GPT-4. More specifically, GPT-3.5 demonstrated an average 
increase of 0.09 in overall F1 scores, ranging from 0.04 to 0.14. 
Conversely, GPT-4 displayed a more restrained average 
improvement of 0.06, with a range of 0.01-0.10. Looking at the 
dataset-specific effects, these 2 components had a more substan-
tial impact on the VARES dataset compared to the MTSamples 
dataset. For VARES, we saw an average increase of approxi-
mately 0.11, with a range from 0.09 to 0.14. In contrast, for 
MTSamples, we saw a more modest approximate average 
increase of 0.04, with the range extending from 0.01 to 0.08.

Effect of N-Shot examples on model performance
Table 4 and Figure 3 illustrate the performance comparison 
among different numbers of N-shot examples with all prompt 
components included. Generally, the inclusion of more exam-
ples leads to better model performance. A combination of 5- 
shot and all prompts produced the best results by GPT-4, 
achieving F1 0.593 and 0.861 for MTSamples and 0.542 and 
0.736 for VAERS under exact and relaxed match, respectively.

Performance comparison to supervised learning
Table 5 and Figure 4 displays the performance of BioClinical-
BERT, CRF, GPT-3.5, and GPT-4 models for comparison. 
Among the 3 models, BioClinicalBERT still demonstrated 
the highest performance. For MTSamples, it achieved over-
all F1 scores of 0.785 and 0.901 under exact match and 
relaxed match, respectively. Its performance on the VAERS 
dataset also remained dominant, with overall F1 scores of 
0.668 and 0.802 under exact match and relaxed match, 
respectively. The CRF model achieved an F1 score of 0.584 

Table 1. Dataset statistics utilized in this study.

Datasets Entities Train Valid Test Total

MTSamples Medical problem 538 203 199 940
Treatment 149 43 35 227
Test 120 39 50 209

VAERS Investigation 148 29 59 236
Nervous adverse event 406 83 162 651
Other adverse event 301 62 167 530
Procedure 338 57 126 521

Abbreviation: VAERS, vaccine adverse event reporting system.
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and 0.525 in MTSamples and VAERS by exact match and 
surpassing GPT-3.5. In the relaxed-match criteria, the CRF 
model performed worse than GPT-4 and GPT-3.5 in the 
MTSamples and had comparable performance to GPT-3.5 
in the VAERS dataset. Comparatively, GPT-3.5 lagged on 2 
datasets with the lowest performance, yet still demonstrated 
a decent performance with scores of 0.794 and 0.676, as 
evaluated by relaxed-match criteria on the 2 datasets respec-
tively. GPT-4 showcased highly competitive performance 
using the relaxed match criteria, accomplishing F1 scores of 
0.861 and 0.736 on the MTSamples and VAERS datasets 
respectively. It is notable, however, that the performances of 
GPT-3.5 and GPT-4 as evaluated by the exact-match 
method were not as impressive as those by the relaxed 
match. In addition to the test set results, we have provided 
the model's performance on the validation sets in Supple-
mentary Material S1.2 to ensure the BioClinicalBERT is not 
overfitting.

Error analysis
A random sample of 20 sentences was selected from the out-
puts generated by each GPT model across the 2 datasets, 
postprocessing. This selection included sentences with both 
false positives and false negatives. The error analysis was con-
ducted based on exact match. The error statistics derived 
from this analysis are presented in Figure 5. When assessed 
on a dataset basis, GPT-3.5 and GPT-4 exhibited similar 
error patterns for the MTSamples dataset. Both models 
encountered challenges when it came to identifying correct 
entity boundaries. This typically involved making decisions 
on whether to include article words (such as “the” in the 
phrase “the study drug”) or modifiers (such as “another 
large” in the phrase “another large stroke”) that precede a 
noun phrase. In assessing model performance, we considered 
the exact-match criteria, which may present a different chal-
lenge for GPT models compared to BioClinicalBERT. While 
BioClinicalBERT is fine-tuned specifically on annotated 

Table 2. An Illustration of the prompt framework for clinical NER.

