Transformers in Vision: A Survey

Phitchaya Faramnuayphol



Outline

* Transformers for Object Detection

* Transformers for Segmentation

* Transformers for Image and Scene Generation
* Transformers for Low-level Vision

* Transformers for Multi-Modal Tasks

* Transformers for 3D Analysis

* Open Challenges



Transformers for Object Detection

Detection Transformers with CNN Backbone

Task Method Design Highlights (focus on differences Input Data Type Label Type Loss
with the standard form)
Object DETR [17] Linear projection layer to reduce CNN 2D Image Class labels Hungarian loss
Detection feature dimension, Spatial positional em- based on bipartite
bedding added to each multi-head self- matching between
attention layer of both encoder and de- predicted and
coder. Object queries (output positional ground truths
encoding) added to each multi-head self-
attention layer of decoder.
D-DETR [14]  Deformable Transformer consists of de- 2D Image Class labels Hungarian loss

formable attention layers to introduce
sparse priors in Transformers, Multi-scale
attention module.

Fig. 7: Detection Transformer (DETR) [17] treats the object
detection task as a set prediction problem and uses the Trans-
former network to encode relationships between set elements.

transformer
= encoder-
decoder

A bipartite set loss is used to uniquely match the box predic-
tions with the ground-truth boxes (shown on the right two

set of image features

columns). In case of no match, a "no object’ class prediction
set of box predictions  bipartite matching loss is selected. Its simple design with minimal problem-specific
modifications can beat a carefully built and popular Faster R-
CNN model. Figure from [13].



Transformers for Object Detection

Task Method Metric ~ Dataset Performance Highlights Limitations
Obiject Egé{j”[ ] AP COCO 44.9 a) Use of Transformer allows end- a) Performs poorly on small objects,
Detection 20 to-end training pipeline for object b) Requires long training time to

detection, b) Removes the need for converge.
hand-crafted post-processing steps.

PC_LDIEEII{[ I AP CcOCO 43.8 a) Achieves better performance on Obtain SOTA results with 52.3 AP
small objects than DETR [13], b) but with two stage detector design

Faster convergence than DETR [17] and test time augmentations.




Transformers for Segmentation

* Cross-model Self-attention (CMSA)

Task Method Design Highlights (focus on differences Input Data Type Label Type Loss
with the standard form)
Referring CMSA [15] Multimodal feature, Cross-modal self- 2D Image + Segmentation  Binary cross-entropy
Image attention on multiple levels and their fu- Language expression mask loss

* Panoptic segmentation

.'. 1 | 1
| X y z
Conv | Conv
Concat Concat
1x1 [ : —*’C_>_‘ 1x1
HxW=x128 1 (H=Wx16)=8 : ] (HxWx16)x8 HxWx256
Multi-Head Attention 11 %W*128 | p0,4i Head Attention H*Wx128
Height-Axis :_ Width-Auxis

"""""""""""""""""" il

L7

H=xW=x256

HxWx156

Fig. 8: Axial attention module [127] that sequentially applies

multi-head axial attention operations along height and width
axes. Image from [135].



Transformers for Image and Scene

Generation

Local Salf-Attention

Local 30 Attantion

Fig. 9: (a) Self-attention block in Image Transformer [I11Z].
Given one channel for a pixel g, the block attends to the mem-
ory of previous synthesized pixels (m:), followed by a feed-
forward sub-network. Positional encodings p; are added in the
first layer. (b) The operation performed in Local Self-Attention
(example of a 2D case is shown). The image is partitioned into
a grid of spatial blocks known as query blocks. In the self-
attention operation, each pixel in a query block attends to all
pixels in the memory block (shown in cyan rectangle). White
grid locations show masked inputs that have zero-contribution
towards the self-attention.



Transformers for Image and Scene
Generation

* The task of generating realistic images from text.

* DALL-E takes as input a single stream of 1280 tokens (256 for the text and 1024 for the image), and is trained

to generate all other tokens autoregressively (one after another)

-,

(e) (8)
Fig. 10: Images generated by DALL-E [20] from the following text prompts. (a) An armchair in the shape of an avocado. (b) A photo
of San Francisco’s golden gate bridge. Given a part of the image (in green box), DALL-E performs the image completion. (c) An emoji
of a baby penguin wearing a blue hat, red gloves, green shirt, and yellow pants. (d) An extreme close-up view of a capybara sitting in a field.
(e) A cross-section view of a pomegranate. (f) A penguin made of watermelon. (g) The exact same cat on the top as a sketch on the bottom.



* Image super-resolution,

Transformers for Low-level Vision  penoising, Deraining, and

Colorization

Task Method Design Highlights (focus on differences Input Data Type Label Type Loss
with the standard form)

Super- TTSR [16] Texture enhancing Transformer module, 2D Image 2D Image Reconstruction loss,

resolution Relevance embeddings to compute the rel- Perceptual loss
evance between the low-resolution and defined on
reference image. pretrained VGG19
features.
Texture Transformer for Super Resolution (TTSR) Output Texture Transformer

* Transformer network for super-resolution

?ﬂ—( Soft Attention )

and S respectively denote hard and soft attentions computed
from relevance embedding. T indicates high-resolution texture
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Fig. 11: Diagram of the texture Transformer module. ) (query), ! ( Hard Attention ) E
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Transformers for Low-level Vision

* Colorization Transformer

 Self-attention used in the colorization Transformer is based on row/column
attention layers introduced in these layers capture the interaction between each
pixel of an input image while being computationally less costly.

