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EEG temporal–spatial transformer 
for person identification
Yang Du1,3, Yongling Xu2,3, Xiaoan Wang2,3*, Li Liu1* & Pengcheng Ma1*

An increasing number of studies have been devoted to electroencephalogram (EEG) identity 
recognition since EEG signals are not easily stolen. Most of the existing studies on EEG person 
identification have only addressed brain signals in a single state, depending upon specific and 
repetitive sensory stimuli. However, in reality, human states are diverse and rapidly changing, which 
limits their practicality in realistic settings. Among many potential solutions, transformer is widely 
used and achieves an excellent performance in natural language processing, which demonstrates the 
outstanding ability of the attention mechanism to model temporal signals. In this paper, we propose 
a transformer-based approach for the EEG person identification task that extracts features in the 
temporal and spatial domains using a self-attention mechanism. We conduct an extensive study to 
evaluate the generalization ability of the proposed method among different states. Our method is 
compared with the most advanced EEG biometrics techniques and the results show that our method 
reaches state-of-the-art results. Notably, we do not need to extract any features manually.

In today’s globalized world of information, the security of personal information has become particularly 
 important1, leading to the need for new and more sophisticated identification technologies. Even though exist-
ing identification technologies have widely applied in daily life and accomplished high accuracy, including fin-
gerprints, iris, or face  recognition2–4 and achieving high recognition accuracy rates. However, the problem with 
these biometrics is that they can be easily stolen or revealed inadvertently. The security of these technologies is 
not effectively guaranteed. Compared to conventional biometrics mentioned above, cognitive biometrics has 
attracted more research interest for its security reasons.

Unlike conventional biometrics, which relies on physiological or behavioral characteristics, cognitive biomet-
rics is a type of biometrics that measures human brain activity and analyzes how people “think”5. There are vari-
ous human brain activity measurement methods, and these methods are based on different principles to reflect 
brain activity. Functional magnetic resonance imaging (fMRI) measured the concentration of oxyhemoglobin and 
deoxyhemoglobin, which can indicate the hemodynamic changes caused by neuronal activity. Positron emission 
tomography (PET) measures neuronal metabolism by injecting a radioactive substance into the subject’s body. 
Near-infrared spectroscopy (NIRS) measures the concentration of oxyhemoglobin and deoxyhemoglobin by the 
intensity of reflection of infrared light from the cerebral cortex to reflect brain activity. Magnetoencephalography 
(MEG) collects the magnetic field generated by brain currents while electroencephalography (EEG) collects the 
electric fields generated.

We chose EEG for the identification task. Compared to other techniques, EEG can be acquired by portable 
and relatively inexpensive  devices6,7. In particular, non-invasive brain–computer interface technology is often 
used to capture EEG signals, which is safer and more convenient than the invasive approaches. The amplitude 
of the EEG signal of normal humans ranges from 10 to 200 µ V, while frequency usually varies between 0.5 and 
40 Hz. It has a high temporal resolution, usually in the order of  milliseconds5. In terms of spatial resolution, 
EEG reveals a lower spatial resolution due to the size limitation of the acquisition device and the interaction of 
the electric fields among different brain regions. Yet it is worth noting that individual variability is the basis of 
person identification, and EEG is no exception. Some  studies8,9 have demonstrated that EEG signals have strong 
individual variability, especially in alpha  waves10. Consistency is another crucial factor for identification, as this 
biometrics requires test–retest, which means that the features stably remain invariant across time and  place11,12. 
The EEG signal is also highly secure. This is especially important for person identification as person identifica-
tion requires specialized acquisition equipment and amplifiers to collect information. Such personal information 
must not be inadvertently leaked or accessed remotely. Hence, data security-wise, EEG-based identification is 
reliable since it is more difficult for criminals to exploit. EEG ensures information security through emotion 
detection. Identification cannot be processed without users’ consent, as nervousness detected by EEG can lead to 
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authentication failure. In addition, while the EEG signal is an internal trait that can only be generated when the 
brain is active, it naturally carries the function of liveness  detection13. Last but not least, EEG signals are universal, 
and EEG signals can be captured from every individual unless some pathology causes structural damage to the 
brain that prevents the production of EEG signals.

