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Abstract 

Objective: The identification of methodology for modelling cardiovascular disease (CVD) risk using longitudinal data 
and risk factor trajectories.

Methods: We screened MEDLINE‑Ovid from inception until 3 June 2020. MeSH and text search terms covered three 
areas: data type, modelling type and disease area including search terms such as “longitudinal”, “trajector*” and “cardio‑
vasc*” respectively. Studies were filtered to meet the following inclusion criteria: longitudinal individual patient data 
in adult patients with ≥3 time‑points and a CVD or mortality outcome. Studies were screened and analyzed by one 
author. Any queries were discussed with the other authors. Comparisons were made between the methods identified 
looking at assumptions, flexibility and software availability.

Results: From the initial 2601 studies returned by the searches 80 studies were included. Four statistical approaches 
were identified for modelling the longitudinal data: 3 (4%) studies compared time points with simple statistical tests, 
40 (50%) used single‑stage approaches, such as including single time points or summary measures in survival models, 
29 (36%) used two‑stage approaches including an estimated longitudinal parameter in survival models, and 8 (10%) 
used joint models which modelled the longitudinal and survival data together. The proportion of CVD risk prediction 
models created using longitudinal data using two‑stage and joint models increased over time.

Conclusions: Single stage models are still heavily utilized by many CVD risk prediction studies for modelling lon‑
gitudinal data. Future studies should fully utilize available longitudinal data when analyzing CVD risk by employing 
two‑stage and joint approaches which can often better utilize the available data.
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Background
Cardiovascular disease (CVD) is a leading cause of mor-
bidity and mortality worldwide, accounting for 47 and 
39% of deaths in females and males, respectively, in 
European Society of Cardiology member states [1]. Risk 

prediction models inform the understanding and man-
agement of CVD and have become an important part of 
clinical decision making. Many risk prediction models for 
CVD use one data point per patient (usually at baseline), 
such as the widely used Framingham Risk Score which 
predicts risk for coronary heart disease, [2] or QRISK3 
which predicts risk of CVD in a subset of the UK pop-
ulation, and is widely used in CVD risk stratification in 
the UK [3]. These models use many variables at baseline 
including systolic blood pressure (SBP), total cholesterol, 
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high-density lipoprotein cholesterol, or smoking status. 
As such, many cardiovascular risk prediction models do 
not account for measurement error or changes in risk 
factors over time [4, 5] which could lead to biased esti-
mation. For example, SBP generally increases as people 
age, while diastolic blood pressure initially rises but starts 
decreasing after the age of 60 [6]. Further, as people age, 
they accumulate more risk factors. These complex and 
dynamic changes over time must be accounted for when 
modelling CVD risk to achieve the most robust possible 
risk prediction.

In risk prediction, longitudinal data permits the study 
of change in risk factors over time, accounting for within 
person-variance and usually provides an increase in 
power while reducing the number of patients needed [7]. 
However, analysis of longitudinal data adds complexity, 
such as dependence between observations, informatively 
censored or incomplete data and non-linear trajectories 
of longitudinal risk factors over time. Addressing these 
issues can add significant complexity and computational 
burden to the analysis.

The association between longitudinal measurements of 
blood pressure and risk of CVD has been studied using 
summaries such as time-averaged, cumulative, [8] trajec-
tory patterns [9] and variability [10, 11]. However, less 
effort has been invested in modelling the complete record 
of longitudinal measurements, e.g. as time-varying 
covariates. Using summary measures in risk prediction 
models could be ineffective due to possible heterogene-
ity of variance for the summary measure. A review of risk 
prediction models covering the period 2009–2016 found 
that 46/117 (39.3%) studies considered longitudinal data, 
and only 9/117 (7.7%) studies included longitudinal data 
as time-varying covariates [12]. A more recent review of 
available methods adopted for harnessing longitudinal 
data in clinical risk prediction showed a further increase 
in the development of risk prediction models over the 
period 2009–2018 and identified seven different meth-
odological frameworks [13].

The aim of this review was to conduct a comprehensive 
methodological evaluation of the estimation of risk for 
developing CVD in the general population, specifically 
targeting studies with a longitudinal design with three or 
more time-points, to allow for the trajectory of the longi-
tudinal variable(s) to be modelled in predicting CVD risk.

Material and methods
Selection criteria
This review focused on risk prediction for CVD. Stud-
ies were included if they had a longitudinal design with 
data analyzed over at least three time points, where the 
outcome was a clinical diagnosis of a cardiovascular 

disease(s) or mortality. Cross-sectional, animal, and pae-
diatric studies were excluded.

Search strategy
MEDLINE-Ovid was searched from inception until 3 
June 2020 with no language restrictions. Search terms 
used for data type and modelling type were “longitudinal, 
repeat* measure*, hierarchical, multilevel model*” and 
“change, slope, trajector*, profile, growth curve” respec-
tively in all text. For disease area, the following search 
terms were used: “cardiovasc*, cerebrovasc*, atrial fibril-
lation, coronary (and artery or disease), stroke” in title, 
“cardiovascular disease, brain ischemia, heart diseases” in 
MeSH with subheadings or “myocardial infarction, coro-
nary disease, stroke, intracranial hemorrhages (without 
intracranial hemorrhage, traumatic)” in MeSH without 
subheadings. The standardized search filter, along with 
the search approach and search terms are listed in Fig. 1 
and Supplementary Table 1. Studies needed at least one 
term for data type, modelling type and disease area. Fur-
ther, the reference lists of included studies were reviewed 
to identify any additional relevant articles.

Consideration of studies for inclusion followed a 
three-step process. First, titles were considered. Second, 
abstracts of potentially eligible studies were considered. 
Third, after abstract screening, the full-text articles were 
retrieved and assessed for eligibility. The first author (DS) 
completed the screening of studies and other authors 
were consulted to resolve any queries. Reasons for exclu-
sion were recorded.

Data extraction
The following information were extracted from each 
study: first author, year of publication, model type, data-
set region, time period for data collection, age range, pro-
portion of males, length of follow-up, number of patients, 
number of longitudinal time points, longitudinal and sur-
vival outcome data types, covariates adjusted for in lon-
gitudinal and survival models, survival and longitudinal 
outcomes, and characteristics of the statistical and mod-
elling approaches used including assumptions, handling 
of missing data, model selection, and software used. Data 
extraction was conducted by the first author (DS), with 
other authors consulted to resolve any queries.

Results
The searches returned 2601 studies with 12 duplicates 
(Fig.  2). Based on screening titles and abstracts, 2150 
studies were excluded. The full texts were considered 
for 439 articles and a further 34 were excluded due 
to ≥1 of the following reasons: data not longitudinal, 
review article, data were summary measures rather 
than individual patient data, or non-CVD/mortality 
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outcome. The number of repeated measures was 
assessed for 405 studies. A further 325 further studies 
were excluded due to having less than three repeated 
measures reported. Eighty studies were included in the 
review (Fig. 2) [14–93].

