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Abstract—There has recently been a surge of work in ex-
planatory artificial intelligence (XAI). This research area tackles
the important problem that complex machines and algorithms
often cannot provide insights into their behavior and thought
processes. XAI allows users and parts of the internal system to
be more transparent, providing explanations of their decisions
in some level of detail. These explanations are important to
ensure algorithmic fairness, identify potential bias/problems in
the training data, and to ensure that the algorithms perform as
expected. However, explanations produced by these systems is
neither standardized nor systematically assessed. In an effort to
create best practices and identify open challenges, we describe
foundational concepts of explainability and show how they can
be used to classify existing literature. We discuss why current
approaches to explanatory methods especially for deep neural
networks are insufficient. Finally, based on our survey, we con-
clude with suggested future research directions for explanatory
artificial intelligence.

I. INTRODUCTION

As autonomous machines and black-box algorithms begin
making decisions previously entrusted to humans, it becomes
necessary for these mechanisms to explain themselves. Despite
their success in a broad range of tasks including advertising,
movie and book recommendations, and mortgage qualification,
there is general mistrust about their results. In 2016, Angwin et
al. [1] analyzed Correctional Offender Management Profiling
for Alternative Sanctions (COMPAS), a widely used criminal
risk assessment tool, and found that its predictions were
unreliable and racially biased. Along with this, deep neural
networks (DNNs) have been shown to be easily fooled into
misclassifying inputs with no resemblance to the true category
[2]. Extending this observation, a number of techniques have
been shown for changing a network’s classification of any
image to any target class by making imperceptible alterations
to the pixels [3], [4], [5]. Adversarial examples are not
confined to images; natural language networks can also be
fooled [6]. Trojaning attacks have been demonstrated [7] in
which inputs remain unchanged, but imperceptible changes
are hidden in deep networks to cause them to make targeted
errors. While some defense methods have been developed,
more attack methods have also emerged [8], [9], [10], [11], and
susceptibility to unintuitive errors remains a pervasive problem
in DNNs. The potential for such unexpected behavior and un-
intentional discrimination highlights the need for explanations.

As a first step towards creating explanation mechanisms,
there is a new line of research in interpretability, loosely
defined as the science of comprehending what a model did (or
might have done). Interpretable models and learning methods
show great promise; examples include visual cues to find
the “focus” of deep neural networks in image recognition
and proxy methods to simplify the output of complex sys-
tems. However, there is ample room for improvement, since
identifying dominant classifiers and simplifying the problem
space does not solve all possible problems associated with
understanding opaque models.

We take the stance that interpretability alone is insufficient.
In order for humans to trust black-box methods, we need
explainability – models that are able to summarize the reasons
for neural network behavior, gain the trust of users, or produce
insights about the causes of their decisions. While interpetabil-
ity is a substantial first step, these mechanisms need to also

be complete, with the capacity to defend their actions, provide
relevant responses to questions, and be audited. Although
interpretability and explainability have been used interchange-
ably, we argue there are important reasons to distinguish
between them. Explainable models are interpretable by default,
but the reverse is not always true.

Some existing deployed systems and regulations make
the need for explanatory systems urgent and timely. With
impending regulations like the European Union’s “Right to
Explanation” [12], calls for diversity and inclusion in AI
systems [13], findings that some automated systems may
reinforce inequality and bias [14], and requirements for safe
and secure AI in safety-critical tasks [15], there has been a
recent explosion of interest in interpreting the representations
and decisions of black-box models. These models are every-
where, and the development of interpretable and explainable
models is scattered throughout various disciplines. Exam-
ples of general “explainable systems” include interpretable
AI, explainable ML, causality, safe AI, computational social
science, and automatic scientific discovery. Further, research
in explanations and their evaluation are found in machine
learning, human computer interaction (HCI), crowd sourcing,
machine teaching, AI ethics, technology policy, and many
other disciplines. This paper aims to broadly engage the
greater machine learning community on the intersection of
these topics, to set best practices, to define key concepts, and



to propose evaluation criteria for standardizing explanatory
systems often considered in isolation.

In this survey, we present a set of definitions, construct a
taxonomy, and present best practices to start to standardize
interpretability and explanatory work in AI. We review a num-
ber of approaches towards explainable AI systems and provide
a taxonomy of how one can think about diverse approaches
towards explainability. In Section 2, we define key terms in-
cluding “explanation”, “interpretability”, and “explainability”.
We compare and contrast our definitions with those accepted
in the literature. In Section 3, we review some classical
AI approaches (e.g., causal modeling, constraint reasoning,
intelligent user interfaces, planning) but focus mainly on
explainable models for deep learning. We provide a summary
of related work papers in Section 4, highlighting differences
between definitions of key terms including “explanation”, “in-
terpretability”, and “explainability”. In Section 5, we present
a novel taxonomy that examines what is being explained by
these explanations. We conclude with a discussion addressing
open questions and recommend a path to the development and
adoption of explainable methods for safety-critical or mission-
critical applications.

