

Usage of Propensity score-based studies in NMA: a scoping review

Lertkong Nitiwarangkul, MD.

Last search from PubMed 24/01/2024

What is propensity score?

- Developed to remove confounding bias when comparing treatment effect in observational study
- By creating new control group
 - Better matched with treatment subject
 - Base on similar probability to receive the treatment
- Use characteristic data to run logistic regression
 - Estimate correlation of each variable
 - Then predicted probability from 0 to 1

Propensity score matching (PSM)

 Each patient from treatment group is matched with patient from control group based on closet probability of treatment

- One method to check after matching
 - Should be no significant difference in covariate characteristics between treatment and control group

Propensity score matching (PSM)

- Limitation
 - Removal of unmatched controls → Discarding of information → Reduce sample size
 - Quality of PSM study → limited by the quality of PS model which depend on availability and selection of confounding predictors

The reason why PSM not equal to RCT

Search term 24/01/2024

Search	Actions	Details	Query	Results	Time
#5	•••	>	Search: #3 AND #4 Sort by: Most Recent	32	23:15:51
#4	•••	>	Search: "network meta-analysis" Sort by: Most Recent	10,240	23:15:42
#3	•••	>	Search: #1 OR #2 Sort by: Most Recent	52,665	23:15:34
#2	•••	>	Search: "inverse probability" Sort by: Most Recent	7,816	23:15:18
#1	•••	>	Search: "propensity score" Sort by: Most Recent	47,201	23:15:07

Figure 1

Summarization of presenter paper

Optimal temperature management in aortic arch surgery: A systematic review and network meta-analysis

	Intervention	OR (95%CI)		
Outcome		Pool All study	Pool only RCT and PSM	
	Deep	1.71 (1.23, 2.39)	1.29 (0.85, 1.95)	
Operative mortality	Moderate	1.50 (1.12, 2.00)	1.45 (1.05, 2.00)	
	Mild	1	1	
	Deep	1.50 (1.14, 1.98)	1.74 (1.09, 2.77)	
Postoperative incidence of stroke	Moderate	1.03 (0.81, 1.32)	1.08 (0.73, 1.60)	
	Mild	1	1	
	Deep	1.09 (0.65, 1.83)	0.91 (0.57, 1.44)	
Postoperative incidence of acute kidney insufficiency	Moderate	1.07 (0.65, 1.77)	0.81 (0.52, 1.27)	
or dedice Mariey modification	Mild	1	1	

Summarization of studies in a scoping review

22)	Annals of the Academy of Medicine, Singapore (8.713)
	_,

Journal (IF)

Journal of the American

Heart Association (6.107)

Catheter Cardiovascular

Intervention (2.585)

Journal of Cardiac Surgery (1.778)

2.PSMs (18)

(1)

1.RCTs (16)

2.PSWMs (17) 1.RCTs (13)

2.PSMs (29)

1.RCTs (2)

2.PSMs (6)

1.RCTs (7)

2.PSMs (1)

1.RCTs (2)

2.PSMs (19)

1.RCTs (2)

2.PSMs (8) 1.RCTs (7)

2.PSMs (5)

Study type included

Include only RCTs NA

Subgroup

or sensitivity analysis

The American Journal Fong KY (2023) of Cardiology (2.778)

Frequentist NMA

Frequentist NMA

Bayesian random

effects NMA

Frequentist NMA

Bayesian

Bayesian random

effects NMA

NMA method

1.RCTs (4) 2.PSMs (2) 3. Retrospective study

Include only RCTs

Include only RCTs

Include only RCTs

NA

NA

NA

NA

Include only RCTs

Table 1

Author (Year)

Kuno T (2021)

Iannaccone M (2020)

Ogami T (2022)

Yokoyama Y (2023)

Yokoyama Y (2021)

Yokoyama Y (2021)

Fong KY 3 (2023)

Zhang Y (2022)

Rhee TM (2022)

Kabir T (2022)

Lloyd D (2018)

Chow R (2021)

Low CJW (2024)

Fong KY (20)

Stryczyńska KP (2022) Verardi R (2018) Yokoyama Y (2022)