General characteristics
Characteristics of the included studies are summarized 
in Table 1. Sixty (75%) studies reported analyses on large 
sample sizes (≥1000 patients). Exactly three longitudi-
nal measurements were available in 27 (33.8%) studies, 
while 47 (58.8%) reported ≥3 data points with a mixture 
of median, mean or maximum number of longitudinal 
observations per patient; however, many studies did not 
utilize all available measurements. Follow-up lengths 
varied widely from 31 days [48] to 35 years, [50] with 29 
(36.2%) reporting over a 10–20-year period. Patients 
were often followed up for survival after the last repeated 
measure, with 47 (58.8%) studies reporting a total follow-
up of ≥10 years, while 31 (38.8%) reported a longitudinal 
outcome follow-up of ≥10 years. Over three-quarters 
(n  = 65, 81.3%) were published after 2010, 15 studies 
(18.8%) were published prior to 2010. Data collection for 
many longitudinal datasets (n = 20, 25.0%) began in the 
1980s, only 13 (16.2%) studies were from the 1990s, and 
about one-third were completed in the 2000s (n  = 26, 
32.5%).

Outcome data
Most (n = 63, 78.8%) studies reported disease outcomes 
as time-to-event or survival outcomes. Fewer stud-
ies examined disease outcomes as binary (n = 5, 6.2%), 
continuous (n  = 8, 10.0%) or rates (n  = 4, 5.0%). Most 
(n = 69, 86.2%) longitudinal outcomes were continuous; 
other longitudinal outcome types were binary (n  = 3, 
3.8%), categorical (n = 5, 6.2%), or ordinal (n = 3, 3.8%).

Adjusting for covariates
Sixty-one studies (76.2%) adjusted for age and 45 (56.2%) 
adjusted for sex as covariates in their survival analysis, 
while four (5.0%) stratified by age and three (3.8%) for 
sex. Nine (11.2%) studies analyzed data separately for 
each sex. Seventeen (21.2%) longitudinal analyses were 
adjusted for age, while 30 (37.5%) were not. Sex was 
adjusted for as a covariate in 9 (11.2%) longitudinal analy-
ses. Four (5.0%) studies analyzed longitudinal data sepa-
rately by sex, and 28 (35.0%) did not adjust for sex.

Statistical analysis
This review has identified a variety of statistical analy-
sis methods that have been incorporated to analyze 
time-to-event and longitudinal outcome data. Three 
(3.8%) used a simple statistical test [14–16]. For exam-
ple, Albani et  al. [16] used the Wilcoxon signed rank 
test to compare two risk scores (the Framingham Risk 

Fig. 1 Summary of search strategy
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Score and an atherosclerotic cardiovascular disease 
risk score) before treatment with pasireotide and 6 and 
12 months after treatment. Other statistical approaches 
for modelling CVD risk using longitudinal data 
can be divided into three categories: 1) single-stage 
approaches including basic summary measures, 40 
(50.0%), [17–56] 2) two-stage approaches using an esti-
mated longitudinal parameter as a covariate in a sur-
vival outcome model, 29 (36.3%), [57–85] and 3) joint 
models fitting longitudinal and survival data simultane-
ously, 8 (10.0%) [86–93].

Characteristics of included studies
The characteristics of the included studies by different 
modelling approaches is shown in Table 2. Joint models 
have been fitted on smaller datasets with only one study 
using a joint model on a dataset of over 10,000 patients 
[87]. A larger proportion of two-stage or joint mod-
els had patients with a variable number of time points 
included compared to single-stage approaches (24/37 
(64.9%) vs. 23/40 (57.5%), respectively). Five (6.3%) 
studies did not report the number of time points used 
in their analyses. Two-stage approaches were used on 

Fig. 2 Flow chart of study selection
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Table 1 General characteristics of studies and outcomes included in the review

Model or study characteristic Number 
of articles 
(%)

References

Number of patients < 100 5 (6.3) [15, 16, 21, 38, 58]

100–999 13 (16.5) [14, 26, 43, 45, 57, 61, 62, 64, 82, 85, 89, 90, 92]

1000–9999 39 (49.4) [17, 19, 23, 27, 28, 30–35, 37, 39–42, 44, 46, 47, 
50, 53–56, 63, 66, 68, 70, 71, 73, 74, 76, 78, 79, 
83, 86, 88, 91, 93]

10,000+ 21 (26.6) [18, 20, 22, 24, 25, 29, 36, 49, 51, 52, 59, 60, 65, 
67, 69, 72, 75, 77, 81, 84, 87]

Not reported 1 (1.3) [80]

Number of time points Median 2 1 (1.2) [90]

3 27 (33.8) [14–16, 20, 22, 24, 27–29, 31–33, 35, 36, 41, 
53, 60, 61, 64, 65, 67, 69, 75, 78, 81, 86, 93]

≥3 (median, mean or maximum) 47 (58.8) [17–19, 21, 23, 30, 34, 37–39, 42–46, 48–52, 
54–58, 62, 63, 66, 68, 70–74, 76, 77, 79, 80, 
82–85, 87–89, 91, 92]

Not reported 5 (6.2) [25, 26, 40, 47, 59]

Follow‑up for longitudinal and survival 
length (years)

< 5 16 (20.0) [14–16, 21, 28, 32, 40, 43, 47, 48, 51, 57–59, 
81, 87]

5 to 10 17 (21.2) [22, 24, 26, 27, 31, 38, 54, 55, 60, 61, 64, 65, 67, 
72, 82, 84, 93]

10 to 20 29 (36.2) [18, 25, 29, 30, 33–35, 37, 41, 44, 45, 49, 62, 63, 
69, 71, 74, 76–79, 83, 85, 86, 88–92]

> 20 18 (22.5) [17, 19, 20, 23, 36, 39, 42, 46, 50, 52, 53, 56, 66, 
68, 70, 73, 75, 80]

Follow‑up for longitudinal length (years) < 5 24 (30.0) [14–16, 21, 28, 32, 38, 40, 43, 47, 48, 51, 57–61, 
64, 65, 67, 69, 71, 81, 87]

5 to 10 25 (31.2) [22, 24, 26, 27, 31, 33–35, 49, 53–56, 62, 72, 74, 
76, 78, 79, 82–86, 93]

10 to 20 23 (28.8) [17–20, 25, 29, 30, 37, 41, 44, 45, 50, 63, 66, 70, 
75, 77, 80, 88–92]

> 20 8 (10.0) [23, 36, 39, 42, 46, 52, 68, 73]

Follow‑up for survival length (years) < 5 19 (23.8) [21, 24, 28, 32, 40, 43, 47, 48, 51, 57–61, 64, 67, 
77, 81, 87]

5 to 10 26 (32.5) [19, 26, 27, 29, 31, 34, 35, 38, 41, 49, 54, 55, 65, 
68–74, 76, 82–85, 93]

10 to 20 23 (28.8) [17, 18, 20, 25, 30, 36, 37, 39, 45, 56, 62, 63, 66, 
75, 78–80, 86, 88–92]

> 20 4 (5.0) [23, 42, 50, 53]

No survival analysis 8 (10.0) [14–16, 22, 33, 44, 46, 52]

Time‑period for start of data collection 1950s 2 (2.5) [39, 80]

1960s 6 (7.5) [36, 50, 53, 56, 73, 78]

1970s 5 (6.2) [23, 42, 46, 66, 68]

1980s 20 (25.0) [17, 20, 26, 35, 37, 41, 44, 49, 52, 55, 62, 71, 74, 
75, 79, 82, 85, 86, 88, 91]