Prompt types Examples

(1) Baseline prompts ### Task 
Your task is to generate an HTML version of an input text, marking up specific entities related to 

healthcare. The entities to be identified are: “medical problems,” “treatments,” and “tests.” Use 
HTML <span> tags to highlight these entities. Each <span> should have a class attribute indi-
cating the type of the entity. 

### Entity Markup Guide 
Use <span class¼“problem”> to denote a medical problem. . .

(2) Annotation guideline-based prompts ### Entity Definitions 
Medical Problems are defined as: phrases that contain observations made by patients or clinicians 

about the patient’s body or mind that are thought to be abnormal or caused by a disease. . .

### Annotation Guidelines: 
Only complete noun phrases (NPs) and adjective phrases (APs) should be marked. Terms that fit 

concept semantic rules, but that are only used as modifiers in a noun phrase should not be 
marked. . .

(3) Error analysis-based instructions ### Error-analysis-based Guidelines: 
Consultation procedures should not be annotated as tests. . .

(4) Annotated samples via few-shot learning ### Examples 
Example Input1: He had been diagnosed with osteoarthritis of the knees and had undergone 

arthroscopy years prior to admission. 
Example Output1: He had been diagnosed with <span class¼“problem”>osteoarthritis of the 

knees</span> and had undergone <span class¼“test”>arthroscopy</span> years prior to 
admission. . .

Abbreviation: NER, named entity recognition.

Table 3. Zero-shot performance of GPT-3.5-turbo-0301 and GPT-4-0314 using different prompt strategies.

Models Prompt strategies

MTSamples VAERS

Exact match Relaxed match Exact match Relaxed match

P R F1 P R F1 P R F1 P R F1

GPT-3.5 Baseline prompts only (1) 0.492 0.327 0.393 0.794 0.528 0.634 0.510 0.146 0.227 0.626 0.187 0.288
þ Annotation guideline-based prompts (1)þ(2) 0.453 0.405 0.428 0.736 0.680 0.707 0.575 0.200 0.297 0.687 0.243 0.359
þ Error analysis-based instructions (1)þ(2)þ(3) 0.462 0.412 0.436 0.755 0.687 0.719 0.569 0.233 0.331 0.730 0.305 0.431

GPT-4 Baseline prompts only (1) 0.486 0.546 0.514 0.762 0.852 0.804 0.420 0.397 0.408 0.599 0.568 0.583
þ Annotation guideline-based prompts (1)þ(2) 0.478 0.577 0.523 0.752 0.919 0.827 0.559 0.444 0.495 0.743 0.593 0.660
þ Error analysis-based instructions (1)þ(2)þ(3) 0.488 0.570 0.526 0.777 0.908 0.838 0.536 0.469 0.500 0.727 0.650 0.686

Abbreviation: VAERS, vaccine adverse event reporting system.
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entities with clear boundaries, the GPT models, being LLMs, 
are trained on a broader and more diverse corpus. This dis-
tinction could impact their ability to adhere strictly to the 

exact boundaries of entities as defined in the training data, 
especially in the context of clinical NER where the linguistic 
structure and terminology are highly specialized.

Figure 2. Performance comparison using different prompt strategies.

Table 4. 0-, 1-, and 5-shot performance of GPT-3.5-turbo-0301 and GPT-4-0314 using all prompt components.

Models Prompt strategies

MTSamples VAERS

Exact match Relaxed match Exact match Relaxed match

P R F1 P R F1 P R F1 P R F1

GPT-3.5 (1) þ (2) þ (3) 0.462 0.412 0.436 0.755 0.687 0.719 0.569 0.233 0.331 0.73 0.305 0.431
þ 1 annotated example (1)þ(2)þ(3)þ(4) 0.475 0.461 0.468 0.779 0.778 0.779 0.561 0.311 0.401 0.733 0.416 0.531
þ 5 annotated example (1)þ(2)þ(3)þ(4) 0.515 0.472 0.493 0.827 0.764 0.794 0.526 0.432 0.474 0.735 0.626 0.676

GPT-4 (1) þ (2) þ (3) 0.488 0.570 0.526 0.777 0.908 0.838 0.536 0.469 0.500 0.727 0.650 0.686
þ 1 annotated example (1)þ(2)þ(3)þ(4) 0.506 0.560 0.532 0.809 0.894 0.849 0.547 0.500 0.522 0.721 0.661 0.690
þ 5 annotated example (1)þ(2)þ(3)þ(4) 0.555 0.637 0.593 0.804 0.926 0.861 0.513 0.574 0.542 0.701 0.774 0.736

Abbreviation: VAERS, vaccine adverse event reporting system.