II. BACKGROUND AND FOUNDATIONAL CONCEPTS

In this section, we provide background information about
the key concepts of interpretability and explanability, and
describe the meaningful differences between them.

A. What is an Explanation?

Philosophical texts show much debate over what constitutes
an explanation. Of particular interest is what makes an expla-
nation “good enough” or what really defines an explanation.
Some say a good explanation depends on the question [16].
This set of essays discusses the nature of explanation, theory,
and the foundations of linguistics. Although for our work, the
most important and interesting work is on “Why questions.” In
particular, when you can phrase what you want to know from
an algorithm as a why question, there is a natural qualitative
representation of when you have answered said question–when
you can no longer keep asking why. There are two why-
questions of interest; why and why-should. Similarly to the
explainable planning literature, philosophers wonder about the
why-shouldn’t and why-should questions, which can give the
kinds of explainability requirements we want.

There is also discussion in philosophy about what makes the
best explanation. While many say it is inference [17], similar
views point to the use of abductive reasoning to explain all
the possible outcomes.

B. Interpretability vs. Completeness

An explanation can be evaluated in two ways: according to
its interpretability, and according to its completeness.

The goal of interpretability is to describe the internals of a
system in a way that is understandable to humans. The success
of this goal is tied to the cognition, knowledge, and biases
of the user: for a system to be interpretable, it must produce

descriptions that are simple enough for a person to understand
using a vocabulary that is meaningful to the user.

The goal of completeness is to describe the operation of a
system in an accurate way. An explanation is more complete
when it allows the behavior of the system to be anticipated in
more situations. When explaining a self-contained computer
program such as a deep neural network, a perfectly complete
explanation can always be given by revealing all the mathe-
matical operations and parameters in the system.

The challenge facing explainable AI is in creating explana-
tions that are both complete and interpretable: it is difficult
to achieve interpretability and completeness simultaneously.
The most accurate explanations are not easily interpretable
to people; and conversely the most interpretable descriptions
often do not provide predictive power.

Herman [18] notes that we should be wary of evaluat-
ing interpretable systems using merely human evaluations of
interpretability, because human evaluations imply a strong
and specific bias towards simpler descriptions. He cautions
that reliance on human evaluations can lead researchers to
create persuasive systems rather than transparent systems. He
presents the following ethical dilemmas that are a central
concern when building interpretable systems:

1) When is it unethical to manipulate an explanation
to better persuade users?

2) How do we balance our concerns for transparency and
ethics with our desire for interpretability?

We believe that it is fundamentally unethical to present a
simplified description of a complex system in order to increase
trust if the limitations of the simplified description cannot be
understood by users, and worse if the explanation is optimized
to hide undesirable attributes of the system. Such explanations
are inherently misleading, and may result in the user justifiably
making dangerous or unfounded conclusions.

To avoid this trap, explanations should allow a tradeoff be-
tween interpretability and completeness. Rather than providing
only simple descriptions, systems should allow for descriptions
with higher detail and completeness at the possible cost of
interpretability. Explanation methods should not be evaluated
on a single point on this tradeoff, but according to how
they behave on the curve from maximum interpretability to
maximum completeness.

C. Explainability of Deep Networks

Explanations of the operation of deep networks have fo-
cused on either explaining the processing of the data by a
network, or explaining the representation of data inside a
network. An explanation of processing answers “Why does
this particular input lead to that particular output?” and is
analogous to explaining the execution trace of a program. An
explanation about representation answers “What information
does the network contain?” and can be compared to explaining
the internal data structures of a program.

A third approach to interpretability is to create explanation-

producing systems with architectures that are designed to



simplify interpretation of their own behavior. Such archi-
tectures can be designed to make either their processing,
representations, or other aspects of their operation easier for
people to understand.

III. REVIEW

Due to the growing number of subfields, as well as the
policy and legal ramifications [12] of opaque systems, the
volume of research in interpretability is quickly expanding.
Since it is intractable to review all the papers in the space,
we focus on explainable methods in deep neural architectures,
and briefly highlight review papers from other subfields.

A. Explanations of Deep Network Processing

Commonly used deep networks derive their decisions using
a large number of elementary operations: for example, ResNet
[19], a popular architecture for image classification, incorpo-
rates about 5×107 learned parameters and executes about 1010

floating point operations to classify a single image. Thus the
fundamental problem facing explanations of such processing is
to find ways to reduce the complexity of all these operations.
This can be done by either creating a proxy model which
behaves similarly to the original model, but in a way that is
easier to explain, or by creating a salience map to highlight a
small portion of the computation which is most relevant.