In summary, EEG person identification shows great promise for application. However, most of the current 
research only studied the recognition in a single state, which is still unable to guarantee the accuracy and robust-
ness of recognition. Therefore, we applied the attention mechanism to construct a network for identification 
tasks and made great progress. The main contributions of this paper are described below:

• We propose the transformer encoder-based neural network model ETST, EEG temporal–spatial transformer, 
which can commendably extract the information of EEG signals about individual differences in time and 
space domains well and ensure the accuracy of identification even in the case of cross-state.

• Extensive experiments are conducted and the results show that our model outperforms all state-of-the-art 
models. We investigate the role of temporal and spatial information of EEG signals on the person identifica-
tion task. In addition, the effect of different position encoding on EEG transformer is investigated.

• We explore the effect of sample length on our transformer-based model and introduce a data augmentation 
method to improve the performance. The method increases the sample size by increasing the overlap rate 
between samples in time and an improvement of between 1 and 3% is observed with the strategy finally.

Related works
The current EEG-based biometrics systems are broadly divided into two approaches. One is to extract distinguish-
able features first and then utilize traditional machine learning methods for classification, and the other is to 
employ an end-to-end deep learning approach, which accomplishes both feature extraction and classification. 
Kong et al. assume that task-related EEG can be decomposed into two parts, including background EEG (BEEG) 
and residue EEG (REEG). BEEG contains a person’s distinctive features whereas REEG is composed of task-
evoked EEG and noises. Kong utilized the identification algorithm based on low-rank matrix decomposition 
(LRDM) to decompose the EEG signal and then used the maximum correntropy criterion (MCC) algorithm to 
accomplish the  classification14. Wang et al. argued that the functional connectivity of the brain reflects individual 
specificity. They computed the connectivity of the EEG signal by calculating metrics of EEG signals as feature 
vectors and then used a discriminant model based on Mahalanobis distance to conduct person  identification15. 
Moctezuma et al. adopted empirical mode decomposition (EMD) to decompose EEG signals into a set of intrinsic 
mode functions (IMFs), and subsequently selected the closest two IMFs and decomposed them into four features. 
In this way each channel will return eight features. Eventually, they employed support vector machine (SVM) with 
radial basis function (RBF) as a  classifier16. Besides using SVM as a classifier, Alyasseri et al. applied FPAβ-hc, 
which is a hybrid optimization technique based on binary flower pollination algorithm (FPA) and β-hill climbing 
to extract  features17. Yıldırım et al. constructed a 1D CNN model stacked with multiple layers to extract deep-
level features of EEG signals about individual  specificity18. Wilaiprasitporn et al. tried to combine convolutional 
neural network (CNN) and recurrent neural network (RNN), where CNN is used to extract spatial features and 
RNN is used to extract temporal  features19. Özdenizci et al. tried an adversarial inference approach within a deep 
convolutional network structure, which is able to learn session-invariant and person discriminative  features20.

Currently, Transformer has shown good results in both natural language processing (NLP) and computer 
vision (CV)  fields21–23. Transformer is able to model long-range dependencies and has a faster computation 
speed compared with RNN or long short-term memory (LSTM) because of its parallel computing characteristic. 
Therefore, Transformer has taken the lead in the NLP field, attracting interest from researchers. However, the 
ability of Transformer to process EEG signals has yet to be investigated by scholars. Arjun et al. directly migrated 
ViT, which performs well on images, to EEG signals. The EEG signal in 1D was cut into different patches in the 
time dimension and used as input to the ViT  model24. Lee et al. combined EEGNet and transformer, using an 
EEGNet-based convolutional neural network to obtain the temporal–spectral-spatial  features25. Tao et al. pro-
posed a gated Transformer, which is a combination of the self-attentive mechanism and the gating mechanism 
in GRU to obtain the information of EEG signals on time  series26. Song et al. proposed a method based on com-
mon spatial pattern (CSP) to extract the spatial features of the EEG signals along with a self-attention algorithm 
to decode them. This method achieves a state-of-the-art  effect27. These approaches show that the self-attentive 
mechanism can improve the performance of brain–computer interface (BCI) systems. Therefore, we designed 
our model based on the self-attention mechanism.