Journal of Neurology and Neurosurgery (10.154)

Journal of Interventional Cardiology (1.783) The Journal of Cardiovascular Surgery (1.4) Journal of the American Heart Association (6.107) Journal of Cardiac Surgery (1.778)

Journal of the American College (1.75)

Frontiers in Oncology (5.738)

Frontiers in

Cardiovascular Medicine (3.6)

Journal of surgery (15.3)

Journal of Thoracic Disease (2.5)

Acta Oncologica (4.311)

Intensive Care Medicine (41.79)

Frequentist NMA Journal of Cardiac Surgery (1.778)

Frequentist NMA Frequentist NMA Frequentist NMA Frequentist NMA Bayesian random effects NMA

Frequentist NMA of

Each DOACs and

Warfarin

Frequentist NMA

Bayesian

Frequentist NMA

Frequentist NMA

1.RCTs (3) 2.PSMs (10) 1.PSMs (6) 2.Cohort (4) 1.RCTs (10) 2.PSMs (15) 1.RCTs (5) 2.PSMs (10)

3.MVRs (4)

1.RCTs (4)

2.PSMs (23) 1.RCTs (7)

2.PSMs (25) 1.RCTs (6)

2.PSMs (18) 1.RCTs (13)

2.PSMs (25)

NA NA NA Direct DOAC vs Warfarin 1.Pool All studies 2.RCTs+PSMs

NA

NA

NA

NA

Wisdom of the Land

Result of individual study

Compare result among pooling methods

Ablation therapies for paroxysmal atrial fibrillation: A systematic review and patient-level network meta-analysis

Outcomo	Intervention	HR (95%CI)		
Outcome		Pool All study	Pool only RCT	
	CBA+RFA	0.14 (0.07, 0.30)	0.14 (0.06, 0.32)	
	СВА	0.35 (0.25, 0.48)	0.34 (0.23, 0.50)	
	RFA	0.34 (0.25, 0.47)	0.34 (0.24, 0.49)	
Atrial fibrillation recurrence	НВА	0.20 (0.10, 0.41)	0.21 (0.09, 0.50)	
	LBA	0.43 (0.15, 1.26)	0.38 (0.10, 1.42)	
	PVAC	0.33 (0.18,0.62)	0.33 (0.17, 0.66)	
	AAD	1	1	

AAD: antiarrhythmic drugs; CBA: cryoballoon ablation; CBA + RFA: combined cryoballoon plus radiofrequency ablation; HBA: hot balloon ablation; LBA: laser balloon ablation; PVAC: pulmonary vein ablation catheter; RFA: radiofrequency ablation

League table HR all studies

0.14 (0.07-0.30)	0.35 (0.25-0.48)	0.34 (0.25-0.47)	0.20 (0.10-0.41)	0.43 (0.15-1.26)	0.33 (0.18-0.62)	AAD
0.43 (0.18–1.02)	1.04 (0.59–1.86)	1.03 (0.61–1.74)	0.61 (0.24–1.54)	1.30 (0.40-4.20)	PVAC	
0.33 (0.09–1.13)	0.80 (0.29-2.21)	0.79 (0.28–2.25)	0.47 (0.13–1.66)	LBA		
0.70 (0.25–1.94)	1.71 (0.80–3.65)	1.69 (0.79–3.63)	HBA			
0.41 (0.21-0.83)	1.01 (0.79–1.29)	RFA				
0.41 (0.20-0.83)	CBA					
CBA + RFA						

League table HR only RCT studies

CBA+RFA						
0.41 (0.19-0.90)	CBA					
0.41 (0.19-0.90)	1.00 (0.73-1.37)	RFA				
0.68 (0.20-2.30)	1.66 (0.63-4.33)	1.65 (0.64-4.29)	НВА			
0.37 (0.08-1.63)	0.90 (0.26-3.16)	0.90 (0.25-3.28)	0.54 (0.1164)	LBA		
0.43 (0.16-1.13)	1.04 (0.53-2.01)	1.03 (0.57-1.86)	0.62 (0.20-1.92)	1.15 (0.28-4.78)	PVAC	
0.14 (0.06-0.32)	0.34 (0.23-0.50)	0.34 (0.24-0.49)	0.21 (0.09-0.50)	0.38 (0.10-1.42)	0.33 (0.17-0.66)	AAD

