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Introduction

e CVD — Cardiovascular Diseases

e Risks for CVD:

* high blood pressure

high low-density lipoprotein (LDL) cholesterol
Diabetes

smoking and secondhand smoke exposure
Obesity

unhealthy diet

physical inactivity
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Literature Review

* Less than 8% of prediction models in studies
published from 2009 to 2016 included longitudinal
data as time-varying covariates

* Most studies were using baseline data and only 8 of
them had time varying covariates

* Lots of ML were used but ML classifiers cannot
predict the time to event, do not account for
censoring, and need to be re-trained for each
prediction time
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Literature Review

e Commonly used ML were Random Survival Forest
(RSF), DeepSury, and Nnet-survival, many cannot
directly process the time series of repeated
measures as input

* Recently introduced were Dynamic-DeepHit and
MATCH-Net but their utilities need to be externally
validated in medical applications
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Aim of the study

* to evaluate the utility of multivariate longitudinal
data for survival analysis of incident CVD prediction
in young adults

 compare the predictive value among those
strategies and against baseline models

* Identify the top performing models
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Study Population

* 3539 patients
* 15 year cohort

* Cohort from Coronary Artery Risk Development in
Young Adults (CARDIA) study
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Results

Table 2 Predictive performance of all models on 35 variables (mean and 95% empirical bootstrap interval)

Strategy Model iAUC C-index Last AUC
Time-series (TS) massive RSF on TS-extracted features 0.808 (0.790, 0.826) 0.778 (0.757, 0.801) 0.758 (0.733,0.784)
feature extraction LASSO-Cox on TS-extracted features 0.744 (0.711,0.781) 0.713 (0.686, 0.739) 0.701 (0.674,0.727)
Recurrent neural network Dynamic-DeepHit 0.794 (0.764, 0.825) 0.767 (0.745, 0.789) 0.762 (0.733,0.792)
Trajectory clustering RSF on trajectory clustering data 0.793(0.772,0.816) 0.741 (0.721,0.76) 0.725(0.705, 0.744)
Data concatenation RSF on concatenated data 0.797 (0.778,0.817) 0.766 (0.745, 0.788) 0.751 (0.725, 0.779)
Joint modeling JMBayes Did not converge
Last observed values RSF on Y15 data 0.793(0.773,0.812) 0.750 (0.729,0.77) 0.731(0.705, 0.76)
Coxon Y15 data 0.778 (0.758, 0.804) 0.75 (0.733,0.769) 0.728 (0.705, 0.752)
Coxon Y15 data 0.793 (0.772,0.818) 0.748 (0.73,0.763) 0.727 (0.707, 0.745)
Reference (YO data) RSF on YO data 0.754 (0.73,0.777) 0.721 (0.698, 0.743) 0.699 (0.672,0.726)
CoxonY0data 0.748 (0.724,0.773) 0.709 (0.686, 0.73) 0.685 (0.654,0.716)
LASSO-Cox on Y0 data 0.739 (0.713,0.768) 0.698 (0.678,0.717) 0.678 (0.645,0.711)

The best scores are bolded. iAUC: integrated AUC, LASSO-Cox: Cox Proportional Hazards penalized by LeAst Shrinkage and Selection Operator. JMBayes Joint
modeling with Bayesian approach, RSF Random Survival Forest
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Discussion

* RSF on TS performed the best

* longitudinal data improved up to 8% in AUC and C-
index, compared to using baseline values alone, and up
to 4% compared to using the last observed data

* TIME is one explainability technique that explains
RSFTS better, along with the capability of explaining all
temporal models using raw time series as input

* The predictors with the strongest association with
lowered survival probability included HBM, smoking
status, DBP, glucose, LDL, HDL, SBP, and pulse beats
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Limitations

 did not exhaustively try all tuning options

* the number of CVD events by the end of follow-up
was relatively small

* CARDIA study consists of Black and White
participants in the US with baseline data collected
in 1985, and thus the results from this work may
not be transferable to other populations of
different demographic characteristics

* Some models did not perform at all
* TIME evaluation do not imply causality



B\ Mahidol University

*] Faculty of Medicine Ramathibodi Hospital
: »<’/ Department of Clinical Epidemiology and Biostatistics

Reference

e Multivariate longitudinal data for survival analysis
of cardiovascular event prediction in young adults:

insights from a comparative explainable study |
BMC Medical Research Methodology | Full Text
(biomedcentral.com)



https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-023-01845-4
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-023-01845-4
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-023-01845-4
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-023-01845-4
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-023-01845-4

	Slide 1: Multivariate Longitudinal Data  for Survival Analysis of  Cardiovascular Event Prediction 
	Slide 2: Introduction
	Slide 3: Literature Review
	Slide 4: Literature Review
	Slide 5: Aim of the study
	Slide 6: Study Population
	Slide 7: Methodology
	Slide 8: Models
	Slide 9: Variables
	Slide 10: Results
	Slide 11
	Slide 12
	Slide 13: Discussion
	Slide 14: Limitations
	Slide 15: Reference