Methodology
In this paper, we propose an EEG person identification model based on the attention  mechanism21, and the 
overall framework diagram is shown in Fig. 1. Unlike other models, our approach does not require additional 
extraction of artificial features of EEG signals, and only raw EEG signals are used for the identification task. 
Considering that EEG signal is both continuous in time and functionally connected among channels, we design 
the model to capture both temporal and spatial features. The model consists of two main parts, containing a 
temporal transformer encoder (TTE) and a spatial transformer encoder (STE). In the TTE part, we use the atten-
tion mechanism in time domain to calculate the correlation among sampling points in samples, which is used 
to extract the time-domain features of the EEG. Since there is individual specificity in the coupling relationship 
of channels between individuals, we design the STE part to calculate the spatial domain attention for chan-
nels to capture the coupling relationship among different channel signals, which enables the model to identify 
different individuals more stably based on the specific coupling relationship. Finally, a simple fully connected 
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layer is applied to aggregate global information and perform classification. In the following, we will explain the 
preprocessing of raw EEG and components of the ETST model in detail.

Preprocessing. Before feeding data into ETST, we first processed the raw EEG. The original EEG signal is 
filtered using a [0.5 42] Hz bandpass filter to remove low and high-frequency noises. We remove the ocular and 
muscular artifacts using independent component analysis (ICA). The size of each sample is T × C, where T is 
the number of sampling points and C is the number of EEG channels. For each sample, the following z-score 
standardization will be employed over time for each channel:

where t , c in xt,c denotes the sampling point and the channel of the sample, xc denotes the mean of the sample 
on channel c and σc denotes the standard deviation of the sample on channel c. After standardization, the mean 
of the data on each channel of the sample is 0 and the standard deviation is 1.

Temporal transformer encoder. We use temporal correlation, or correlation between two time points, 
to capture the time-domain information of EEG signals. Inspired by the attention  mechanism21, we use multiple 
transformer blocks to encode the temporal information of the EEG. Instead of convolution focusing on local 
information, TTE takes into account the long-distance dependence in time. We directly feed EEG data pre-
processed into the transformer, instead of employing complicated transformations such as  convolutions28,29 or 
trainable linear  projections24. For a given input X = [x1, x2, . . . , xT ] ∈ R

T×C , we compute self-attention in the 
transformer block to estimate temporal correlations, and then we weight the sum to obtain the new representa-
tion. Self-attention is computed as follows:

where Q, K, and V are all matrices obtained by linear projections of the input and dk is a scalar factor. To jointly 
attend to information from different representation subspaces at different positions, we adopt the multi-head 
attention  mechanism21 on the input. Each transformer encoder contains two parts: multi-head attention (MHA) 
and multi-layer perceptron (MLP). Each part employs residual  connection30 and layer normalization (LN)31 to 
improve the speed of training and robustness of the model. Figure 2 illustrates the above calculation process. 
The TTE part can be expressed by :

Spatial transformer encoder. The channels in the EEG signal represent the locations of the electrodes on 
the scalp, and the functional connectivity between different brain regions can be calculated by considering the 
dependencies among different channels. Similar to TTE, in STE we also used the attention mechanism to model 
the spatial information among different channels. In order to preserve the spatial location information, we added 
the position encoding of the spatial domain to the input and then fed the result to STE:
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Figure 1.  The architecture of the ETST model.
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where tran() represents the transpose operation and the Epos ∈ R
C×T represents the position encoding. In this 

paper, we use the position encoding in the form of a trigonometric function at a fixed position. zs0 denotes the rep-
resentation with the addition of spatial position information. In the STE, we use a similar structure to that in the 
TTE to learn the spatial information on the different channels of the EEG. The process equation is expressed as:

Classification layer. The output of the transformer encoder layers, TTE and STE, yield a better representa-
tion containing both time-domain and space-domain features. ETST learns the time-domain information of the 
EEG data on the different sampling points in TTE. In the subsequent STE, ETST learns the spatial information 
among channels. Then, to fuse the global information in the representation for classification, a simple fully-
connected layer with only one layer is used to obtain the final classification output which is optimized using the 
cross-entropy loss function.

where N denotes the number of batch sizes and C denotes the number of categories. ycn is the true one hot label, 
ŷcn is the predicted probability of the corresponding category.

Ethical approval. This paper does not contain any studies with human or animals participants performed 
by any of the authors.

