

Usage of Propensity score-based studies in NMA: a scoping review

Lertkong Nitiwarangkul, MD.

Last search from PubMed 24/01/2024

What is propensity score?

- Developed to remove confounding bias when comparing treatment effect in observational study
- By creating new control group
 - Better matched with treatment subject
 - Base on similar probability to receive the treatment
- Use characteristic data to run logistic regression
 - Estimate correlation of each variable
 - Then predicted probability from 0 to 1

Propensity score matching (PSM)

- Each patient from treatment group is matched with patient from control group based on closet probability of treatment
- One method to check after matching
 - Should be no significant difference in covariate characteristics between treatment and control group

Propensity score matching (PSM)

- Limitation
 - Removal of unmatched controls → Discarding of information → Reduce sample size
 - Quality of PSM study → limited by the quality of PS model which depend on availability and selection of confounding predictors
- The reason why PSM not equal to RCT

Search term 24/01/2024

S earch	Actions	Details	Query	Results	Time
#5		>	Search: #3 AND #4 Sort by: Most Recent	32	23:15:51
#4	•••	>	Search: "network meta-analysis" Sort by: Most Recent	10,240	23:15:42
#3	•••	>	Search: #1 OR #2 Sort by: Most Recent	52,665	23:15:34
#2	•••	>	Search: "inverse probability" Sort by: Most Recent	7,816	23:15: <mark>1</mark> 8
#1	•••	>	Search: "propensity score" Sort by: Most Recent	47,201	23:15:07

Figure 1

Mahidol University

Faculty of Medicine Ramathibodi Hospital Department of Clinical Epidemiology and Biostatistics

Summarization of presenter paper

Optimal temperature management in aortic arch surgery: A systematic review and network meta-analysis

- ·		OR (95%CI)		
Outcome	Intervention	Pool All study	Pool only RCT and PSM	
	Deep	1.71 (1.23 <i>,</i> 2.39)	1.29 (0.85 <i>,</i> 1.95)	
Operative mortality	Moderate	1.50 (1.12, 2.00)	1.45 (1.05, 2.00)	
	Mild	1	1	
	Deep	1.50 (1.14, 1.98)	1.74 (1.09, 2.77)	
Postoperative incidence of stroke	Moderate	1.03 (0.81, 1.32)	1.08 (0.73, 1.60)	
	Mild	1	1	
	Deep	1.09 (0.65, 1.83)	0.91 (0.57, 1.44)	
Postoperative incidence of acute kidney insufficiency	Moderate	1.07 (0.65, 1.77)	0.81 (0.52, 1.27)	
of dedice kidney insufficiency	Mild	1	1	