1990s 13 (16.2) [18, 19, 27, 29, 30, 43, 45, 63, 70, 83, 89, 90, 92]

2000s 26 (32.5) [15, 22, 24, 25, 28, 31–34, 38, 47, 48, 51, 59–61, 
65, 67, 69, 72, 76, 77, 81, 84, 87, 93]

2010s 4 (5.0) [14, 21, 58, 64]

Not reported 4 (5.0) [16, 40, 54, 57]

Decade of publication Prior to 2000 8 (10.0) [26, 43, 53–56, 78, 80]

2000s 7 (8.8) [15, 35, 49–52, 82]

2010s 63 (78.8) [14, 16, 18–25, 27–34, 36–42, 44–48, 57–68, 
70–77, 79, 81, 83–93]

2020 2 (2.5) [17, 69]
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Table 1 (continued)

Model or study characteristic Number 
of articles 
(%)

References

Baseline Age ‑ mean/median < 40 5 (6.2) [19, 26, 76, 77, 84]

40–49 12 (15.0) [16, 33, 39, 41, 44, 46, 47, 54, 68, 72, 86, 91]

50–59 18 (22.5) [14, 20, 23, 25, 28, 30, 34, 43, 45, 50, 56, 59, 60, 
64–67, 69]

60–69 17 (21.2) [18, 21, 31, 32, 36–38, 40, 51, 57, 61, 63, 73, 79, 
81, 92, 93]

70–79 7 (8.8) [17, 48, 71, 74, 85, 89, 90]

> 80 2 (2.5) [83, 87]

Not reported 19 (23.8) [15, 22, 24, 27, 29, 35, 42, 49, 52, 53, 55, 58, 62, 
70, 75, 78, 80, 82, 88]

Region of dataset Asia 16 (20.0) [21, 22, 25, 34, 38, 58, 60, 61, 65, 67, 69, 76, 77, 
80, 84, 88]

Europe 22 (27.5) [16, 20, 23, 24, 31, 36, 37, 39–41, 43, 44, 47, 49, 
50, 52, 57, 75, 86, 87, 90, 91]

International 3 (3.8) [28, 32, 93]

Middle East 3 (3.8) [14, 45, 53]

North America 33 (41.2) [15, 17–19, 26, 29, 30, 33, 35, 42, 46, 48, 51, 
54–56, 59, 62–64, 66, 68, 70, 71, 73, 74, 78, 79, 
81–83, 85, 92]

Australia & New Zealand 3 (3.8) [27, 72, 89]

Males (%) < 40 7 (8.8) [16, 24, 46, 57, 74, 83, 91]

40s 28 (35.0) [14, 17–19, 25, 29, 31, 33, 35, 36, 40–42, 49, 52, 
62, 64, 66, 68, 70, 71, 73, 75, 79, 82, 87–89]

50s 7 (8.8) [27, 43, 48, 77, 81, 84, 86]

60–99 20 (25.0) [20, 21, 28, 32, 34, 37, 38, 44, 45, 47, 58–61, 63, 
65, 67, 69, 76, 93]

All male 11 (13.8) [23, 26, 39, 50, 53, 54, 56, 78, 85, 90, 92]

Not reported 7 (8.8) [15, 22, 30, 51, 55, 72, 80]

Survival outcome type Binary 5 (6.2) [17, 27, 30, 31, 64]

Continuous 8 (10.0) [14–16, 22, 33, 44, 46, 52]

Rate 4 (5.0) [23, 26, 37, 79]

Time to event 63 (78.8) [18–21, 24, 25, 28, 29, 32, 34–36, 38–43, 45, 
47–51, 53–63, 65–78, 80–93]

Longitudinal outcome type Binary 3 (3.8) [24, 30, 55]

Categorical 5 (6.2) [20, 22, 65, 72, 73]

Continuous 69 (86.2) [14–19, 21, 23, 25–29, 31–33, 35, 36, 38–40, 
42–54, 56–64, 66–71, 74–93]

Ordinal 3 (3.8) [34, 37, 41]

Survival analysis adjusted for age Unadjusted 8 (10.0) [21, 23, 30, 35, 57, 68, 86, 87]

Yes, Stratified 3 (3.8) [22, 54, 80]

Yes, Baseline hazard 1 (1.2) [39]

Yes, Covariate 61 (76.2) [17–20, 24–29, 31, 32, 34, 36–38, 40–43, 
45, 47–51, 53, 55, 56, 58–67, 69–79, 81–85, 
88–93]

No survival analysis 7 (8.8) [14–16, 33, 44, 46, 52]
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Table 1 (continued)

Model or study characteristic Number 
of articles 
(%)

References

Survival analysis adjusted for sex Unadjusted 4 (5.0) [21, 57, 58, 87]

Single sex 12 (15.0) [23, 26, 39, 50, 53, 54, 56, 78, 85, 90–92]

Yes, separate models 9 (11.2) [29, 30, 35, 42, 49, 75, 76, 82, 88]

Yes, stratified 3 (3.8) [22, 68, 80]

Yes, covariate 45 (56.2) [17–20, 24, 25, 27, 28, 31, 32, 34, 36–38, 40, 41, 
43, 45, 47, 48, 51, 55, 59–67, 69–74, 77, 79, 81, 
83, 84, 86, 89, 93]

No survival analysis 7 (8.8) [14–16, 33, 44, 46, 52]

Longitudinal Analysis adjusted for age Unadjusted 30 (37.5) [33, 44, 49, 57, 58, 60–67, 69, 71–75, 78–83, 
85, 87, 89, 90, 93]

Yes, covariate 17 (21.2) [17, 18, 31, 46, 47, 52, 54, 59, 68, 70, 76, 77, 84, 
86, 88, 91, 92]

No longitudinal analysis 33 (41.2) [14–16, 19–30, 32, 34–43, 45, 48, 50, 51, 53, 
55, 56]

Longitudinal Analysis adjusted for sex Unadjusted 28 (35.0) [33, 44, 49, 57, 58, 60–69, 71–75, 79–83, 87, 
89, 93]

Single sex 6 (7.5) [54, 78, 85, 90–92]

Yes, separate models 4 (5.0) [52, 70, 76, 88]

Yes, covariate 9 (11.2) [17, 18, 31, 46, 47, 59, 77, 84, 86]

No longitudinal analysis 33 (41.2) [14–16, 19–30, 32, 34–43, 45, 48, 50, 51, 53, 
55, 56]

Disease area Chronic kidney disease 1 (1.2) [87]

Cushing’s disease 1 (1.2) [16]

Cardiovascular disease 61 (76.2) [14, 15, 17, 19–23, 26–42, 44, 45, 47–52, 54, 
56–58, 60, 61, 64, 66–76, 78, 79, 81, 84–86, 
88, 91–93]

Diabetes 1 (1.2) [25]

Gout 1 (1.2) [59]

Hypertension 1 (1.2) [63]

Impaired sleep 1 (1.2) [24]

Mortality 5 (6.2) [43, 62, 82, 83, 89]

Systemic lupus erythematosus 1 (1.2) [46]

Stroke 7 (8.8) [18, 53, 55, 65, 77, 80, 90]

Primary Outcome Acute coronary syndrome 4 (5.0) [30, 36, 60, 81]