Experiments
Dataset. We validate our method on an EEG dataset provided by  PhysioNet32. This dataset was recorded 
using the BCI2000  system33 and consists of over 1500 1- and 2-min EEG recordings, obtained from 109 subjects. 
The sampling frequency was 160 Hz. These EEG data were recorded with 64 electrodes, which conformed to the 
10–10 system. Subjects were asked to do motor/imagery tasks while the EEG signal was recorded by the system. 
Each subject completed 14 experimental runs including 2 1-min baseline runs and 12 2-min task runs. In the 
baseline runs, the EEG signals were recorded while the subjects kept their eyes open (EO) and eyes closed (EC), 
respectively. In the task runs, subjects were asked to complete four motor/imagery tasks, including actually com-
pleting the corresponding physical action (PHY) or imagine completing the corresponding action (IMA) when 
the target appeared on the computer, and rest when the target disappeared. Task 1 is to open and clench the cor-
responding fist when a target is on the left or right side of the computer screen. Task 2 is to imagine opening and 
clenching the corresponding fist when a target is on the left or right side of the computer screen. Task 3 is to open 
and clench both fists when a target appears on the top or bottom of the computer. Task 4 is to imagine opening 
and clenching both fists when a target appears at the top or bottom of the computer. Each task is repeated for 
three times, totaling twelve task runs. In our experiments, we use all the subjects in the dataset. A 1-s window 
with 50% overlap of each channel is used to generate samples. Therefore, the shape of a sample is 160 × 64.

Experiment design. To make EEG person identification technology realistic and feasible, the stability and 
robustness of the system must be able to be guaranteed. This also means that the model needs to be able to con-
sistently and accurately identify subjects by their EEG signals, even if the subjects are in different states, such as 
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Figure 2.  (left) The architecture of a transformer encoder. (right) Multi-head attention.
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happy or calm, or even thinking about something. We conducted several experiments to verify the effectiveness 
and practicability of ETST on EEG biometrics. The EEG signal in the Physionet Dataset contains four states, 
EO, EC, PHY, and IMA. We designed various experiments based on these four different states to test the perfor-
mance of ETST in diverse scenarios. The experiments we conducted are described below. 

1. We compared our model with state-of-the-art EEG identification methods and also with traditional neu-
ral network methods such as CNN, MLP, and traditional machine learning methods such as SVM. In the 
comparison experiments with other methods, we set up three sub-experiments. The first one is training and 
testing in a single human state, and we conducted training and testing in four states, EC, EO, IMA, and PHY, 
which corresponds to the case of EEG person identification in a fixed state. The second one is to train in one 
state and test in another state, we will train under EC and EO data and test under IMA and PHY. This type of 
task is the most challenging, and it tests whether the model obtained by training under one EEG paradigm 
can be generalized to other EEG paradigms. The third one is a mixture of EC, EO, IMA, and PHY datasets 
for training and testing. For within-state and diverse-states experiments, we randomly divide the dataset 
into 4:1 as training set and test set respectively.

2. We performed ablation experiments to explore the effect of each part of the model on the results. Position 
encoding is an important component of the model. The EEG signal contains position information in both 
the time and space domains. Transformer ensures that the model retains the location information by adding 
position encoding to the input species. We investigate the effect of adding time-domain position encoding 
and space-domain position encoding on person identification separately. In addition to comparing spatial 
and temporal position encodings, we also conducted ablation experiments on the encoder part of ETST. We 
investigated the performance of ETST when removing TTE and STE respectively, to explore the role of each 
encoder part.

3. In EEG identification methods, there has not been a consensus on the best segmentation length of samples. 
For example, the segmentation length used by Wang et al. is  1s34, while the segmentation length used by 
Thiago Schons et al. is  12s35, and there may be a large gap between the sample segmentation lengths of differ-
ent methods. Therefore, we divided the dataset with different split lengths in our experiments for exploring 
the performance of ETST with different sample split lengths.

In addition to different segmentation lengths, the sample overlap rate also directly affects the size of the resulting 
sample size and the degree of information overlap among different samples. The loss function of Transformer is 
smoother than that of  CNN36, which potentially makes Transformer more difficult to converge with smaller sam-
ple sizes, resulting in worse performance. Therefore, we design experiments with different sample overlap lengths 
and obtained training datasets with different sample sizes to explore the effect of sample size on our model.