1) Linear Proxy Models: The proxy model approach is
exemplified well by the LIME method by Ribeiro [20]. With
LIME, a black-box system is explained by probing behavior on
perturbations of an input, and then that data is used to construct
a local linear model that serves as a simplified proxy for the
full model in the neighborhood of the input. Ribeiro shows that
the method can be used to identify regions of the input that
are most influential for a decision across a variety of types of
models and problem domains. Proxy models such as LIME are
predictive: the proxy can be run and evaluated according to its
faithfulness to the original system. Proxy models can also be
measured according to their model complexity, for example,
number of nonzero dimensions in a LIME model. Because
the proxy model provides a quantifiable relationship between
complexity and faithfulness, methods can be benchmarked
against each other, making this approach attractive.

2) Decision Trees: Another appealing type of proxy model
is the decision tree. Efforts to decompose neural networks into
decision trees have recently extended work from the 1990s,
which focused on shallow networks, to generalizing the pro-
cess for deep neural networks. One such method is DeepRED
[21], which demonstrates a way of extending the CRED [22]
algorithm (designed for shallow networks) to arbitrarily many
hidden layers. DeepRED utilizes several strategies to simplify
its decision trees: it uses RxREN [23] to prune unnecessary
input, and it applies algorithm C4.5 [24], a statistical method
for creating a parsimonious decision tree. Although DeepRED
is able to construct complete trees that are closely faithful to
the original network, the generated trees can be quite large,
and the implementation of the method takes substantial time
and memory and is therefore limited in scalability.

Another decision tree method is ANN-DT [25] which uses
sampling to create a decision tree: the key idea is to use
sampling to expand training using a nearest neighbor method.

3) Automatic-Rule Extraction: Automatic rule extraction
is another well-studied approach for summarizing decisions.
Andrews et al [26] outlines existing rule extraction techniques,
and provides a useful taxonomy of five dimensions of rule-
extraction methods including their expressive power, translu-
cency and the quality of rules. Another useful survey can be
found in the master’s thesis by Zilke [27].

Decompositional approaches work on the neuron-level to
extract rules to mimic the behavior of individual units. The
KT method [28] goes through each neuron, layer-by-layer
and applies an if-then rule by finding a threshold. Similar
to DeepRED, there is a merging step which creates rules in
terms of the inputs rather than the outputs of the preceding
layer. This is an exponential approach which is not tangible for
deep neural networks. However, a similar approach proposed
by Tsukimoto [29] achieves polynomial-time complexity, and
may be more tangible. There has also been work on trans-
forming neural network to fuzzy rules [30], by transforming
each neuron into an approximate rule.

Pedagogical approaches aim to extract rules by directly
mapping inputs to outputs rather than considering the inner
workings of a neural network. These treat the network as a
black box, and find trends and functions from the inputs to
the outputs. Validity Interval Analysis is a type of sensitivity
analysis to mimic neural network behavior [31]. This method
finds stable intervals, where there is some correlation between
the input and the predicted class. Another way to extract rules
using sampling methods [32], [33]. Some of these sampling
approaches only work on binary input [34] or use genetic
algorithms to produce new training examples [35]. Other ap-
proaches aim to reverse engineer the neural network, notably,
the RxREN algorithm, which is used in DeepRED[21].

Other notable rule-extraction techniques include the MofN
algorithm [36], which tries to find rules that explain single
neurons by clustering and ignoring insignificant neurons. Simi-
larly, The FERNN [37] algorithm uses the C4.5 algorithm [24]
and tries to identify the meaningful hidden neurons and inputs
to a particular network.

Although rule-extraction techniques increase the trans-
parency of neural networks, they may not be truly faithful to
the model. With that, there are other methods that are focused
on creating trust between the user and the model, even if the
model is not “sophisicated.”

4) Salience Mapping: The salience map approach is ex-
emplified by occlusion procedure by Zeiler [38], where a
network is repeatedly tested with portions of the input oc-
cluded to create a map showing which parts of the data
actually have influence on the network output. When deep
network parameters can be inspected directly, a salience map
can be created more efficiently by directly computing the
input gradient (Simonyan [39]). Since such derivatives can
miss important aspects of the information that flows through a
network, a number of other approaches have been designed to



propagate quantities other than gradients through the network.
Examples are LRP [40], DeepLIFT [41], CAM [42], Grad-
CAM [43], Integrated gradients [44], and SmoothGrad [45].
Each technique strikes a balance between showing areas of
high network activation, where neurons fire strongest, and
areas of high network sensitivity, where changes would most
affect the output. A comparison of some of these methods can
be found in Ancona [46].