Atrial fibrillation 2 (2.5) [25, 66]

Cardiovascular mortality 7 (8.8) [32, 39, 49–51, 54, 73]

Cardiovascular Mortality/acute coronary 
syndrome/stroke

1 (1.2) [93]

Cardiovascular disease 36 (45.0) [17, 19, 20, 23, 26, 27, 29, 31, 34, 35, 37, 38, 
41, 42, 47, 56, 58, 59, 64, 68–72, 74–76, 78, 79, 
84–86, 88, 89, 91, 92]

Cardiovascular disease risk 8 (10.0) [14–16, 22, 33, 44, 46, 52]

Cardiovascular disease/cancer/mortality 1 (1.2) [40]

Cardiovascular disease/mortality 2 (2.5) [21, 57]

Hospitalization/heart failure/cardiovascular 
mortality

1 (1.2) [28]

Hypertension 1 (1.2) [24]

Mortality 9 (11.2) [43, 45, 48, 55, 61–63, 82, 83]

Stroke 8 (10.0) [18, 53, 65, 67, 77, 80, 87, 90]
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10/16 (62.5%) datasets collected in Asia but only in 2/22 
(9.1%) on European datasets. The longitudinal analysis 
in two-stage approaches rarely adjusted for age or sex, 
with adjustments made in 6/29 (20.7%) and 7/29 (24.1%), 
respectively. The frequency of studies using each model 
type over time is shown in Fig. 3. Since 2010, a substan-
tial increase in the number of papers using two-stage 
approaches was observed with 26/65 (40.0%) using them 
after 2010 vs. 3/15 (20.0%) before. Use of joint models 
also commenced later that decade with only one study 
before 2015.

A complete case analysis was used in 65/80 (81.3%) 
studies, more often in smaller (< 1000, 16/18, 88.9%) and 
very large (> 10,000, 18/21, 85.7%) cohorts than medium-
sized studies (1000–9999, 29/39, 74.4%) and those with a 
variable number of time-points (39/48, 81.3%) compared 
with exactly three time points (21/27, 77.8%). In addition, 
those with shorter follow-ups (< 10 years, 19/33, 57.6%) 
were more likely to use a complete case analysis. The 
methods used for handling missing data included mul-
tiple imputation (n = 6), single imputations (n = 3), last 
observation carried forward (n  = 2) and indicators for 
missing variables (n = 2).

Single‑stage approaches
A single-stage approach was used in 40 (50%) studies 
[17–56] (Table  3). The most common risk prediction 
model for single-stage models was the Cox proportional 
hazards (PH) model (n  = 25, 62.5%) [94]. The model 

assumes a proportional effect on the hazard; the PH 
assumption should be checked, either by including time-
varying coefficients or by a variety of graphical testing 
methods, such as Schoenfeld residual plots and log-log 
plots. Only 9/25 (62.5%) of articles utilizing Cox PH 
models as a single-stage approach stated that the PH 
assumption was checked [95].

The simplest method of utilizing the Cox PH model 
was used by including the values of the longitudinal out-
come at baseline (Time 0) (n = 7, 17.5%) [18, 21, 24, 43, 
50, 53, 54]. For example, Tanne et  al. used baseline val-
ues of SBP to predict ischemic stroke mortality [53]. This 
model is easily interpretable clinically; it only uses data 
from a single time-point per patient and does not take 
into account all available data. Clustering and meta-anal-
ysis techniques were also incorporated through the Cox 
PH model. A study using impaired sleep as a CVD risk 
factor included patients in two separate baseline waves. 
Patients could appear in both waves and clustering was 
accounted for when fitting the Cox PH model [24]. A 
study examining the association between cholesterol and 
cardiovascular mortality fitted Cox PH models for each 
year of follow-up, and combined the coefficients from 
these models using meta-analysis techniques [50].

Three (7.5%) studies included the difference between 
the longitudinal predictor at baseline and a previous value 
as a covariate in the Cox model, [28, 35, 38] for example, 
risk of coronary heart disease was predicted by using the 
difference between a patient’s current Framingham Risk 

Table 1 (continued)

Model or study characteristic Number 
of articles 
(%)

References

Population focus Acute coronary syndrome 4 (5.0) [21, 32, 45, 58]

Atrial fibrillation and chronic kidney disease 1 (1.2) [87]

Chronic kidney disease 2 (2.5) [43, 51]

Cushing’s disease 1 (1.2) [16]

Cardiovascular disease 37 (46.2) [15, 17, 19, 20, 23, 26, 27, 29, 33–35, 38, 40, 
42, 44, 48, 53, 56, 57, 60–62, 65–71, 74, 78, 79, 
81–83, 85, 88]

Diabetes 3 (3.8) [25, 64, 93]

General population 27 (33.8) [14, 18, 22, 24, 30, 31, 36, 37, 39, 41, 49, 50, 52, 
54, 55, 63, 72, 73, 75–77, 80, 84, 86, 90–92]

Gout 1 (1.2) [59]

Heart failure 1 (1.2) [28]

HIV 1 (1.2) [47]

Systemic lupus erythematosus 1 (1.2) [46]

Mental health 1 (1.2) [89]
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Table 2 Summary of characteristics of studies included in the review by model type

Model or study characteristic No of papers n 
(%)

Simple 
statistical 
tests n (%)

Single  modela 
n (%)

Two‑stage 
 modelb n 
(%)

Joint  modelc n 
(%)

Complete 
case analysis 
n (%)

Number of 
patients

< 100 5 (6.3) 2 (66.7) 2 (5.0) 1 (3.4) 0 (0.0) 5 (100.0)

100–999 13 (16.5) 1 (33.3) 3 (7.5) 6 (20.7) 3 (37.5) 11 (84.6)

1000–9999 39 (49.4) 0 (0.0) 24 (60.0) 11 (37.9) 4 (50.0) 29 (74.4)

10,000+ 21 (26.6) 0 (0.0) 10 (25.0) 10 (34.5) 1 (12.5) 18 (85.7)

Not reported 1 (1.3) 0 (0.0) 0 (0.0) 1 (3.4) 0 (0.0) 1 (100.0)

Number of time 
points

Median 2 1 (1.2) 0 (0.0) 0 (0.0) 0 (0.0) 1 (12.5) 0 (0.0)

3 27 (33.8) 3 (100.0) 13 (32.5) 9 (31.0) 2 (25.0) 21 (77.8)

≥3 (median, mean 
or maximum)

47 (58.8) 0 (0.0) 23 (57.5) 19 (65.5) 5 (62.5) 39 (83.0)

Not reported 5 (6.2) 0 (0.0) 4 (10.0) 1 (3.4) 0 (0.0) 5 (100.0)

Follow‑up for 
longitudinal and 
survival length 
(years)

< 5 16 (20.0) 3 (100.0) 8 (20.0) 4 (13.8) 1 (12.5) 14 (87.5)

5 to 10 17 (21.2) 0 (0.0) 8 (20.0) 8 (27.6) 1 (12.5) 15 (88.2)

10 to 20 29 (36.2) 0 (0.0) 12 (30.0) 11 (37.9) 6 (75.0) 23 (79.3)

> 20 18 (22.5) 0 (0.0) 12 (30.0) 6 (20.7) 0 (0.0) 13 (72.2)