Figure 3. Performance comparison based on different numbers of N-shot examples in each prompt design.
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As for the VAERS dataset, several factors may contrib-
ute to its increased complexity. Firstly, inner-annotator 
agreement was lower compared to the MTSamples dataset 
(ie, average F1 0.770731 vs 0.8620), indicating less consis-
tency in annotations. Additionally, the VAERS dataset 
contains more semantically specific annotation categories, 
such as distinguishing between different types of adverse 
events. This specificity demands a higher level of contex-
tual understanding from the models. On the other hand, 
GPT-4's major difficulties lie in determining the correct 
entity boundaries and accurately classifying the entity 
types. This discrepancy can be attributed to the unique 
characteristics of each dataset. The VAERS dataset con-
tains more complex entities (ie, Nervous adverse events vs 

Other adverse events) compared to the MTSamples data-
set, leading to a higher error rate in entity type classifica-
tion for the models. Another possible reason could be the 
inconsistency31 in annotation, which needs further 
investigation.

Discussion
Our study hints at the as-yet unrealized potential of LLMs in 
clinical NER tasks by proposing a clinical task-specific 
prompt framework that incorporates annotation guidelines, 
error analysis-based instructions, and few-shot examples. We 
found that the performance of GPT models improved with 
the task-specific prompts. The best performance achieved by 

Figure 4. Performance comparison between GPT-3.5, GPT-4, BioClinicalBERT and CRF models.

Table 5. Performance of BioClinicalBERT, CRF, GPT-3.5, and GPT-4 on MTSamples and VAERS datasets.

Model

MTSamples VAERS

Exact match Relaxed match Exact match Relaxed match

P R F1 P R F1 P R F1 P R F1

GPT-3.5 0.515 0.472 0.493 0.827 0.764 0.794 0.526 0.432 0.474 0.735 0.626 0.676
GPT-4 0.555 0.637 0.593 0.804 0.926 0.861 0.513 0.574 0.542 0.701 0.774 0.736
CRF 0.511 0.681 0.584 0.662 0.887 0.758 0.473 0.591 0.525 0.609 0.764 0.678
BioClinicalBERT 0.785 0.785 0.785 0.915 0.887 0.901 0.698 0.640 0.668 0.846 0.761 0.802

The performance is shown in the order of Precision/Recall/F1.
Abbreviations: CRF, Conditional Random Field; VAERS, vaccine adverse event reporting system.

Figure 5. Summary of different error types with the number of occurrences and percentages.
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GPT-4 shows a competitive performance as that of BioClini-
calBERT in the relaxed-match criteria.

LLMs are making paradigm-shifting changes in NLP 
research and development. Our finding shows a quick and 
easy path to build more generalizable clinical NER systems 
by leveraging LLMs. This will significantly change our cur-
rent practice in clinical NLP. Traditionally, to build a 
machine learning or deep learning-based NER system for spe-
cific types of clinical entities, we have to build an annotated 
corpus of clinical documents, which is time-consuming and 
costly, as it often requires medical domain experts. Remark-
ably, our research shows that LLMs, devoid of further model 
training or fine-tuning, have exhibited exceptional perform-
ance. With merely 1- or 5-shot annotated samples, these 
models can achieve performance that is close to the fine- 
tuned models that require hundreds of training samples. This 
suggests a potential reduction in some of the costs associated 
with clinical NER system development, particularly in the 
areas of data annotation. However, it is important to note 
that this does not eliminate the need for expert input in creat-
ing annotation guidelines and in the initial phases of model 
training. While our study demonstrates that GPT models can 
achieve competitive performance with fewer annotated exam-
ples compared to traditional NLP systems, the role of subject 
matter experts remains crucial. Experts are needed to write 
precise annotation guidelines, perform initial annotations for 
error analysis and example generation, and validate the mod-
el's performance. Although the GPT models require fewer 
annotated instances, the costs associated with expert involve-
ment, API usage, and running an LLM service should not be 
overlooked. A comprehensive comparison of resource 
requirements and costs between traditional NLP systems, 
word embedding models, and LLM-based systems would be 
valuable for future studies. This will provide a clearer under-
standing of the practical implications and feasibility of 
deploying LLMs in clinical NER tasks.