B. Explanations of Deep Network Representations

While the number of individual operations in a network is
vast, deep networks are internally organized into a smaller
number of subcomponents: for example, the billions of op-
erations of ResNet are organized into about 100 layers, each
computing between 64 and 2048 channels of information per
pixel. The explanation of deep network representations aims to
understand the role and structure of the data flowing through
these bottlenecks. This work can be divided by the granularity
examined: representations can be understood by layer, where
all the information flowing through a layer is considered
together, and by unit, where single neurons or single filter
channels are considered individually, and by vector, where
other vector directions in representation space are considered
individually.

1) Role of Layers: Layers can be understood by testing
their ability to help solve different problems from the problems
the network was originally trained on. For example Razavian
[47] found that the output of an internal layer of a network
trained to classify images of objects in the ImageNet dataset
produced a feature vector that could be directly reused to
solve a number of other difficult image processing problems
including fine-grained classification of different species of
birds, classification of scene images, attribute detection, and
object localization. In each case, a simple model such as an
SVM was able to directly apply the deep representation to the
target problem, beating state-of-the-art performance without
training a whole new deep network. This method of using
a layer from one network to solve a new problem is called
transfer learning, and it is of immense practical importance,
allowing many new problems to be solved without developing
new datasets and networks for each new problem. Yosinksi
[48] described a framework for quantifying transfer learning
capabilities in other contexts.

2) Role of Individual Units: The information within a layer
can be further subdivided into individual neurons or individual
convolutional filters. The role of such individual units can
be understood qualitatively, by creating visualizations of the
input patterns that maximize the response of a single unit, or
quantitatively, by testing the ability of a unit to solve a transfer
problem. Visualizations can be created by optimizing an input
image using gradient descent [39], by sampling images that
maximize activation [49], or by training a generative network
to create such images [50]. Units can also be characterized
quantitatively by testing their ability to solve a task. One
example of a such a method is network dissection [51], which
measures the ability of individual units solve a segmentation

problem over a broad set of labeled visual concepts. By
quantifying the ability of individual units to locate emergent
concepts such as objects, parts, textures, and colors that are
not explicit in the original training set, network dissection can
be used characterize the kind of information represented by
visual networks at each unit of a network.

A review of explanatory methods focused on understanding
unit representations used by visual CNNs can be found in
[52], which examines methods for visualization of CNN
representations in intermediate network layers, diagnosis of
these representations, disentanglement representation units, the
creation of explainable models, and semantic middle-to-end
learning via human-computer interaction.

Pruning of networks [53] has also been shown to be a
step towards understanding the role of individual neurons in
networks. In particular, large networks that train successfully
contain small subnetworks with initializations conducive to
optimization. This demonstrates that there exist training strate-
gies that make it possible to solve the same problems with
much smaller networks that may be more interpretable.

3) Role of Representation Vectors: Closely related to the
approach of characterizing individual units is characterizing
other directions in the representation vector space formed by
linear combinations of individual units. Concept Activation
Vectors (CAVs) [54] are a framework for interpretation of a
neural nets representations by identifying and probing direc-
tions that align with human-interpretable concepts.

C. Explanation-Producing Systems

Several different approaches can be taken to create networks
that are designed to be easier to explain: networks can be
trained to use explicit attention as part of their architecture;
they can be trained to learn disentangled representations; or
they can be directly trained to create generative explanations.

1) Attention Networks: Attention-based networks learn
functions that provide a weighting over inputs or internal
features to steer the information visible to other parts of a
network. Attention-based approaches have shown remarkable
success in solving problems such as allowing natural language
translation models to process words in an appropriate non-
sequential order [55], and they have also been applied in
domains such as fine-grained image classification [56] and
visual question answering [57]. Although units that control
attention are not trained for the purpose of creating human-
readable explanations, they do directly reveal a map of which
information passes through the network, which can serve
as a form of explanation. Datasets of human attention have
been created [58], [59]; these allow systems to be evaluated
according to how closely and their internal attention resembles
human attention.

While attention can be observed as a way of extracting
explanations, another interesting approach is to train attention
explicitly in order to create a network that has behavior
that conforms to desired explanations. This is the technique
proposed by Ross [60], where input sensitivity of a network
is adjusted and measured in order to create networks that are



“right for the right reasons;” the method can be used to steer
the internal reasoning learned by a network. They also propose
that the method can be used to learn a sequence of models that
discover new ways to solve a problem that may not have been
discovered by previous instances.