Follow‑up for 
longitudinal length 
(years)

< 5 24 (30.0) 3 (100.0) 9 (22.5) 11 (37.9) 1 (12.5) 21 (87.5)

5 to 10 25 (31.2) 0 (0.0) 13 (32.5) 10 (34.5) 2 (25.0) 23 (92.0)

10 to 20 23 (28.8) 0 (0.0) 12 (30.0) 6 (20.7) 5 (62.5) 16 (69.6)

> 20 8 (10.0) 0 (0.0) 6 (15.0) 2 (6.9) 0 (0.0) 5 (62.5)

Follow‑up for 
survival length 
(years)

< 5 19 (23.8) 0 (0.0) 9 (22.5) 9 (31.0) 1 (12.5) 16 (84.2)

5 to 10 26 (32.5) 0 (0.0) 12 (30.0) 13 (44.8) 1 (12.5) 23 (88.5)

10 to 20 23 (28.8) 0 (0.0) 10 (25.0) 7 (24.1) 6 (75.0) 16 (69.6)

> 20 4 (5.0) 0 (0.0) 4 (10.0) 0 (0.0) 0 (0.0) 2 (50.0)

No survival 
analysis

8 (10.0) 3 (100.0) 5 (12.5) 0 (0.0) 0 (0.0) 8 (100.0)

Time‑period for 
start of data col‑
lection

1950s 2 (2.5) 0 (0.0) 1 (2.5) 1 (3.4) 0 (0.0) 1 (50.0)

1960s 6 (7.5) 0 (0.0) 4 (10.0) 2 (6.9) 0 (0.0) 6 (100.0)

1970s 5 (6.2) 0 (0.0) 3 (7.5) 2 (6.9) 0 (0.0) 3 (60.0)

1980s 20 (25.0) 0 (0.0) 10 (25.0) 7 (24.1) 3 (37.5) 16 (80.0)

1990s 13 (16.2) 0 (0.0) 7 (17.5) 3 (10.3) 3 (37.5) 9 (69.2)

2000s 26 (32.5) 1 (33.3) 12 (30.0) 11 (37.9) 2 (25.0) 22 (84.6)

2010s 4 (5.0) 1 (33.3) 1 (2.5) 2 (6.9) 0 (0.0) 4 (100.0)

Not reported 4 (5.0) 1 (33.3) 2 (5.0) 1 (3.4) 0 (0.0) 4 (100.0)

Decade of publica‑
tion

Prior to 2000 8 (10.0) 0 (0.0) 6 (15.0) 2 (6.9) 0 (0.0) 8 (100.0)

2000s 7 (8.8) 1 (33.3) 5 (12.5) 1 (3.4) 0 (0.0) 6 (85.7)

2010s 63 (78.8) 2 (66.7) 28 (70.0) 25 (86.2) 8 (100.0) 49 (77.8)

2020 2 (2.5) 0 (0.0) 1 (2.5) 1 (3.4) 0 (0.0) 2 (100.0)

Baseline Age ‑ 
mean/median

< 40 5 (6.2) 0 (0.0) 2 (5.0) 3 (10.3) 0 (0.0) 5 (100.0)

40–49 12 (15.0) 1 (33.3) 7 (17.5) 2 (6.9) 2 (25.0) 8 (66.7)

50–59 18 (22.5) 1 (33.3) 10 (25.0) 7 (24.1) 0 (0.0) 13 (72.2)

60–69 17 (21.2) 0 (0.0) 9 (22.5) 6 (20.7) 2 (25.0) 14 (82.4)

70–79 7 (8.8) 0 (0.0) 2 (5.0) 3 (10.3) 2 (25.0) 6 (85.7)

> 80 2 (2.5) 0 (0.0) 0 (0.0) 1 (3.4) 1 (12.5) 2 (100.0)

Not reported 19 (23.8) 1 (33.3) 10 (25.0) 7 (24.1) 1 (12.5) 17 (89.5)
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Table 2 (continued)

Model or study characteristic No of papers n 
(%)

Simple 
statistical 
tests n (%)

Single  modela 
n (%)

Two‑stage 
 modelb n 
(%)

Joint  modelc n 
(%)

Complete 
case analysis 
n (%)

Data Region Asia 16 (20.0) 0 (0.0) 5 (12.5) 10 (34.5) 1 (12.5) 15 (93.8)

Europe 22 (27.5) 1 (33.3) 15 (37.5) 2 (6.9) 4 (50.0) 14 (63.6)

International 3 (3.8) 0 (0.0) 2 (5.0) 0 (0.0) 1 (12.5) 2 (66.7)

Middle East 3 (3.8) 1 (33.3) 2 (5.0) 0 (0.0) 0 (0.0) 2 (66.7)

North America 33 (41.2) 1 (33.3) 15 (37.5) 16 (55.2) 1 (12.5) 29 (87.9)

Australia & NZ 3 (3.8) 0 (0.0) 1 (2.5) 1 (3.4) 1 (12.5) 3 (100.0)

Males (%) < 40 7 (8.8) 1 (33.3) 2 (5.0) 3 (10.3) 1 (12.5) 6 (85.7)

40s 28 (35.0) 1 (33.3) 14 (35.0) 10 (34.5) 3 (37.5) 24 (85.7)

50s 7 (8.8) 0 (0.0) 3 (7.5) 3 (10.3) 1 (12.5) 6 (85.7)

60–99 20 (25.0) 0 (0.0) 10 (25.0) 9 (31.0) 1 (12.5) 16 (80.0)

All male 11 (13.8) 0 (0.0) 7 (17.5) 2 (6.9) 2 (25.0) 8 (72.7)

Not reported 7 (8.8) 1 (33.3) 4 (10.0) 2 (6.9) 0 (0.0) 5 (71.4)

Survival outcome 
type

Binary 5 (6.2) 0 (0.0) 4 (10.0) 1 (3.4) 0 (0.0) 3 (60.0)

Continuous 8 (10.0) 3 (100.0) 5 (12.5) 0 (0.0) 0 (0.0) 8 (100.0)

Rate 4 (5.0) 0 (0.0) 3 (7.5) 1 (3.4) 0 (0.0) 3 (75.0)

Time to event 63 (78.8) 0 (0.0) 28 (70.0) 27 (93.1) 8 (100.0) 51 (81.0)

Longitudinal 
outcome type

Binary 3 (3.8) 0 (0.0) 3 (7.5) 0 (0.0) 0 (0.0) 2 (66.7)

Categorical 5 (6.2) 0 (0.0) 2 (5.0) 3 (10.3) 0 (0.0) 4 (80.0)

Continuous 69 (86.2) 3 (100.0) 32 (80.0) 26 (89.7) 8 (100.0) 57 (82.6)

Ordinal 3 (3.8) 0 (0.0) 3 (7.5) 0 (0.0) 0 (0.0) 2 (66.7)

Survival analysis 
adjusted for age

Unadjusted 8 (10.0) 0 (0.0) 4 (10.0) 2 (6.9) 2 (25.0) 5 (62.5)

Yes, Stratified 3 (3.8) 0 (0.0) 2 (5.0) 1 (3.4) 0 (0.0) 3 (100.0)

Yes, Baseline 
hazard

1 (1.2) 0 (0.0) 1 (2.5) 0 (0.0) 0 (0.0) 0 (0.0)