Experiment detail. All experiments in this paper are performed on NVIDIA TITAN Xp GPU. The number 
of TTE layers, the number of heads of TTE layers, the number of STE layers, and the number of heads of STE lay-
ers in the model are set to 2, 8, 2, and 8, respectively. We use the  AdamW37 optimizer with learning rate, weight 
decay, and batch size of 4e−5, 1e−6, and 256, respectively, to optimize the network.

Results and discussion
Evaluation and comparison with baseline. Currently, EEG-based person identification algorithms 
are broadly classified into two categories. One is the traditional machine learning algorithms, which gener-
ally require manual feature extraction including power spectral density (PSD), auto-regressive coefficient (AR), 
and fuzzy entropy (FuzzEn). Another category is deep learning algorithms, such as CNN-based or RNN-based 
neural network models. In addition, since the concept of graph fits well with the functional connectivity in 
neuroscience, where graph features are used to represent the relationships among brain regions, graph convo-
lutional neural networks (GCNN) are also gaining popularity in the field of EEG. Wang et al. computed Phase 
Locking Value (PLV) and Pearson’s correlation (COR) as the edge feature between nodes to construct graphs and 
achieved state-of-the-art  results34. We compared our method with other advanced  methods15. Also, we explored 
the effect of the recent transformer-based models, which combine CNN and  attention38,39. Therefore, we used 
the aforementioned methods as the baseline, and compared against the results of our model.

In the first experiment, we investigated the performance of ETST in the same single state. We trained and 
tested ETST on a single-state dataset to evaluate the mentioned performance.The results are shown in Table 1. 
The experimental results show that our proposed method outperforms all methods when the data are in the same 
state , except for one result which is slightly lower than that of GCNN, only 0.2% lower.

The EEG signals can vary drastically under different states, for example, delta waves are associated with 
increased  attention40, alpha waves are related with various cognitive features such as task  performance41, while 
beta waves are linked to movement or motor  imagery42. But for EEG biometrics to be practical in real life, the 
algorithm needs to be robust to state changes. In other words, the model should be able to recognize the identity 
of the user in different states. Therefore, in the second experiment, we evaluate the generalization ability of our 
proposed method in different states by training and testing ETST on different datasets. EO and EC data were used 
as training sets and tested on PHY and IMA data, respectively. Table 2 shows the results of this experiment, which 
is the training set and test sets are across different states. The results show that ETST has a significant improve-
ment compared to other methods in the condition of different states. Compared with GCNN, the improvements 
are 10.3% in PHY and 10.27% in IMA. When the states in the training and test sets were different, all methods 
suffered from performance degradation to a varying degree, with GCNN decreasing by about 13%, SVM by 
about 40%, and the accuracy of the remaining methods dropping to less than 30%. This indicates that the other 
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models are limited to extracting features from the same states and have weak generalization ability for different 
states. In contrast, the ETST model only decreases by about 3%, which indicates that the ETST is able to extract 
features that are valid across diverse states.

To enhance the model’s robustness to various mental states, in addition to the strong generalization ability of 
the model itself, another approach is to include multiple states in the training set and make the model learn to 
extract features common to all states. Hence, in the third experiment, we included all states in both the training 
and test sets, including EO, EC, PHY, and IMA. ETST achieves close to the best results, as shown in Table 3. 
Compared to results from the previous experiment, the results of this experiment show less decrease in accu-
racy, and only SVM has a considerable decrease, down to 73%. It shows that different algorithms can achieve 
good results in case the training and test sets contain all states data. However, this enhancement method is not 
applicable to realistic scenarios. Due to the complexity and variability of human states, it is impossible to contain 
data of all states in the training set. Therefore, the key to solving the EEG-based person identification problem 
is to improve the generalization ability of the model among different states. And our proposed ETST possesses 
a strong generalization ability.

Ablation experiment. In Transformer, self-attention calculates attention weights for all inputs simultane-
ously and sums the weights to obtain the output. In this process, self-attention considers the global information 
and discards the location information of the input data. For EEG data, the signal contains location information 
in both the time and space domains, representing different temporal sampling points and various brain regions, 
respectively. To investigate the effect of location information in EEG on person identification, we tried retaining 

Table 1.  Results of models training and testing within each human state. Results are accuracy in testing stage 
(average  ±  standard deviation)%. Significant values are in [bold].