2) Disentangled Representations: Disentangled representa-
tions have individual dimensions that describe meaningful and
independent factors of variation. The problem of separating la-
tent factors is an old problem that has previously been attacked
using a variety of techniques such as Principal Component
Analysis [61], Independent Component Analysis [62], and
Nonnegative Matrix Factorization [63]. Deep networks can be
trained to explicitly learn disentangled representations. One
approach that shows promise is Variational Autoencoding [64],
which trains a network to optimize a model to match the in-
put probability distribution according to information-theoretic
measures. Beta-VAE [65] is a tuning of the method that has
been observed to disentangle factors remarkably well. Another
approach is InfoGAN [66], which trains generative adversarial
networks with an objective that reduces entanglement between
latent factors. Special loss functions have been suggested
for encouraging feed-forward networks to also disentangle
their units; this can be used to create interpretable CNNs
that have individual units that detect coherent meaningful
patches instead of difficult-to-interpret mixtures of patterns
[67]. Disentangled units can enable the construction of graphs
[68] and decision trees [69] to elucidate the reasoning of a
network. Architectural alternatives such as capsule networks
[70] can also organize the information in a network into pieces
that disentangle and represent higher-level concepts.

3) Generated Explanations: Finally, deep networks can
also be designed to generate their own human-understandable
explanations as part of the explicit training of the system.
Explanation generation has been demonstrated as part of
systems for visual question answering [71] as well as in fine-
grained image classification [72]. In addition to solving their
primary task, these systems synthesize a “because” sentence
that explains the decision in natural language. The genera-
tors for these explanations are trained on large data sets of
human-written explanations, and they explain decisions using
language that a person would use.

Multimodal explanations that incorporate both visual point-
ing and textual explanations can be generated; this is the
approach taken in [59]. This system builds upon the winner of
the 2016 VQA challenge [73], with several simplification and
additions. In addition to the question answering task and the
internal attention map, the system trains an additional long-
form explanation generator together with a second attention
map optimized as a visual pointing explanation. Both visual
and textual explanations score well individually and together
on evaluations of user trust and explanation quality. Interest-
ingly, the generation of these highly readable explanations is
conditioned on the output of the network: the explanations
are generated based on the decision, after the decision of the
network has already been made.

IV. RELATED WORK

We provide a summary of related review papers, and an
overview of interpretability and explainability in other do-
mains.

A. Interpretability

A previous survey has attempted to define taxonomies and
best practices for a “strong science” of interpretability [74].
The motivation of this paper is similar to ours, noting that “the
volume of research on interpretability is rapidly growing” and
that there is no clear existing definition or evaluation criteria
for interpretability. The authors define interpretability as “the
ability to explain or to present in understandable terms to a
human” and suggest a variety of definitions for explainability,
converging on the notion that interpretation is the act of
discovering the evaluations of an explanation. The authors
attempt to reach consensus on the definition of interpretable
machine learning and how it should be measured. While we
are inspired by the taxonomy of this paper, we focus on the
explainability aspect rather than interpretability.

The main contribution of this paper is a taxonomy of
modes for interpretability evaluations: application-grounded,
human-grounded, and functionally grounded. The authors state
interpretability is required when a problem formulation is
incomplete, when the optimization problem – the key defi-
nition to solve the majority of machine learning problems – is
disconnected from evaluation. Since their problem statement is
the incompleteness criteria of models, resulting in a disconnect
between the user and the optimization problem, evaluation
approaches are key.

The first evaluation approach is application-grounded, in-
volving real humans on real tasks. This evaluation measures
how well human-generated explanations can aid other humans
in particular tasks, with explanation quality assessed in the true
context of the explanation’s end tasks. For instance, a doctor
should evaluate diagnosis systems in medicine.

The second evaluation approach is human-grounded, us-
ing human evaluation metrics on simplified tasks. The key
motivation is the difficulty of finding target communities for
application testing. Human-grounded approaches may also be
used when specific end-goals, such as identifying errors in
safety-critical tasks, are not possible to realize fully.

The final evaluation metric is functionally grounded eval-
uation, without human subjects. In this experimental setup,
proxy or simplified tasks are used to prove some formal
definition of interpretability. The authors acknowledge that
choosing which proxy to use is a challenge inherent to this
approach. There lies a delicate tradeoff between choosing an
interpretable model and a less interpretable proxy method
which is more representative of model behavior; the authors
acknowledge this point and briefly mention decision trees as
a highly interpretable model.

The authors then discuss open problems, best practices and
future work in interpretability research, while heavily encour-
aging data-driven approaches for discovery in interpretability.
Although the contribution of the interpretability definition,



we distinguish our taxonomy by defining different focuses of
explanations a model can provide, and how those explanations
should be evaluated.

B. Explainable AI for HCI

One previous review paper of explainable AI performed a
sizable data-driven literature analysis of explainable systems
[75]. In this work, the authors move beyond the classical AI
interpretability argument, focusing instead on how to create
practical systems with efficacy for real users. The authors
motivate AI systems that are “explainable by design” and
present their findings with three contributions: a data-driven
network analysis of 289 core papers and 12,412 citing papers
for an overview of explainable AI research, a perspective on
trends using network analysis, and a proposal for best practices
and future work in HCI research pertaining to explainablity.

