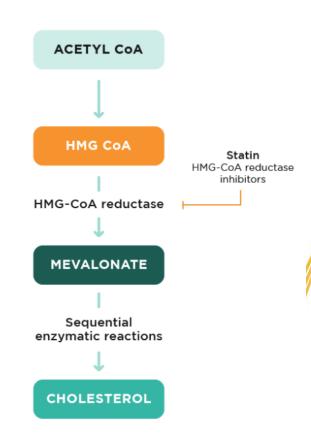


Long-term Statin Use and Risk of Cancers: A Target Trial Emulation Study

Wanchun Xu, Mphil, Linda Chan, MD, Goodarz Danaei, MD, Yuan Lu, ScD, Eric Yuk Fai Wan, PhD


Dr Bikal Shrestha
Presenter
Ph.D. Clinical Epidemiology

Background and Rationale

Background

- Statins are a group of drugs that lower the amount of cholesterol and certain fats in the blood
- Widely used lipid-lowering medications with demonstrated benefits in the primary and secondary prevention of cardiovascular disease
- Statins and cancer risks

Previous evidence

- RCTs and meta-analyses of RCTs demonstrated no significant association between statin use and overall cancer incidence
- Primary endpoints often not being cancer events, the rare number of events, and the relatively short follow-up periods

Previous evidence

- Observational studies have mixed findings reporting decreased incidence of colorectal, breast and prostate and others showing no association to increased risks
- Could be a resulted from potential selection and immortal time bias

Previous evidence

- A recent observational study employed a framework of target trial emulation to analyse electronic health records
- Aforementioned bias mitigated through synchronization of eligibility and treatment assignment with time zero
- Revealed no association of statin with cancer incidence

Rationale

- From the previous approach
 - Further improving the emulation process of statin indication in both treatment arms and
 - Balancing the baseline characteristics
- A long-term association of statin and cancer risk study was conducted

Material and methods

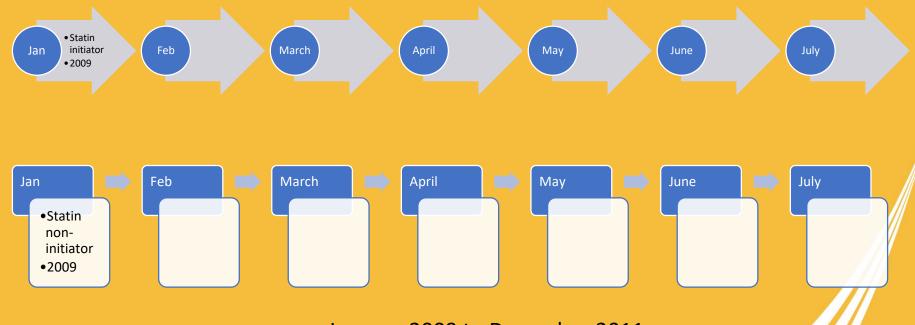
Description of database

- Electronic health records from the clinical management system (CMS) of the Hong Kong Hospital Authority (HA)
- CMS is an integrated clinical workstation that enables access to territory-wide electronic health records in all public health sectors.
- The database includes diagnosis records with high coding accuracy, detailed prescription data, and comprehensive information

Target trial emulation

Eligible subjects

Pre-define indication of statin in each calendar month from January 2009 to December 2011


- Primary prevention
 - Cardiovascular disease (CVD) risk factors with low-density lipoprotein cholesterol (LDL-C) ≥4.1 mmol/L; or ≥2 CVD risk factors with LDL-C ≥3.4 mmol/L;
 - Coronary heart disease (CHD) risk equivalents such as diabetes mellitus or
 - Other target organ damage and LDL-C ≥2.6 mmol/L
- Secondary prevention
 - Established CVD and LDL-C ≥2.6 mmol/L.
- Acquired from local clinical guidelines to mirror real-life practice in statin prescription, similar to the guidelines of 2019 ESC and EAS for the Management of Dyslipidaemias

Exposure and Non exposure

- Statin initiators:
 - defined as the treatment with simvastatin, atorvastatin, luvastatin, rosuvastatin, lovastatin, pitavastatin, and pravastatin (or combination therapy that includes any of these drugs)
- Statin non-initiators: are those who do not initiate statins