Method EO EC PHY IMA

FuzzEn +  SVM34 84.14 ± 0.83 83.73 ± 0.71 77.93 ± 0.59 80.84 ± 0.18

Raw +  CNN34 96.89 ± 0.77 67.43 ± 47.36 97.96 ± 1.55 97.42 ± 0.83

Graph + Mahalanobis  distance15 99.07 ± 0.19 97.56 ± 0.24 99.74 ± 0.13 99.61 ± 0.11

PLV +  GCNN34 99.97 ± 0.03 99.88 ± 0.03 99.99 ± 0.02 100.00 ± 0.00

Lite  transformer38 83.77 ± 17.39 85.57 ± 22.24 99.76 ± 0.01 99.65 ± 0.08

EA-transformer39 98.45 ± 1.17 98.19 ± 3.14 99.93 ± 0.00 99.90 ± 0.01

Ours 100.00 ± 0.00 99.96 ± 0.06 99.97 ± 0.01 100.00 ± 0.00

Table 2.  Results of models training on resting states and testing on diverse states. Results are accuracy in 
testing stage (average ± standard deviation)%. Significant values are in [bold].

Method PHY IMA

FuzzEn +  SVM34 16.16 ± 0.01 15.61 ± 0.00

Raw +  CNN34 49.26 ± 3.85 52.51 ± 2.26

Graph + Mahalanobis  distance15 69.98 ± 0.38 69.47 ± 0.64

PLV +  GCNN34 85.40 ± 1.62 87.03 ± 2.53

Lite  transformer38 87.37 ± 1.10 89.03 ± 0.73

EA-transformer39 89.47 ± 0.34 90.66 ± 0.39

Ours 97.29 ± 0.03 97.45 ± 0.13

Table 3.  Results of models training on diverse states and testing on diverse states. Results are accuracy in 
testing stage (average  ±  standard deviation)%. Significant values are in [bold].

Method Results

FuzzEn +  SVM34 73.45 ± 0.10

Raw +  CNN34 99.85 ± 0.06

Graph + Mahalanobis  distance15 96.22 ± 0.23

PLV+GCNN34 99.98 ± 0.02

Lite  transformer38 98.16 ± 0.65

EA-transformer39 99.90 ± 0.01

Ours 99.90 ± 0.03
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the location information of EEG by adding position encoding to the input of TTE and STE layers, respectively. 
We compare the effect of adding positional encoding to ETST in the time and space domains under the cross-
state dataset, and the results are shown in Table 4. It shows that adding only the spatial position encoding pro-
duced a better result than that of the temporal position encoding. This model design also yielded the best perfor-
mance of our model (97% in IMA, 97% in PHY). Adding both temporal and spatial position encoding generated 
the next best result (96% in IMA, 95% in PHY). We found that the model performance can be improved by 
adding the spatial information, while diminished by adding temporal information. In addition, by observing the 
training process of the model, we discovered that adding the location information in the time domain also affects 
the training efficiency to a certain extent, making the model more likely to converge to worse minima, which 
leads to bad results. We believe that absolute position encoding in the time domain breaks the translation invari-
ance of EEG signals, thus making it more difficult for the model to extract time-domain features. The absolute 
spatial position encoding retains the position information of different channels. Unlike the same sampling point 
that may appear in different locations in adjacent samples, the channel positions in samples are fixed. Thus, the 
inclusion of absolute position encoding in the space domain could instead improve the model’s ability for spatial 
feature extraction.

The ETST model contains two parts, the TTE layer, and the STE layer, for extracting time-domain and space-
domain features, respectively. To illustrate the importance of the two distinct features on the experimental results, 
we conducted ablation experiments under cross-state for the model to reflect the necessity of each part of our 
model. As can be seen in Table 5, we compared the results under the TTE, STE, and TTE + STE models. The 
results indicate that using only the TTE layer or only the STE layer both make the accuracy significantly lower. 
Moreover, the results show that the TTE layer has a slightly higher classification accuracy than STE (75.19% in 
IMA and 72.98% in PHY vs. 70.22% in IMA and 68.98% in PHY). Therefore, it can be shown that time domain 
information is more important than space domain information for person identification. In order to acquire 
EEG temporal and spatial information simultaneously, our model consists of TTE and STE layers, which can 
considerably improve the performance of the model and thus achieve the state-of-the-art effect.