Since most of the paper focuses on the literature analysis,
the authors highlight only three large areas in their related
work section: explainable artificial intelligence (XAI), intelli-
gibility and interpretability in HCI, and analysis methods for
trends in research topics.

The major contribution of this paper is a sizable literature
analysis of explainable research, enabled by the citation net-
work the authors constructed. Papers were aggregated based
on a keyword search on variations of the terms “intelligi-
ble,” “interpretable,” “transparency,” “glass box,” “black box,”
“scrutable,” “counterfacutals,” and “explainable,” and then
pruned down to 289 core papers and 12,412 citing papers.
Using network analysis, the authors identified 28 signifi-
cant clusters and 9 distinct research communities, including
early artificial intelligence, intelligent systems/agents/user in-
terfaces, ambient intelligence, interaction design and learn-
ability, interpretable ML and classifier explainers, algorithmic
fairness/accountability/transparency/policy/journalism, causal-
ity, psychological theories of explanations, and cognitive tu-
tors. In contrast, our work is focused on the research in
interpretable ML and classifier explainers for deep learning.

With the same sets of core and citing papers, the authors
performed LDA-based topic modeling on the abstract text
to determine which communities are related. The authors
found the largest, most central and well-studied network to be
intelligence and ambient systems. In our research, the most im-
portant subnetworks are the Explainable AI: Fair, Accountable,
and Transparent (FAT) algorithms and Interpretable Machine
Learning (iML) subnetwork and the theories of explanations
subnetworks. In particular, the authors provide a distinction
between FATML and interpretability; while FATML is focused
on societal issues, interpretability is focused on methods. The-
ory of explanations joins causality and cognitive psychology
with the common threads of counterfactual reasoning and
causal explanations. Both these threads are important factors
in our taxonomy analysis.

In the final section of their paper, the authors name two
trends of particular interest to us: ML production rules and
a road map to rigorous and usable intelligibility. The authors

note a lack of classical AI methods being applied to inter-
pretability, encouraging broader application of those methods
to current research. Though this paper focused mainly on
setting an HCI research agenda in explainability, it raises many
points relevant to our work. Notably, the literature analysis
discovered subtopics and subdisciplines in psychology and
social science, not yet identified as related in our analysis.

C. Explanations for Black-Box Models

A recent survey on methods for explaining black-box mod-
els [76] outlined a taxonomy to provide classifications of the
main problems with opaque algorithms. Most of the methods
surveyed are applied to neural-network based algorithms, and
therefore related to our work.

The authors provide an overview of methods that explaining
decision systems based on opaque and obscure machine learn-
ing models. Their taxonomy is detailed, distinguishing small
differing components in explanation approaches (e.g. Decision
tree vs. single tree, neuron activation, SVM, etc.) Their classi-
fication examines four features for each explanation method:

1) The type of the problem faced.
2) The explanatory capability used to open the black box.
3) The type of black box model that can be explained.
4) The type of input data provided to the black box model.

They primarily divide the explanation methods according to
the types of problem faced, and identify four groups of
explanation methods: methods to explain black box models;
methods to explain black box outcomes; methods to inspect
black boxes; and methods to design transparent boxes. Using
their classification features and these problem definitions, they
discuss and further categorize methods according to the type of
explanatory capability adopted, the black box model “opened”,
and the input data. Their goal is to review and classify the main
black box explanation architectures, so their classifications
can serve as a guide to identifying similar problems and
approaches. We find this work a meaningful contribution
that is useful for exploring the design space of explanation
methods. Our classification is less finely-divided; rather than
subdividing implementation techniques, we examine the focus
of the explanatory capability and what each approach can

explain, with an emphasis on understanding how different
types of explainability methods can be evaluated.

D. Explainability in Other Domains

Explainable planning [77] is an emerging discipline that
exploits the model-based representations that exist in the
planning community. Some of the key ideas were proposed
years ago in plan recognition [78]. Explainable planning urges
the familiar and common basis for communication with users,
while acknowledging the gap between planning algorithms and
human problem-solving. In this paper, the authors outline and
provide examples of a number of different types of questions
that explanations could answer, like “Why did you do A” or
”Why DIDN’T you do B”, ”Why CAN’T you do C”, etc.
In addition, the authors emphasize that articulating a plan in
natural language is NOT usually the same thing as explaining



the plan. A request for explanation is “an attempt to uncover
a piece of knowledge that the questioner believes must be
available to the system and that the questioner does not have”.
We discuss the questions an explanation can and should answer
in our conclusion.

Automatic explanation generation is also closely related to
computers and machines that can tell stories. In John Reeves’
thesis [79], he created the THUNDER program to read stories,
construct character summaries, infer beliefs, and understand
conflict and resolution. Other work examines how to represent
the necessary structures to do story understanding [80]. The
Genesis Story-Understanding System [81] is a working system
that understands, uses, and composes stories using higher-level
concept patterns and commonsense rules. Explanation rules are
used to supply missing causal or logical connections.