Yes, Covariate 61 (76.2) 0 (0.0) 29 (72.5) 26 (89.7) 6 (75.0) 50 (82.0)

No survival 
analysis

7 (8.8) 3 (100.0) 4 (10.0) 0 (0.0) 0 (0.0) 7 (100.0)

Survival analysis 
adjusted for sex

Unadjusted 4 (5.0) 0 (0.0) 1 (2.5) 2 (6.9) 1 (12.5) 4 (100.0)

Single sex 12 (15.0) 0 (0.0) 7 (17.5) 2 (6.9) 3 (37.5) 8 (66.7)

Yes, separate 
models

9 (11.2) 0 (0.0) 5 (12.5) 3 (10.3) 1 (12.5) 7 (77.8)

Yes, stratified 3 (3.8) 0 (0.0) 1 (2.5) 2 (6.9) 0 (0.0) 3 (100.0)

Yes, covariate 45 (56.2) 0 (0.0) 22 (55.0) 20 (69.0) 3 (37.5) 36 (80.0)

No survival 
analysis

7 (8.8) 3 (100.0) 4 (10.0) 0 (0.0) 0 (0.0) 7 (100.0)

Longitudinal 
Analysis adjusted 
for age

Unadjusted 30 (37.5) 0 (0.0) 3 (7.5) 23 (79.3) 4 (50.0) 28 (93.3)

Yes, covariate 17 (21.2) 0 (0.0) 7 (17.5) 6 (20.7) 4 (50.0) 13 (76.5)

No longitudinal 
analysis

33 (41.2) 3 (100.0) 30 (75.0) 0 (0.0) 0 (0.0) 24 (72.7)

Longitudinal 
Analysis adjusted 
for sex

Unadjusted 28 (35.0) 0 (0.0) 3 (7.5) 22 (75.9) 3 (37.5) 27 (96.4)

Single sex 6 (7.5) 0 (0.0) 1 (2.5) 2 (6.9) 3 (37.5) 4 (66.7)

Yes, separate 
models

4 (5.0) 0 (0.0) 1 (2.5) 2 (6.9) 1 (12.5) 3 (75.0)

Yes, covariate 9 (11.2) 0 (0.0) 5 (12.5) 3 (10.3) 1 (12.5) 7 (77.8)

No longitudinal 
analysis

33 (41.2) 3 (100.0) 30 (75.0) 0 (0.0) 0 (0.0) 24 (72.7)
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Table 2 (continued)

Model or study characteristic No of papers n 
(%)

Simple 
statistical 
tests n (%)

Single  modela 
n (%)

Two‑stage 
 modelb n 
(%)

Joint  modelc n 
(%)

Complete 
case analysis 
n (%)

Disease area Chronic kidney 
disease

1 (1.2) 0 (0.0) 0 (0.0) 0 (0.0) 1 (12.5) 1 (100.0)

Cushing’s disease 1 (1.2) 1 (33.3) 0 (0.0) 0 (0.0) 0 (0.0) 1 (100.0)

Cardiovascular 
disease

61 (76.2) 2 (66.7) 33 (82.5) 21 (72.4) 5 (62.5) 47 (77.0)

Diabetes 1 (1.2) 0 (0.0) 1 (2.5) 0 (0.0) 0 (0.0) 1 (100.0)

Gout 1 (1.2) 0 (0.0) 0 (0.0) 1 (3.4) 0 (0.0) 1 (100.0)

Hypertension 1 (1.2) 0 (0.0) 0 (0.0) 1 (3.4) 0 (0.0) 1 (100.0)

Impaired sleep 1 (1.2) 0 (0.0) 1 (2.5) 0 (0.0) 0 (0.0) 1 (100.0)

Mortality 5 (6.2) 0 (0.0) 1 (2.5) 3 (10.3) 1 (12.5) 5 (100.0)

Systemic lupus 
erythematosus

1 (1.2) 0 (0.0) 1 (2.5) 0 (0.0) 0 (0.0) 1 (100.0)

Stroke 7 (8.8) 0 (0.0) 3 (7.5) 3 (10.3) 1 (12.5) 6 (85.7)

Primary Outcome Acute coronary 
syndrome

4 (5.0) 0 (0.0) 2 (5.0) 2 (6.9) 0 (0.0) 2 (50.0)

Atrial fibrillation 2 (2.5) 0 (0.0) 1 (2.5) 1 (3.4) 0 (0.0) 2 (100.0)

Cardiovascular 
mortality

7 (8.8) 0 (0.0) 6 (15.0) 1 (3.4) 0 (0.0) 4 (57.1)

Cardiovascular 
mortality/acute 
coronary syn‑
drome/stroke

1 (1.2) 0 (0.0) 0 (0.0) 0 (0.0) 1 (12.5) 1 (100.0)

Cardiovascular 
disease

36 (45.0) 0 (0.0) 16 (40.0) 15 (51.7) 5 (62.5) 28 (77.8)

Cardiovascular 
disease risk

8 (10.0) 3 (100.0) 5 (12.5) 0 (0.0) 0 (0.0) 8 (100.0)

Cardiovascular 
disease/cancer/
mortality

1 (1.2) 0 (0.0) 1 (2.5) 0 (0.0) 0 (0.0) 1 (100.0)

Cardiovascular 
disease/mortality

2 (2.5) 0 (0.0) 1 (2.5) 1 (3.4) 0 (0.0) 2 (100.0)

Hospitalization/
heart failure/cardi‑
ovascular mortality

1 (1.2) 0 (0.0) 1 (2.5) 0 (0.0) 0 (0.0) 1 (100.0)

Hypertension 1 (1.2) 0 (0.0) 1 (2.5) 0 (0.0) 0 (0.0) 1 (100.0)

Mortality 9 (11.2) 0 (0.0) 4 (10.0) 5 (17.2) 0 (0.0) 8 (88.9)

Stroke 8 (10.0) 0 (0.0) 2 (5.0) 4 (13.8) 2 (25.0) 7 (87.5)
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Score and their score 3 or 6 years ago [35]. This is a sim-
ple measure; however, it assumes that change is linear 
between two time-points. Further, three (7.5%) studies 
used a slope to predict CVD and the slope was calculated 
manually by dividing the difference by time duration [25, 
29, 32]. Other summaries were included in the Cox PH 
models as covariates such as a mean, [36] mean change, 
[36] standard deviation, [19] summaries of changes 
between categories [20, 34, 41] and stability in categories 
[20, 34, 41].

Six studies (15.0%) included longitudinal predictors as 
time-dependent covariates in the Cox model [39, 42, 45, 
47, 49, 51, 55] by splitting the timescale at each time point 
when predictors are updated. Reinikainen et al. included 
time-dependent summary measures as time-dependent 
covariates; updated mean values and the change between 
the current and previous time-points for SBP, total cho-
lesterol and current smoking status [39].

Three studies (7.5%) used logistic regression to model 
a binary disease outcome [30, 31, 48]. One included the 
predictor at baseline, [31] another compared the pre-
dictive power at multiple time points to predict risk of 

myocardial infarction by including them in separate 
models, [30] while the third used summary measures 
(mean (SD), mean change from baseline, range and aver-
age daily risk range) of blood glucose to predict mortality 
in myocardial infarction patients [48].