Sequential nested target trial emulation

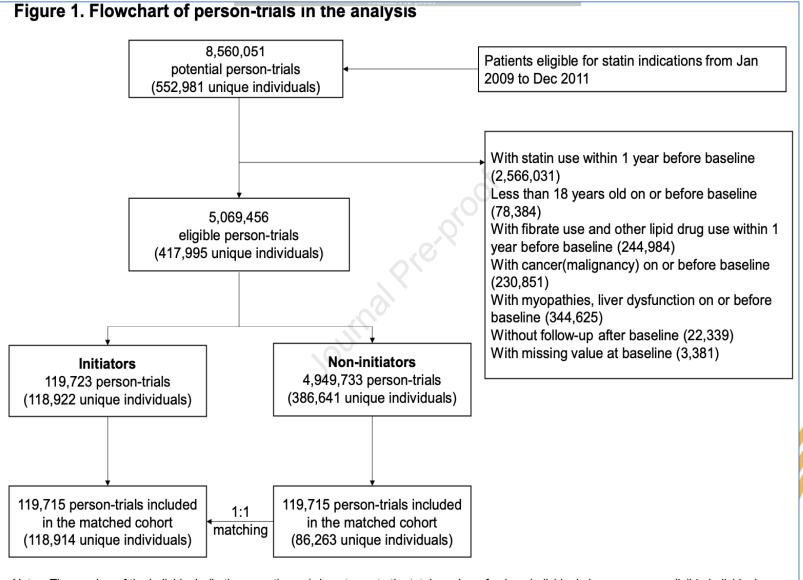
January 2009 to December 2011

- 36 trials created
- On a rolling basis
- Each calendar month

Wisdom of the Land

Follow up periods

- From baseline until the
 - Occurrence of cancer
 - Death or
 - Administrative end of follow-up (31 December 2018)


Outcomes

- Overall incidence of cancer and
- Seven common cancer types
 - Breast cancer, colorectal cancer, haematological cancer, pancreatic cancer, kidney cancer, urothelial carcinoma, and lung cancer.
- Based on criteria
 - International Classification of Primary Care, 2nd Edition (ICPC-2) a
 - International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM), or
 - Relevant clinical parameters

Mimic of randomisation

- The propensity score matched at the ratio of 1:1
- Characteristics used for matching
 - Demographics
 - Comorbidities
 - Drug history one year before matching
 - Service utilisation prior to one year
 - Lifestyle behaviours (smoking)

Notes: The number of the individuals (in the parentheses) do not sum to the total number of unique individuals because some eligible individuals contributed to different arms in different emulated trials.

Statistical analyis

- Intention to treat analysis
 - A time-discrete data was constructed by month for each eligible person-trial
 - Compared the cancer risks between the statin initiators and non-initiators based on their treatment strategy at baseline
 - Hazard ratio was estimated by fitting a pooled logistic model for the cancer incidence
 - Indicators of the assigned strategy (statin initiation at baseline),
 - Follow-up period (linear and quadratic terms) and
 - Baseline covariates

Statistical analysis

- Per protocol analysis
 - Compared the cancer risks between the continuous users and those who never used statins
 - The person trials were artificially censored when the patient deviated from their assigned strategy
 - Inverse probability weighting was adopted to adjust for selection bias introduced by the artificial censoring process

Statistical analysis

- Subgroup analysis
 - Sex (male/female)
 - Age (<70/ ≥ 70) years
 - Charlson Comorbidity Index (≤4/ > 4) score
 - Statin indication (Primary Vs secondary prevention or having CHD risk equivalents)

Statistical analysis

- Sensitivity analysis
 - CVD risk score (Framingham Risk Score)
 - Adjusted for competing risk (death)
 - Excluding familial hypercholesterolemia at baseline
- Non-parametric bootstrapping with 500 samples was also done to test the robustness of estimates
- Statistical significance was defined as a two-tailed p-value < 0.05
- STATA/MP 17 was used for the analysis