At the intersection of human robot interaction and story-
telling is verbalization; generating explanations for human-
robot interaction [82]. Similar approaches are found in abduc-
tive reasoning; using a case-based model [83] or explanatory
coherence [84]. This is also a well-studied field in brain and
cognitive science by filling in the gaps of knowledge by
imagining new ideas [85] or using statistical approaches [86].

V. TAXONOMY

The approaches from the literature that we have exam-
ined fall into three different categories. Some papers propose
explanations that, while admittedly non-representative of the
underlying decision processes, provide some degree of justi-

fication for emitted choices that may be used as response to
demands for explanation in order to build human trust in the
system’s accuracy and reasonableness. These systems emulate

the processing of the data to draw connections between the
inputs and outputs of the system.

The second purpose of an explanation is to explain the rep-

resentation of data inside the network. These provide insight
about the internal operation of the network and can be used
to facilitate explanations or interpretations of activation data
within a network. This is comparative to explaining the internal
data structures of the program, to start to gain insights about
why certain intermediate representations provide information
that enables specific choices.

The final type of explanation is explanation-producing

networks. These networks are specifically built to explain
themselves, and they are designed to simplify the interpretation
of an opaque subsystem. They are steps towards improving the
transparency of these subsystems; where processing, represen-
tations, or other parts are justified and easier to understand.

The taxonomy we present is useful given the broad set
of existing approaches for achieving varying degrees of in-
terpretability and completeness in machine learning systems.
Two distinct methods claiming to address the same overall
problem may, in fact, be answering very different questions.
Our taxonomy attempts to subdivide the problem space, based
on existing approaches, to more precisely categorize what has
already been accomplished.

We show the classifications of our reviewed methods per
category in Table I. Notice that the processing and explanation-
producing roles are much more populated than the represen-
tation role. We believe that this disparity is largely due to the
fact that it is difficult to evaluate representation-based mod-
els. User-study evaluations are not always appropriate. Other
numerical methods, like demonstrating better performance by
adding or removing representations, are difficult to facilitate.

The position of our taxonomy is to promote research and
evaluation across categories. Instead of other explanatory and
interpretability taxonomies that assess the purpose of explana-
tions [74] and their connection to the user [75], we instead
assess the focus on the method, whether the method tries
to explain the processing of the data by a network, explain
the representation of data inside a network or to be a self-
explaining architecture to gain additional meta predictions and
insights about the method.

We promote this taxonomy, particularly the explanation-
producing sub-category, as a way to consider designing neural
network architectures and systems. We also highlight the
lack of standardized evaluation metrics, and propose research
crossing areas of the taxonomy as future research directions.

Processing Representation
Explanation

Producing

Proxy Methods Role of layers Scripted conversations

Decision Trees Role of neurons Attention-based

Salience mapping Role of vectors Disentangled rep.

Automatic-rule extraction Human evaluation

TABLE I
THE CLASSIFICATIONS OF TOP LEVEL METHODS INTO OUR TAXONOMY.

VI. EVALUATION

Although we outline three different focuses of explanations
for deep networks, they do not share the same evaluation
criteria. Most of the work surveyed conducts one of the
following types of evaluation of their explanations.

1) Completeness compared to the original model. A proxy
model can be evaluated directly according to how closely
it approximates the original model being explained.

2) Completeness as measured on a substitute task. Some
explanations do not directly explain a model’s decisions,
but rather some other attribute that can be evaluated. For
example, a salience explanation that is intended to reveal
model sensitivity can be evaluated against a brute-force
measurement of the model sensitivity.

3) Ability to detect models with biases. An explanation that
reveals sensitivity to a specific phenomenon (such as
a presence of a specific pattern in the input) can be
tested for its ability to reveal models with the presence or
absence of a relevant bias (such as reliance or ignorance
of the specific pattern).

4) Human evaluation. Humans can evaluate explanations
for reasonableness, that is how well an explanation
matches human expectations. Human evaluation can also



evaluate completeness or substitute-task completeness
from the point of view of enabling a person to predict
behavior of the original model; or according to helpful-
ness in revealing model biases to a person.

As we can see in Table II, the tradeoff between inter-

pretability and its completeness can be seen not only as a
balance between simplicity and accuracy in a proxy model.
The tradeoff can also be made by anchoring explanations to
substitute tasks or evaluating explanations in terms of their
ability to surface important model biases. Each of the three
types of explanation methods can provide explanations that
can be evaluated for completeness (on those critical model
characteristics), while still being easier to interpret than a full
accounting for every detailed decision of the model.