Four (10.0%) studies used generalized estimating equa-
tions (GEE) to model a disease outcome. Two had binary 
outcomes, [17, 27] while two others modelled rates [22, 
37]. Of the four studies, two used a logit link [17, 27] and 
two used a log link [22, 37]. All four included data from 
multiple time points. One of the studies used summaries 
of changes in socioeconomic status and lifestyle habit 
variables between categories such as stable, increasing (in 
the second or third time point), decreasing or unstable, 
to predict the Framingham Risk Score [22].

Two studies included baseline values of the longitudinal 
predictor in a Poisson regression model, [23, 26] a form 
of Generalized Linear Model (GLM) that can be used as 
a fully parametric alternative to the Cox PH model. Pois-
son regression for survival analysis involves splitting the 
follow-up time into intervals and assuming a constant 
baseline hazard in each interval [97].

Table 2 (continued)

Model or study characteristic No of papers n 
(%)

Simple 
statistical 
tests n (%)

Single  modela 
n (%)

Two‑stage 
 modelb n 
(%)

Joint  modelc n 
(%)

Complete 
case analysis 
n (%)

Population focus Acute coronary 
syndrome

4 (5.0) 0 (0.0) 3 (7.5) 1 (3.4) 0 (0.0) 2 (50.0)

Atrial fibrilla‑
tion and chronic 
kidney disease

1 (1.2) 0 (0.0) 0 (0.0) 0 (0.0) 1 (12.5) 1 (100.0)

Chronic kidney 
disease

2 (2.5) 0 (0.0) 2 (5.0) 0 (0.0) 0 (0.0) 1 (50.0)

Cushing’s disease 1 (1.2) 1 (33.3) 0 (0.0) 0 (0.0) 0 (0.0) 1 (100.0)

Cardiovascular 
disease

37 (46.2) 1 (33.3) 17 (42.5) 18 (62.1) 1 (12.5) 32 (86.5)

Diabetes 3 (3.8) 0 (0.0) 1 (2.5) 1 (3.4) 1 (12.5) 3 (100.0)

General popula‑
tion

27 (33.8) 1 (33.3) 14 (35.0) 8 (27.6) 4 (50.0) 20 (74.1)

Gout 1 (1.2) 0 (0.0) 0 (0.0) 1 (3.4) 0 (0.0) 1 (100.0)

Heart failure 1 (1.2) 0 (0.0) 1 (2.5) 0 (0.0) 0 (0.0) 1 (100.0)

HIV 1 (1.2) 0 (0.0) 1 (2.5) 0 (0.0) 0 (0.0) 1 (100.0)

Systemic lupus 
erythematosus

1 (1.2) 0 (0.0) 1 (2.5) 0 (0.0) 0 (0.0) 1 (100.0)

Mental health 1 (1.2) 0 (0.0) 0 (0.0) 0 (0.0) 1 (12.5) 1 (100.0)
a  One model is fitted e.g. fitted a Cox proportional hazards (PH) model for the survival outcome
b  Two models are fitted separately; one model was fitted to summarise longitudinal data or estimate the time effect, and then used that information in the model for 
disease or survival outcome. e.g. fitted a linear regression for longitudinal measurements for each individual, and then the estimated slopes were used in a Cox PH 
model
c  Longitudinal and survival outcomes are fitted simultaneously
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Four (10.0%) studies modelled changes in risk scores 
over time using linear mixed effects (LME) models, 
[33, 44, 46] for example, predicting the trajectory of the 
Framingham Risk Score over four time-points [44]. Fixed 
effects linear regression was used by one study [52] to 
examine how change in body mass index (BMI) is corre-
lated with the Framingham Risk Score.

Two‑stage models
A two-stage modelling approach was used in 29 (36.3%) 
studies (Table  4) [57–85]. In a two-stage approach, the 
longitudinal data is first summarized with a longitudi-
nal model(s). Parameters and/or estimates from this/
these model(s) are then included as covariates in a sur-
vival model. The Cox PH model was used in most studies 
(n = 26, 89.7%) [57, 58, 60–63, 65–73, 75–78, 80–85, 88]. 
A weakness of the two-stage approach is that uncertainty 
in the longitudinal data summaries produced in the first 
stage is ignored.

Two methods were commonly used to generate sum-
maries from longitudinal data to include in a Cox PH 
model as a covariate. The simplest method calculated 
summary measures such as a slope or the coefficient of 
variation (equivalent to residual variance) using a linear 
regression model for each patient in nine studies (31.0%) 
[57, 62, 63, 71, 78, 80, 82, 83, 85] Gao et  al. used linear 
regression to estimate the intercept, slope, square of the 
slope and coefficient of variation for blood pressure that 
were then included in a Cox PH model to assess how 
variation and changes in blood pressure were associated 
with mortality [63].

The second most frequently used method (n = 17, 
58.6%) was group-based trajectory models (GBTMs) to 
model the trajectory of the longitudinal variable [58, 60, 
61, 65–70, 72, 73, 75–77, 81, 84, 88]. Wang et al. identi-
fied four separate trajectories of sleep duration and used 
these to predict risk of cardiovascular events or mor-
tality [69]. Most models were fitted using the Proc Traj 

Fig. 3 Stacked bar chart showing the frequency of the statistical model types by year
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package from SAS [98] (n = 10, 58.8%), [60, 65–70, 73, 
75, 81] although other software, including Stata (traj) [99] 
and R (lcmm) can be used [100]. Trajectory groups from 
GBTMs were also used in logistic regression (n = 1) [64] 
and Poisson regression (n = 1) [79] analyses of survival 
outcomes.

Desai et  al. used weighted pooled logistic regression 
with inverse probability weights (IPWs) to examine the 
association between changes in serum uric acid and risk 
of incident diabetes, CVD and renal decline [59]. These 
models are complex, but the resulting hazard ratios can 
be interpreted as causal estimates assuming no unmeas-
ured confounders [101].

Joint models
A joint modelling approach, where both the longitudinal 
variable and the survival model are fitted simultaneously, 
was used for eight studies (10.0%) [86, 87, 89, 91–93]; 
(Table  5). This approach makes full use of the available 
data and may be more statistically efficient than fitting a 
two-stage model; however, this increases the computa-
tional complexity.

.
Five studies (62.5%) [86, 87, 91–93] modelled the lon-

gitudinal outcome using an LME model and the survival 
outcome using a Cox PH model. One study used the 
model to analyze the association between blood pressure 
and coronary artery disease [92].

Batterham et  al. used latent growth models, which is 
similar to LME models, to predict the slope and inter-
cept of five different cognitive tests jointly with a Cox 
PH model to predict the risk of all-cause mortality and 
cause-specific mortality. The model is fitted using Mplus 
[89]. Ogata et  al. used a GBTM jointly with a Cox PH 
model to predict risk of CVD using trajectories of fasting 
plasma glucose [88]. van den Hout et al. used a Bayesian 
approach to jointly model ordinal data from the Mini-
Mental State Examination. Item response theory (IRT) 
models were used to model the ordinal data before using 
Gompertz survival models to model a multi-state out-
come (e.g. healthy, history of strokes and death) [90].