SMD after 1:1 matching between variables were far below 0.1

Table 2. Baseline characteristics of eligible person-trials

	Initiator	Non-initiator	SMD
			51410
Age	N=119,715	N=119,715	< 0.01
Sex(male)	64.9 (11.9)	65.0 (13.1)	-0.01
Smoking	58,959 (49.2%)	59,362 (50%)	0.01
Lipid profile	5,368 (4.5%)	5,426 (5%)	<0.01
LDL-C	4.0.(0.0)	2.0 (1.0)	0.02
LDL-C LDL-C Level:	4.0 (0.9)	3.9 (1.0)	0.03
<3.4 mmol/L		20 700 (22 00)	0.07
3.4 - 4.0 mmol/L	32,903 (27.5%)	39,509 (33.0%)	0.07
211 110 IIII101 Z	39,919 (33.3%)	33,583 (28.1%)	
≥ 4.1 mmol/L HDL-C	46,893 (39.2%)	46,623 (38.9%)	.0.01
HDL-C level	1.3 (0.4)	1.3 (0.4)	< 0.01
	10 150 (00 00()	40.001.(04.10()	< 0.01
<1.3/1 mmol/L (female/male)	40,452 (33.8%)	40,801 (34.1%)	<0.01
≥1.3/1 mmol/L (female/male) Total cholesterol	79,263 (66.2%)	78,914 (65.9%)	0.63
	6.0 (1.0)	6.0 (1.2)	0.03
Total cholesterol level:			0.07
<5.2 mmol/L	25,481 (21.3%)	31,691 (26.5%)	0.07
5.2 - 6.1 mmol/L	49,303 (41.2%)	43,554 (36.4%)	
≥ 6.2 mmol/L	44,931 (37.5%)	44,470 (37.1%)	
Charlson comorbidity index	4.5 (2.2)	4.5 (2.6)	0.01
Comorbidities			
Hypertension	79,915 (66.8%)	80,223 (67.0%)	< 0.01
Obesity	33,678 (28.1%)	34,050 (28.4%)	< 0.01
Diabetes	69,838 (58.3%)	70,899 (59.2%)	0.02
Coronary heart disease	20,676 (17.3%)	20,425 (17.1%)	< 0.01
Stroke	26,076 (21.8%)	26,096 (21.8%)	< 0.01
Peripheral vascular disease	611 (0.5%)	623 (0.5%)	< 0.01
Rheumatoid Arthritis	398 (0.3%)	433 (0.4%)	< 0.01
Lupus	216 (0.2%)	216 (0.2%)	< 0.01
Renal disease	16,949 (14.2%)	16,471 (13.8%)	< 0.01
Dementia	1,395 (1.2%)	1,385 (1.2%)	< 0.01
Drug use			
Long-term aspirin users	36,333 (30.3%)	36,953 (30.9%)	0.01
Insulin	8,180 (6.8%)	7,996 (6.7%)	< 0.01
Oral antidiabetic drugs	63,534 (53.1%)	64,765 (54.1%)	0.02
AESI/ARB	56,326 (47.1%)	57,143 (47.7%)	0.01
β-blocker	46,362 (38.7%)	46,565 (38.9%)	< 0.01
Calcium channel blockers	59,699 (49.9%)	60,103 (50.2%)	< 0.01
Diuretic	22,587 (18.9%)	22,333 (18.7%)	< 0.01
Anti-hypertension drugs	96,257 (80.4%)	94,146 (78.6%)	0.04
Service utilization			
SOPC attendance in the past 1 year	74,714 (62.4%)	74,521 (62.2%)	< 0.01
Hospitalization in the past 1 year	43,617 (36.4%)	43,730 (36.5%)	< 0.01

Notes: LDL-C = Low Density Lipoprotein - Cholesterol; HDL-C = High Density Lipoprotein- cholesterol; TC = Total Cholesterol; ACEI/ARB = angiotensin-converting enzyme inhibitor and angiotensin receptor blocker; SOPC = Specialist Out-patient Clinics

Figure 2. Estimated hazard ratio and standardized 10-year risk differences for cancer

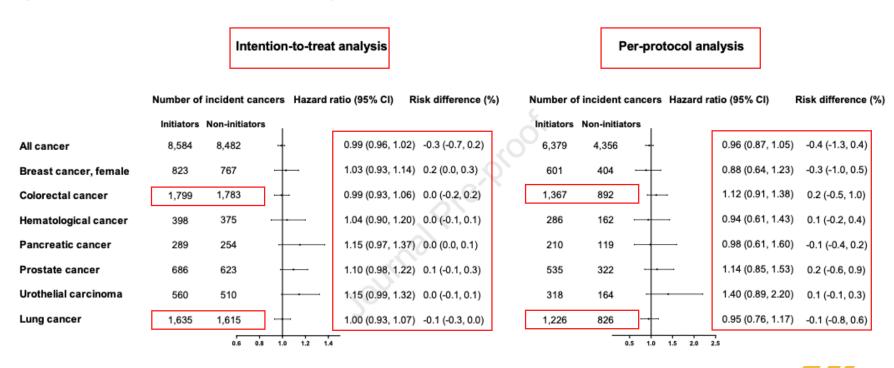
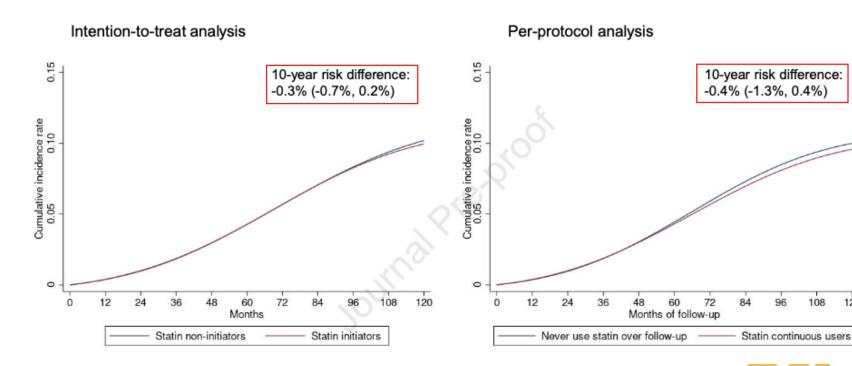