Summarization of studies in a scoping review

19171	QUA	1
1 Ser		TES
(* 1		*
WER CO	ยาสัยง	15 AC

Mahidol Unive Faculty of Medicine Ran Department of Clinical E

Table 1

Wisdom of the Land

Author (Year)	Journal (IF)	NMA method	Study type included	Subgroup or sensitivity analysis
Fong KY (2022)	Annals of the Academy of Medicine, Singapore (8.713)	Frequentist NMA	1.RCTs (18) 2.PSMs (6)	Include only RCTs
Fong KY (2023)	The American Journal of Cardiology (2.778)	Frequentist NMA	1.RCTs (9) 2.PSMs (18)	NA
Kuno T (2021)	Journal of the American Heart Association (6.107)	Frequentist NMA	1.RCTs (4) 2.PSMs (2) 3.Retrospective study (1)	Include only RCTs
lannaccone M (2020)	Catheter Cardiovascular Intervention (2.585)	Bayesian random effects NMA	1.RCTs (16) 2.PSWMs (17)	Include only RCTs
Ogami T (2022)	Journal of Cardiac Surgery (1.778)	Frequentist NMA	1.RCTs (13) 2.PSMs (29)	Include only RCTs
Stryczyńska KP (2022)	Journal of Neurology and Neurosurgery (10.154)	Bayesian	1.RCTs (2) 2.PSMs (6)	NA
Verardi R (2018)	Journal of Interventional Cardiology (1.783)	Bayesian random effects NMA	1.RCTs (7) 2.PSMs (1)	NA
Yokoyama Y (2022)	The Journal of Cardiovascular Surgery (1.4)	Frequentist NMA	1.RCTs (2) 2.PSMs (19)	NA
Yokoyama Y (2023)	Journal of the American Heart Association (6.107)	Frequentist NMA	1.RCTs (2) 2.PSMs (8)	NA
Yokoyama Y (2021)	Journal of Cardiac Surgery (1.778)	Frequentist NMA	1.RCTs (7) 2.PSMs (5)	Include only RCTs
Yokoyama Y (2021)	Journal of Cardiac Surgery (1.778)	Frequentist NMA	1.RCTs (3) 2.PSMs (10)	NA
Fong KY 3 (2023)	Journal of the American College (1.75)	Frequentist NMA	1.PSMs (6) 2.Cohort (4)	NA
Zhang Y (2022)	Frontiers in Oncology (5.738)	Bayesian random effects NMA	1.RCTs (10) 2.PSMs (15)	NA
Rhee TM (2022)	Frontiers in Cardiovascular Medicine (3.6)	Frequentist NMA of Each DOACs and Warfarin	1.RCTs (5) 2.PSMs (10) 3.MVRs (4)	Direct DOAC vs Warfarin 1.Pool All studies 2.RCTs+PSMs
Kabir T (2022)	Journal of surgery (15.3)	Frequentist NMA	1.RCTs (4) 2.PSMs (23)	NA
Lloyd D (2018)	Journal of Thoracic Disease (2.5)	Bayesian	1.RCTs (7) 2.PSMs (25)	NA
Chow R (2021)	Acta Oncologica (4.311)	Frequentist NMA	1.RCTs (6) 2.PSMs (18)	NA
Low CJW (2024)	Intensive Care Medicine (41.79)	Frequentist NMA	1.RCTs (13) 2.PSMs (25)	NA

Result of individual study

Compare result among pooling methods

Ablation therapies for paroxysmal atrial fibrillation: A systematic review and patient-level network meta-analysis

Outcome	Intervention	HR (95%CI)		
Outcome		Pool All study	Pool only RCT	
	CBA+RFA	0.14 (0.07, 0.30)	0.14 (0.06, 0.32)	
	CBA	0.35 (0.25, 0.48)	0.34 (0.23, 0.50)	
	RFA	0.34 (0.25, 0.47)	0.34 (0.24, 0.49)	
Atrial fibrillation recurrence	HBA	0.20 (0.10, 0.41)	0.21 (0.09, 0.50)	
	LBA	0.43 (0.15, 1.26)	0.38 (0.10, 1.42)	
	PVAC	0.33 (0.18,0.62)	0.33 (0.17, 0.66)	
	AAD	1	1	

AAD: antiarrhythmic drugs; CBA: cryoballoon ablation; CBA + RFA: combined cryoballoon plus radiofrequency ablation; HBA: hot balloon ablation; LBA: laser balloon ablation; PVAC: pulmonary vein ablation catheter; RFA: radiofrequency ablation

League table HR all studies

CBA + RFA						
0.41 (0.20-0.83)	CBA					
0.41 (0.21-0.83)	1.01 (0.79–1.29)	RFA				
0.70 (0.25–1.94)	1.71 (0.80–3.65)	1.69 (0.79–3.63)	HBA			
0.33 (0.09–1.13)	0.80 (0.29–2.21)	0.79 (0.28–2.25)	0.47 (0.13–1.66)	LBA		
0.43 (0.18–1.02)	1.04 (0.59–1.86)	1.03 (0.61–1.74)	0.61 (0.24–1.54)	1.30 (0.40-4.20)	PVAC	
0.14 (0.07-0.30)	0.35 (0.25-0.48)	0.34 (0.25-0.47)	0.20 (0.10-0.41)	0.43 (0.15-1.26)	0.33 (0.18-0.62)	AAD

League table HR only RCT studies

CBA+RFA						
0.41 (0.19-0.90)	CBA					
0.41 (0.19-0.90)	1.00 (0.73-1.37)	RFA				
0.68 (0.20-2.30)	1.66 (0.63-4.33)	1.65 (0.64-4.29)	HBA			
0.37 (0.08-1.63)	0.90 (0.26-3.16)	0.90 (0.25-3.28)	0.54 (0.1164)	LBA		
0.43 (0.16-1.13)	1.04 (0.53-2.01)	1.03 (0.57-1.86)	0.62 (0.20-1.92)	1.15 (0.28-4.78)	PVAC	
0.14 (0.06-0.32)	0.34 (0.23-0.50)	0.34 (0.24-0.49)	0.21 (0.09-0.50)	0.38 (0.10-1.42)	0.33 (0.17-0.66)	AAD