Moreover, our approach is generalizable—it shows consis-
tent performance improvements across 2 different clinical 
NER tasks. The emergent abilities of LLMs36 have been fur-
ther demonstrated in multiple clinical NER tasks here, indi-
cating the feasibility of building 1 large model for diverse 
information extraction tasks in the medical domain, which is 
very appealing.

With those changes in mind, an urgent need will be to rede-
sign the workflow for developing clinical NER systems using 
LLMs. The prompt framework for those 2 clinical NER tasks 
is the first step toward this direction and it sheds some lights 
for several aspects that are worth considering. The first aspect 
is how to clearly define an information extraction task. Our 
experiments show that incorporating annotation guidelines 
in prompt is very helpful in improving performance, which 
indicates medical knowledge (either in a knowledge base or 
from human experts) are still critical in LLM-based NER sys-
tems and how to obtain and represent task-specific knowl-
edge in prompts need further investigation. We also 
demonstrated that supplying annotated examples is effective 
for performance improvement. Nevertheless, how to select 
informative and representative samples has not been investi-
gated in this study and other advanced few-shot learning 
algorithms could be explored.

Another important issue is evaluation. In this study, we 
instructed GPT models to output entities following tradi-
tional NER approaches so that we can evaluate them using 

the previous evaluation scripts. However, we would argue 
that the current evaluation schema for NER may not be ideal 
for LLM-based systems. GPT models, due to their generative 
nature and extensive pretraining on diverse text corpora, 
exhibit a nuanced understanding of context and language 
structure. This enables them to interpret and generate text in 
a way that sometimes extends beyond the strict boundaries of 
predefined entity classes. For instance, GPT models often rec-
ognized lab tests with abnormal values (eg, “a blood sugar 
level of 40” or “white blood cell count of 23,500”) as medi-
cal problems. While this interpretation is contextually rele-
vant and clinically meaningful, it deviates from the strict 
entity definitions used in our evaluation, leading to apparent 
mismatches. Therefore, a better evaluation schema would be 
needed to assess LLM performance more accurately.

Despite the promising results, our study has some limita-
tions. First, we limited LLMs to GPT models in this study. In 
future, we will include other popular LLMs such as LLaMA 
and Falcon.37–39 Second, our few-shot learning approaches 
were relatively simple, and we plan to investigate other 
approaches such as the chain-of-thoughts method,40–42 hop-
ing to yield better results.

Conclusion
This is one of the first studies that systematically investigated 
GPT models for clinical NER via prompt engineering. In this 
study, we proposed a clinical task-specific prompt framework 
by incorporating annotation guidelines, error analysis-based 
instructions, and annotated samples via few-shot learning, 
and our evaluation on 2 clinical NER tasks shows that the 
GPT-4 model with our proposed prompts achieved close per-
formance as the state-of-the-art BioClinicalBERT model. The 
best performance achieved by GPT-4 with 5-shot learning did 
not work as well as the BioClinicalBERT model on MTSam-
ples and VAERS datasets. Nevertheless, considering that 
almost no training data was used in GPT models, their per-
formance is already impressive, which hints the potential of 
LLMs in clinical NER tasks. While the results demonstrate a 
promising direction, they also underscore the need for further 
refinement and development before LLMs can consistently 
outperform established models like BioClinicalBERT in these 
specific applications.
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