Effect of sample length and sample size. The sample segmentation length varies in previous methods. 
As a result, some methods may only work with shorter sample segmentation lengths, while others do the oppo-
site. The same method with samples of different split lengths may yield widely varying results. To illustrate the 
generalizability in sample length of our method, we compared the classification accuracy of the model under dif-
ferent segmentation length samples. It is worth noting that using a longer sample length would result in a smaller 
sample size. For example, the sample size of 5-s segmentation length is only about one-fifth of that of 1-s. From 
Fig. 3, the 1-s length sample achieves the best results with the same overlap rate. Also, we can see that the longer 
the sample length, the lower the classification accuracy. Namuk Park et al.36 mentioned that for Transformer, 
the size of the dataset directly affects the final training results due to its smoother loss function, i.e., transformer 
performs worse with fewer samples.

We attempt to increase the number of samples by increasing the overlap rate of the sliding window. Data 
augmentation of the samples is performed using an overlap rate of 80% and the results are compared for differ-
ent training set sizes. As seen in Fig. 3, when we changed the overlap ratio to 80%, and thus enlarged the sample 
size of the dataset by two times, the model accuracy increased. The 5-s accuracy rises to 95.44%, slightly lower 
by about 2% compared to the 1-s accuracy. This suggests that insufficient sample size of the data worsens the 
performance of the transformer-based model. In general, regardless of the sample length, our model achieves 
state-of-the-art results.

Table 4.  Results of the ETST model with different position encoding. Significant values are in [bold].

Models PHY IMA

Non PE 95.84 ± 0.11 96.07 ± 0.03

With temporal PE 79.98 ± 13.03 80.89 ± 12.76

With spatial PE 97.29 ± 0.03 97.45 ± 0.13

With temporal + spatial PE 90.56 ± 1.94 91.20 ± 1.92

Table 5.  Ablation study on the ETST model (without position encoding). Significant values are in [bold].

Models PHY IMA

With TTE 72.98 ± 0.39 75.19 ± 0.09

With STE 68.98 ± 0.34 70.22 ± 0.47

With TTE + STE 95.84 ± 0.11 96.07 ± 0.03



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14378  | https://doi.org/10.1038/s41598-022-18502-3

www.nature.com/scientificreports/

Conclusion
In this paper, we propose ETST, a deep learning model based on the attention mechanism. We used a multi-
headed attention mechanism to extract the temporal and spatial features of EEG signals. The temporal trans-
former encoder in the model is able to extract long-range distinguishable representations, and the spatial trans-
former encoder is capable to acquire spatial dependencies among channels, which characterizes the functional 
connectivity among brain regions. In this way, through several rounds of attention weighting, the model is able 
to focus on the features that are most relevant to the true classification labels. The experimental results indicate 
that our method achieves state-of-the-art accuracy on person identification, which also validates the feasibil-
ity of EEG on biometrics. The model is also robust to different states. The results of the ablation experiments 
show that the temporal features have a relatively significant effect on the outcome of the EEG biometrics. It also 
demonstrates that absolute position encoding in space enhances the model. This indicates that specific channels 
and the correlation among channels can both make an impact on person identification. The experiments demon-
strate that longer EEG data lead to a slight decrease in the performance of the attention mechanism. Besides, the 
application of Transformer in EEG requires sufficient data to ensure its performance. Therefore, it is necessary to 
investigate the data argument method for EEG data in future studies. In addition, the choice of hyper-parameters 
for our model is not yet optimal due to the limitation of time, which leads to the suboptimal model performance.

The stability and consistency problems are two key issues in implementing EEG biometrics into practical 
applications, and there is a need to ensure that the model can re-identify users correctly regardless of conditions 
and times. This requires the model to be able to extract time-invariant and state-invariant features. In future 
work, we will explore new approaches to conduct more effective feature extraction for EEG signals. Potential 
methods include filtering the alpha band features of EEG signals, which has a strong inter-individual variance 
in the resting state; and selecting the channels with strong correlation to person identification while removing 
the effect of redundant channels. At the same time, experiments on EEG-based person identification on different 
days are yet to be conducted.

Data availability
The dataset used for this study is publicly available and accessible online at PhysioNet Database [https:// physi 
onet. org/ conte nt/ eegmm idb/1. 0.0/]32.
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