* The row-wise attention layer applies self-attention to all pixels in a given row,
while the column-wise attention layer considers pixels only in a given column of

an image.
Task Method Design Highlights (focus on differences Input Data Type Label Type Loss
with the standard form)
Image ColTran [24]  Conditional Row /column multi-head at- 2D Image 2D Image Negative
Colorization tention layers, Progressive multi-scale col- log-likelihood of the
orization scheme. images

Figure 1: Samples of our model showing diverse, high-fidelity colorizations.



Transformers for Low-level Vision

Task Method Metric  Dataset Performance Highlights Limitations
CUFED5 271 /0.8 a) Achieves state-of-the-art super- a) Proposed Transformer does not
Super- TTSR [16] PSNR/ Sun80 30.0 /081 resolution by using attention, b) processimages directly but features
Resolution CVPR20 SSIM Urbanl00 259 /0.78 Novel Transformer inspired archi- extracted by a convolution based
Mangal09 30.1 /091 tectures that can process multi-scale network, b) Model with large num-
features. ber of trainable parameters, and ¢)
Compute intensive.
ColTran [24] - . N i .
Image ICLR21 FID ImageNet 19.71 a) First successful application of a) Lacks end-to-end training, b)
Coloriza- Transformer to image colorization, limited to images of size 256x256.
tion b) Achieves SOTA FID score.




Transformers for Multi-Modal Tasks

Multi-stream Transformers

(g} LXMERT (h) VILBERT (i) PEMT

Multi-stream Transformers




The vokens (visualized tokens)

Vokens (Token-Related Images) Su:)/;sr:iaslion
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Fig. 13: Visualized tokens (Vokens) [191]: A language model
is visually supervised using closely related images that leads
to better feature representations from the pretrained model.

Figure from [191].



Transformers for Multi-Modal Tasks

Single-stream Transformers

(a) UNITER (b} OSCAR [c) VideoBERT
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Single-stream Transformer Architectures




Transformers for Multi-Modal Tasks

Task Method Design Highlights (focus on differences Input Data Type Label Type Loss
with the standard form)
Multi-Model Oscar [14] Transtormer layer to jointly process triplet 2D Image Captions, Negative
Learning representation of image-text [words, tags, Class labels, log-likelihood of
features], Masked tokens to represent text Object tags masked tokens,
data. Contrastive binary

CI’OSS-EI"I’EI’OP}F

Task Method Metric  Dataset Performance Highlights Limitations
) VIiLBERT Acc./ VQF}[ 1/ a) Proposed Transformer architec- a) Requires large amount of data
Multi- [151] ) mAP (R@1) Retrieval ~ 70.6/ 582 {re can combine text and visual for pre-training, b) Requires fine
Model  NeurIPS'19 [239] information to understand inter- tuning to the new task.
Learning task dependencies, b) Achieves pre-
training on unlabelled dataset.
Oscar [11] Acc./ VQA [240])/ . i - . . i .
; P, 80.37/57.5 a) Exploit novel supervisory signal Requires extra supervision through
ECCV'20 mAP (R@1) COCO via object tags to achieve text and pre-trained object detectors thus
image alignment, b) Achieves state- performance is dependent on the
of-the-art results. quality of object detectors.
UNITER [43] Acc./ VQA[ 1/ Learns fine-grained relation align- Requires large multi-task datasets
ECCV’20 Avg. Flickr30K  72.47/83.72 pent between text and images tor Transformer training which lead

(R@1/5/10) [241] to high computational cost.



Transformers for 3D Analysis
* The Mesh Transformer (METRO)

; ! . Multi-Layer Transformer Encoder
Maelced Vertex Modeling with Progressive Dimensionality Reduction
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Fig. 16: Mesh Transformer architecture. The joint and vertex queries are appended with positional embeddings and passed
through multiple self-attention layers to jointly regress 3D coordinates of joints and mesh vertices. Figure is from [15].



Transformers for 3D Analysis

Task Method Design Highlights (focus on differences Input Data Type Label Type Loss
with the standard form)
3D Classifica- PT [230] Point Transformer block, Transition down CAD models, 3D Object and Cross-entropy
tion/Segmentation block to reduce cardinality of the point set, object part shape
Transition up for dense predlctmn tasks. segmentation categories
3D Mesh METRO [415] Progressive  dimensionality  reduction 2D Image 3D Mesh + L4 loss on mesh
Reconstruction across Transformer layers, DPositional Human Pose  vertices and joints in
Encoding with 3D joint and 3D vertex 3D and 2D
coordinates, Masked vertex/joint projection.
modeling,.
Task Method Metric ~ Dataset Performance Highlights Limitations
. Point  Trans- Top-1 Acc. ModelNetd097 8 a) Transformer based attention ca- a) Only moderate improvements
3L furr_m-_;r [230] lol] [277] 85.9 pable to process unordered and un- over previous SOTA, b) Large num-
Analysis  arXiv'20 structured point sets, b) Permuta- ber of trainable parameters around
tion invariant architecture. 6x higher than PointNet++ [242].
METRO [17] MPJPE R 771 a) Does not depend on parametric Dependent on hand-crafted net-
arXiv'20 PA-MPJPE 3DP'W 47.9 mesh models so easily extendable work design.
MPVE [235] 88.2

to different objects, b) Achieves
SOTA results using Transformers.




OPEN CHALLENGES & FUTURE DIRECTIONS

High Computational Cost

Large Data Requirements

Vision Tailored Transformer Designs

Neural Architecture Search for ViTs

Interpretability of Transformers

Hardware Efficient Designs

Towards Integrating All Modalities
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