Processing Representation
Explanation

Producing

Completeness to Model Completeness on
Human evaluation

Completeness on substitute task
Detect biases

substitute task Detect biases

TABLE II
SUGGESTED EVALUATIONS FOR THE CLASSIFICATIONS IN OUR TAXONOMY

A. Processing

Processing models can also be regarded as emulation-based
methods. Proxy methods should be evaluated on their faith-
fulness to the original model. A handful of these metrics are
described in [20]. The key idea is that evaluating completeness
to a model should be local. Even if a model, in our case, a
deep neural network, is too complex globally, you can still
explain in a way that makes sense locally by approximating
local behavior. Therefore, processing model explanations want
to minimize the “complexity” of explanations (essentially,
minimize length) as well as “local completeness” (error of
interpretable representation relative to actual classifier, near
instance being explained).

Salience methods that highlight sensitive regions for pro-
cessing are often evaluated qualitatively. Although they do not
directly predict the output of the original method, these meth-
ods can also be evaluated for faithfulness, since their intent
is to explain model sensitivity. For example, [46] conducts an
occlusion experiment as ground truth, in the model is tested
on many version of an input image where each portion of
the image is occluded. This test determines in a brute-force
but computationally inefficient way which parts of an input
cause a model to change its outputs the most. Then each
salience method can be evaluated according to how closely
the method produces salience maps that correlate with this
occlusion-based sensitivity.

B. Representation

Representation-based methods typically characterize the
role of portions of the representation by testing the rep-
resentations on a transfer task. For example, representation
layers are characterized according to their ability to serve
as feature input for a transfer problem, and both Network

Dissection representation units and Concept Activation Vectors
are measured according to their ability to detect or correlate
with specific human-understandable concepts.

Once individual portions of a representation are character-
ized, they can be tested for explanatory power by evaluating
whether their activations can faithfully reveal a specific bias in
a network. For example, Concept Activation Vectors [54] are
evaluated by training several versions of the same network on
datasets that are synthesized to contain two different types of
signals that can be used to determine the class (the image
itself, and an overlaid piece of text which gives the class
name with varying reliability). The faithfulness of CAVs to
the network behavior can be verified by evaluating whether
classifiers that are known to depend on the text (as evidenced
by performance on synthesized tests) exhibit high activations
of CAV vectors corresponding to the text, and that classifiers
that do not depend on the text exhibits low CAV vectors.

C. Explanation-Producing

Explanation-producing systems can be evaluated according
to how well they match user expectations. For example,
network attention can be compared to human attention [58],
and disentangled representations can be tested on synthetic
datasets that have known latent variables, to determine whether
those variables are recovered. Finally, systems that are trained
explicitly to generate human-readable explanations can be
tested by similarity to test sets, or by human evaluation.

One of the difficulties of evaluating explanatory power of
explanation-producing systems is that, since the system itself
produces the explanation, evaluations necessarily couple eval-
uation of the system along with evaluation of the explanation.
An explanation that seems unreasonable could indicate either
a failure of the system to process information in a reason-
able way, or it could indicate the failure of the explanation
generator to create a reasonable description. Conversely, an
explanation system that is not faithful to the decisionmaking
process could produce a reasonable description even if the
underlying system is using unreasonable rules to make the
decision. An evaluation of explanations based on their reason-
ableness alone can miss these distinctions. In [74], a number
of user-study designs are outlined that can help bridge the gap
between the model and the user.

VII. CONCLUSIONS

One common viewpoint in the deep neural network com-
munity is that the level of interpretability and theoretical
understanding needed to for transparent explanations of large
DNNs remains out of reach; for example, as a response to Ali
Rahimi’s Test of Time NIPS address, Yann LeCunn responded
that “The engineering artifacts have almost always preceded
the theoretical understanding” [87]. However, we assert that,
for machine learning systems to achieve wider acceptance
among a skeptical populace, it is crucial that such systems
be able to provide or permit satisfactory explanations of their
decisions. The progress made so far has been promising, with
efforts in explanation of deep network processing, explanation



of deep network representation, and system-level explanation
production yielding encouraging results.

We find, though, that the various approaches taken to
address different facets of explainability are siloed. Work in
the explainability space tends to advance a particular category
of technique, with comparatively little attention given to
approaches that merge different categories of techniques to
achieve more effective explanation. Given the purpose and
type of explanation, it is not obvious what the best type of
explanation metric is and should be. We encourage the use of
diverse metrics that align with the purpose and completeness
of the targeted explanation. Our view is that, as the community
learns to advance its work collaboratively by combining ideas
from different fields, the overall state of system explanation
will improve dramatically, resulting in methods that provide
behavioral extrapolation, build trust in deep learning systems,
and provide usable insight into deep network operation en-
abling system behavior understanding and improvement.
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