Duration of Antiplatelet Therapy Following Transcatheter Aortic Valve Replacement: Systematic Review and Network Meta-Analysis

Outcome	Intervention	RR (95%CI)		
Outcome	intervention	Pool All study	Pool only RCT	
Maior or life threatening	3-month DAPT	2.13 (1.33, 3.40)	2.13 (1.33, 3.40)	
Major or life-threatening	6-month DAPT	2.54 (1.49, 4.33)	1.33 (0.31, 5.70)	
bleeding	SAPT	1	1	
	3-month DAPT	1.13 (0.62, 2.04)	1.13 (0.62, 2.04)	
Stroke	6-month DAPT	1.32 (0.62, 2.81)	0.50 (0.05, 5.37)	
	SAPT	1	1	
	3-month DAPT	0.98 (0.60, 1.61)	0.98 (0.60, 1.61)	
All-cause mortality	6-month DAPT	1.05 (0.87, 1.26)	1.00 (0.21, 4.76)	
	SAPT	1	1	

DAPT: dual antiplatelet therapy; SAPT: single antiplatelet therapy

Comparison between functional and intravascular imaging approaches guiding percutaneous coronary intervention:

A network meta-analysis of randomized and propensity matching studies

Outcome	Intervention	OR (9	5%CI)
Outcome	intervention	Pool All study	Pool only RCT
	FFR	0.91 (0.59, 1.39)	0.81 (0.64, 1.02)
Major Adverse	IVUS	0.66 (0.45, 0.97)	0.71 (0.52, 0.88)
Cardiovascular Events	ОСТ	0.69 (0.28, 1.74)	1.43 (0.25, 18.33)
	CA	1	1
	FFR	0.83 (0.62, 1.13)	0.78 (0.63, 0.98)
All-cause death	IVUS	0.72 (0.52, 0.97)	0.75 (0.50, 0.97)
All-cause death	ОСТ	0.44 (0.25, 0.79)	1.65 (0.22, 13.49)
	CA	1	1
	FFR	0.75 (0.53, 1.07)	0.74 (0.57, 0.99)
Muccardial infarction	IVUS	0.67 (0.49, 0.90)	0.82 (0.54, 0.94)
Myocardial infarction	ОСТ	0.78 (0.41, 1.51)	0.85 (0.01, 29.18)
	CA	1	1

CA: coronary angiography; FFR: fractional flow reserve; IVUS: intravascular ultrasound; OCT: optical coherence tomography

Minimally invasive versus conventional aortic valve replacement: The network meta-analysis

Outcome	Intervention	RR (95%CI)		
Outcome	Intervention	Pool All study	Pool only RCT	
	MS	0.60 (0.41, 0.90)	0.87 (0.36, 2.09)	
Operative mortality	RMT	1.19 (0.61, 2.31)	-	
	FS	1	1	
	MS	0.83 (0.64, 1.08)	0.72 (0.36, 1.45)	
Reoperation for bleeding	RMT	1.37 (0.99, 1.90)	-	
	FS	1	1	

FS: full sternotomy; MS: mini-sternotomy; RMT: right mini-thoracotomy

Harvesting techniques of the saphenous vein graft for coronary artery bypass: Insights from a network meta-analysis

Outcomo	Intervention	HR (95%CI)		
Outcome	intervention	Pool All study	Pool only RCT	
All-cause mortality	EVH	0.77 (0.65, 0.92)	0.77 (0.38, 1.58)	
	NT	0.96 (0.79, 1.15)	0.74 (0.29, 1.88)	
	OVH	1	1	

Outcome	Intonvontion	RR (95%CI)		
Outcome	Intervention	Pool All study	Pool only RCT	
Graft failure	EVH	1.39 (0.76, 2.56)	1.53 (0.73, 3.24)	
	NT	0.54 (0.32 0.90)	0.54 (0.29, 1.02)	
	OVH	1	1	

OVH: open vein harvesting; EVH: endoscopic vein harvesting; NT: no-touch vein harvesting

Thank you for your attention