Duration of Antiplatelet Therapy Following Transcatheter Aortic Valve Replacement: Systematic Review and Network Meta-Analysis

Outcome	Intervention	RR (95%CI)		
Outcome	intervention	Pool All study	Pool only RCT	
Major or life threatening	3-month DAPT	2.13 (1.33, 3.40)	2.13 (1.33, 3.40)	
Major or life-threatening bleeding	6-month DAPT	2.54 (1.49, 4.33)	1.33 (0.31, 5.70)	
bleeding	SAPT	1	1	
	3-month DAPT	1.13 (0.62, 2.04)	1.13 (0.62, 2.04)	
Stroke	6-month DAPT	1.32 (0.62, 2.81)	0.50 (0.05, 5.37)	
	SAPT	1	1	
	3-month DAPT	0.98 (0.60, 1.61)	0.98 (0.60, 1.61)	
All-cause mortality	6-month DAPT	1.05 (0.87, 1.26)	1.00 (0.21, 4.76)	
	SAPT	1	1	

DAPT: dual antiplatelet therapy; SAPT: single antiplatelet therapy

Comparison between functional and intravascular imaging approaches guiding percutaneous coronary intervention:

A network meta-analysis of randomized and propensity matching studies

Outcome	Intervention	OR (95%CI)		
Outcome		Pool All study	Pool only RCT	
	FFR	0.91 (0.59, 1.39)	0.81 (0.64, 1.02)	
Major Adverse	IVUS	0.66 (0.45, 0.97)	0.71 (0.52, 0.88)	
Cardiovascular Events	OCT	0.69 (0.28, 1.74)	1.43 (0.25, 18.33)	
	CA	1	1	
	FFR	0.83 (0.62, 1.13)	0.78 (0.63, 0.98)	
All-cause death	IVUS	0.72 (0.52, 0.97)	0.75 (0.50, 0.97)	
All-cause death	OCT	0.44 (0.25, 0.79)	1.65 (0.22, 13.49)	
	CA	1	1	
	FFR	0.75 (0.53, 1.07)	0.74 (0.57, 0.99)	
Myocardial infarction	IVUS	0.67 (0.49, 0.90)	0.82 (0.54, 0.94)	
Myocardial infarction	OCT	0.78 (0.41, 1.51)	0.85 (0.01, 29.18)	
	CA	1	1	

CA: coronary angiography; FFR: fractional flow reserve; IVUS: intravascular ultrasound; OCT: optical coherence tomography

Minimally invasive versus conventional aortic valve replacement: The network meta-analysis

Outcome	Intervention	RR (95%CI)		
Outcome		Pool All study	Pool only RCT	
	MS	0.60 (0.41, 0.90)	0.87 (0.36, 2.09)	
Operative mortality	RMT	1.19 (0.61, 2.31)	-	
	FS	1	1	
	MS	0.83 (0.64, 1.08)	0.72 (0.36, 1.45)	
Reoperation for bleeding	RMT	1.37 (0.99, 1.90)	-	
	FS	1	1	

FS: full sternotomy; MS: mini-sternotomy; RMT: right mini-thoracotomy

Harvesting techniques of the saphenous vein graft for coronary artery bypass: Insights from a network meta-analysis

Outcomo	Intervention	HR (95%CI)		
Outcome		Pool All study	Pool only RCT	
	EVH	0.77 (0.65, 0.92)	0.77 (0.38, 1.58)	
All-cause mortality	NT	0.96 (0.79, 1.15)	0.74 (0.29, 1.88)	
	OVH	1	1	

Outcome	Intervention	RR (95%CI)		
Outcome		Pool All study	Pool only RCT	
	EVH	1.39 (0.76, 2.56)	1.53 (0.73, 3.24)	
Graft failure	NT	0.54 (0.32 0.90)	0.54 (0.29, 1.02)	
	OVH	1	1	

OVH: open vein harvesting; EVH: endoscopic vein harvesting; NT: no-touch vein harvesting

Thank you for your attention