
Journal club

Survival modeling using deep learning, machine learning and 
statistical methods: A comparative analysis for predicting 
mortality after hospital admission

Nat Sirirutbunkajorn
Radiation oncologist, Ramathibodi hospital

Department of  Clinical Epidemiology and Biostatistics, Faculty of  Medicine Ramathibodi Hospital, Mahidol university

Nut19012537@gmail.com 



Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol university

Background

• Survival analysis often relied on Cox Proportional hazards.

• Other techniques include machine learning and deep learning approach.

• Previous literature focused on comparison based on mathematical theory 

• Lack of comparison of traditional vs ML model

• Lack of comparison of calibration
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Objective

• Compare various survival analysis techniques: 

• Traditional statistic

• Machine learning

• Deep learning

• On 90-day all-cause mortality after hospital admission.
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Method

• Dataset:

• Retrospective cohort from Singapore General Hospital

• Inclusion criteria:

• All patients hospitalized after visiting the emergency department

• From January 2017 - December 2019

• Exclusion criteria:

• Age < 21 years

• Incomplete medical record

• Total 124,873 patients

• Data split:

• Training cohort 70%

• Validation cohort 10% (for parameter tuning)

• Test cohort 20%
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Method

• Primary outcome:

• Mortality within 90 days

• If alive after 90 days -> right censored

• Events (death): 12,755 (10.2%)

• Feature selection:

• 60 candidates based on data availability, expert opinion and literature 

review

• Diagnosis from ICD-9, ICD-10

• Comorbidities: Linked from Charlson Comorbidity Index to ICD with 

algorithm by Quan et al.
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Models

• Traditional statistic:

• CoxPH

• Step-wise CoxPH

• Elastic net penalty Cox model

• Machine learning:

• AutoScore-Survival

• Random survival forest

• Gradient boosting

• Deep learning:

• DeepSurv

• CoxTime

• DeepHit







https://nliulab.github.io/AutoScore/

AutoScore

• A machine learning framework to automate development of clinical scoring 

models.
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AutoScore

Module 1: Variable ranking

• Use random forest to rank variable 

importance.
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AutoScore

Module 2: Variable transformation

• Continuous variables are converted into 

categorical variables

• Stratified by specific quantiles into K 

categories to develop a point-based 

score.

• The maximum categories (eg, K=5) for each 

variable is predefined.
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AutoScore

Module 3: Score Derivation by Weighting 

and Normalization

• 1st logistic regression

• obtain coefficient 

• 2nd logistic regression

• use the category with lowest coefficient 

form 1st round and set as reference 

(ensure coefficient is not negative)

• Use coefficient from 2nd round and ensure 

that all coefficients are larger than 1

• βnew = β/βlowest

• Finally, round all coefficient

• βscore = round(βnew)

• In this step, we obtain scoring rules.
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AutoScore

Module 4: Model Selection and Parameter 

Determination

• Determine the optimal number of variable 

(m) by evaluation of performance on 

validation set

• Best m = when m continues to increment 

and the prediction performance is no 

longer improving significantly.

• Then, do module 2 and 3 again.
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AutoScore

Module 5: Fine-Tuning Cutoff Points in 

the Variable Transformation

• Manually select cut-off for continuous 

variable and do module 2 and 3 again.
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AutoScore

Module 6: Final model evaluation

• Evaluate final model on the test set using 

various metrics.
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Models

• Traditional statistic:

• CoxPH

• Step-wise CoxPH

• Elastic net penalty Cox model

• Machine learning:

• AutoScore-Survival

• Random survival forest

• Gradient boosting

• Deep learning:

• DeepSurv

• CoxTime

• DeepHit
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Method

• Feature selection:

• Traditional statistical model:

• Step-wise CoxPH

• Forward selection based on Alkaine Information Criterion (AIC)

• CoxEN

• Tuning alpha through cross validation for Elastic Net penalty

• ML model:

• RSF, GBM

• Full variable

• Chosen based on variable importance

• Deep learning: 

• Use all variables
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Metrics

• C-index – Measure of discriminative performance
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Metrics

• Integrated Brier Score – Combined measure of discrimination, calibration

• n = the number of subjects
• pi = the probability of event predicted by the model for the i subject
• oi = the observed outcome in the i subject 
• Brier score is calculated separately for each time point. 

• Integrate all Brier score at all time point to obtain overall performance 

measure for all times.
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Top-3 60 variables 
model:

DeepSurv
DeepHit

CoxTime, GBM

C-Index
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Multiple Comparisons with the Best (MCB) test with simulated 20 simulations

Red dot = insignificant difference from the best

60-variable model
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Top-3 60-variable model:
DeepSurv

RSF
GBM

IBS
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Multiple Comparisons with the Best (MCB) test with simulated 20 simulations

Red dot = insignificant difference from the best

60-variable model

DeepHit suffer from 
calibration a lot
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Top 3 models with 
feature selection:

GBM
Stepwise CoxPH

CoxEN

C-Index
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Multiple Comparisons with the Best (MCB) test with simulated 20 simulations

Red dot = insignificant difference from the best

Model with feature selection
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Top 3 models with 
feature selection:

RSF
AutoScore-Survival

CoxEN, GBM

IBS
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Multiple Comparisons with the Best (MCB) test with simulated 20 simulations

Red dot = insignificant difference from the best

Model with feature selection

GBM also suffer 
from calibration
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Selected features

• Random forest

• Malignancy

• Total cell count

• Age

• Respiratory rate
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Selected features

• AutoScore-Survival

• Malignancy

• Total cell count

• Age

• Respiratory rate
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Selected features

• CoxEN

• Malignancy

• Age

• Red cell distribution width

• ALB
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Selected features

• Gradient boosting

• Malignancy

• ALB

• Red cell distribution width

• Age
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Discussion

• Traditional statistical methods tend to have better interpretability.

• Machine learning and deep learning algorithms have superior 

discrimination.

• Deep learning can have challenges in calibration.

• AutoScore-Survival is the most easily interpretable model and has 

competitive calibration performance. 



https://breast.v3.predict.cam/tool
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https://www.medrxiv.org/content/10.1101/2020.11.16.20232348v1.full-text
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