Figure 3. Standardized cumulative incidence curve and risk difference of overall cancer comparing statin therapy with no statin therapy

Estimated hazard ratio for overall cancer incidence in subgroup analysis and sensitivity analysis

Discussion

Discussion

- Findings of no risks of overall cancers from long-term use of statin were consistent with meta-analysis involving 27 RCTs across all subgroups including age, sex, treatment duration and baseline LDL-C
- The median duration of follow-up included analysis was about 5 years
- Post-trial follow-up of Heart protection study investigating long-term efficacy and safety of statin had similar results
- Limit the generalizability as a result of strict eligibility criteria

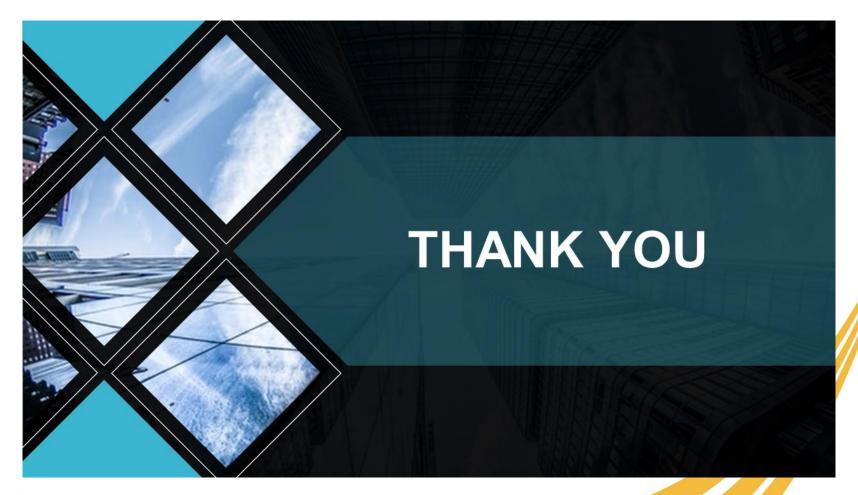
Discussion

- Umbrella reviews of meta-analyses of observational studies and RCTs suggested weak evidence of the preventive effect of statin on site-specific cancers
- Substantial heterogeneity between studies and among various cancer types
- Potential selection and immortal bias as a result of including prevalent statin users in analysis
- Two TTE studies from the UK revealed similar results
- Incorporating the indication of statin therapy in both arms mirrors real-life practice in terms of cardiovascular risks and results in different ethnic population provides reassurance to patients and clinicians

Strengths

- The method employed to identify patients eligible for statin use mirrored real-life clinical practice
- The casual inference framework of the target trial emulation in this study overcomes the potential immortal time and selection biases
- Large population and long-term follow of up to 10 years that allow the capture of rare cancers

Limitations


- Unmeasured confounding such as family history or lifestyle factors (alcohol use and exercise pattern)
- Misclassification bias
- Framingham Risk Score used in the sensitivity analysis was not recalibrated in the local population

Conclusion

Conclusion

- Emulated target trial suggested that statin use has no impact on cancer incidence over a 10-year follow-up period
- No observable risk change for cancer was found in all cancer subtypes of interest and patient subgroups including sex, age, comorbidities, and statin indications
- The finding clarified the association between statin use and cancer risk in real-life clinical practice
- Additional reassurance to patients and clinical practitioners

Wisdom of the Land