Discussion
This review has identified a multitude of methods to ana-
lyze the risk of CVD using longitudinally repeated data. 
There has been an increase in the complexity of method-
ology used over the past two decades, with an increasing 
proportion of studies applying more efficient approaches 
such as two-stage and joint models over time. However, 
many studies only used simple analysis based on one 
time-point, even when more data were available.

When CVD risk was modelled in a two-stage model, 
two methods were commonly used: patient-level linear 

regression to account for longitudinal data, followed by 
the Cox PH model to estimate CVD risk, or GBTMs fol-
lowed by the Cox PH model. On the other hand, in a joint 
model, the longitudinal and survival data are modelled 
simultaneously. Both models aimed to utilize a patient’s 
time-varying risk factors to predict CVD risk. These 
models can provide an important understanding of the 
association between changes in risk factors over time and 
CVD risk, which can be used to influence risk manage-
ment decisions.

The characteristics and assumptions of a model need to 
be considered carefully when selecting and interpreting 
models. Although a time-dependent covariate Cox PH 
model provides an advantage by enabling risk estimates 
to be updated during follow-up for new individuals, the 
model assumes that values are constant between two 
time-points and are measured without error. Computa-
tionally, the model can quickly become unfeasible to fit if 
predictor values are updated at different time points for 
each individual. This model is also prone to greater over-
fitting as a time-dependent covariate forms a complex 
function over time which could lead to too much model-
ling; hence, this should be used with caution [102].

The disease risk is estimated as an odds ratio from 
logistic regression, and it should be interpreted appro-
priately (not as a risk ratio), especially when the outcome 
is not rare. Odds ratios cannot be compared between 
datasets or models with different independent variables 
because they reflect unobserved heterogeneity between 
observations which varies between datasets and models 
[103].

Three different methods to model within-patient vari-
ation with a continuous outcome were encountered: 
GEEs, LME models and fixed effects regression. GEEs 
are an extension of GLMs that allows a correlation struc-
ture between observations [104, 105]. Similarly to GLMs, 
using different link functions or distributions, GEEs can 
be used to model continuous, binary, count or binomial 
outcomes. LME models are an alternative for continu-
ous outcomes, which assumes that the residual error is 
normally distributed and models within-patient cor-
relation with random effects which are also assumed to 
be normally distributed and independent of covariates. 
This allows LME models to make individual patient pre-
dictions rather than just the population-level predic-
tions from a GEE [106]. Fixed effects regression relaxes 
the assumption that random effects are independent 
of covariates. The model is computationally easier to fit 
than an LME model and is more appropriate if unob-
served heterogeneity is correlated with covariates [107].

GBTMs are a form of a finite mixture model that is 
an effective way of identifying a fixed number of groups 
of individuals who follow similar trajectories [108]. 
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However, they are computationally difficult to fit. The 
results of this model may also be difficult to apply in clin-
ical practice as it can be difficult to assign a patient to one 
trajectory group by hand accurately.

In a standard joint model, the longitudinal outcome is 
modelled by an LME model and the survival outcome by 
a Cox PH model. The two outcomes are linked via shared 
random effects to capture the time-dependent associa-
tion between longitudinal measurements and the risk 
of an event [109]. This association can be defined in a 
variety of ways, but common approaches include a lin-
ear predictor (i.e. current value), a derivative (i.e. rate of 
change) or an integral (i.e. cumulative effect) of the linear 
predictor.

The reasons for the slow increase in the utilization 
of two-stage and joint models is multi-factorial. Com-
putationally these models can be much harder to fit 
than single-stage models, with joint models in par-
ticular conveying significant computational burden. 
Also, there is poor awareness of inefficiency in simple 
methods. Many studies may not include a statistician 
as part of the research team and therefore, authors may 
not have the requisite experience of analyzing longitu-
dinal data. However, as these methods become more 
common, and software to fit the models becomes more 
accessible and computationally more powerful, the uti-
lization of more efficient methods should increase over 
time.

Different risk prediction models are appropriate for 
different settings. Models may be used for prediction 
in a clinical setting or used for studying the associa-
tion between an exposure and an outcome. Many risk 
prediction models require computation to obtain a 
precise risk prediction which poses difficulties in a 
clinical setting. Existing risk prediction models such 
as QRISK3 use online calculators to predict risk using 
a complex model. Inputting all longitudinal data into 
an online calculator may not be possible in a clinical 
setting. Alternatives include either using single-stage 
models including summaries of the longitudinal data 
such as means, slopes or differences or integrating 
the risk prediction model into EHRs software. More 
complex models such as two-stage or joint models 
are very useful for explaining associations although 
interpretation can require more thought. Joint mod-
els especially need greater consideration when inter-
preting association structures such as random effect 
associations. Assigning and interpreting complex 
groups for GBTMs can be difficult for clinicians in 
practice although it is sometimes possible to assign 
clear descriptions to GBTM groups such as high, low, 
increasing or decreasing.

Reporting of the data in the included studies was 
highly variable. For example, the number of time-points 
used per patient in each study was disparate with stud-
ies choosing from a selection of mean, median, a range 
(e.g. 3–5), the maximum possible or frequency over 
the follow-up period; some studies, especially studies 
based on electronic health records, did not report the 
number of time-points, resulting in difficulties ascer-
taining exactly how many measurements were used. 
Follow-up length was also described as a date range, 
mean, median, maximum, dates of study waves etc. 
This resulted in a loss of clarity, especially when studies 
had a separate follow-up period for longitudinal data 
collection and for the survival outcome. Also, some 
studies did not report variables removed as part of var-
iable selection.

Strengths and limitations
This review examined all available studies that have 
assessed the relationship between the trajectory of 
longitudinal risk factors and the risk of a cardiovascu-
lar event or mortality, and summarized the methods 
used in analyzing longitudinal risk factors for CVD 
risk. This review can be readily used to identify meth-
ods for future analysis of longitudinal trajectories 
and risk prediction in CVD. However, due to search 
terms having this specific focus, single-stage models 
underutilizing the data available are more likely to be 
underrepresented.

Queries over eligibility or the article content were 
thoroughly discussed among the authors of this review 
before reaching the final decision. However, articles were 
searched and screened by one author and there remains a 
possibility of bias or error. This review focused solely on a 
search of MEDLINE-Ovid providing a focused and con-
sistent search, although inclusion of other bibliographic 
databases may have returned other studies.

This review was designed to highlight the strengths of 
statistical methods for summarizing longitudinal data to 
predict CVD risk. A deeper comparison of the methods 
using simulated data have been discussed in the litera-
ture numerous times as the methods were first developed 
or in their application [110–112]. A machine learning 
approach may also be worth considering when design-
ing a study, although our search only identified one study 
using machine learning methods [113]. Machine learning 
algorithms have the potential to provide stronger predic-
tions of risk using many variables; however, this incurs 
greater potential for overfitting and collinearity between 
variables. To avoid this, machine learning applies a 
greater focus on increased model validation, preferably 
external validation [114].
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Conclusions
The use of two-stage and joint models is a critical part of 
understanding the relationship between the longitudi-
nal risk factors and CVD. Many studies still employ sin-
gle stage approaches which often underutilize available 
longitudinal data when modelling cardiovascular risk. 
Further studies should aim to optimize the use of longitu-
dinal data by using two-stage and joint models whenever 
possible for a more accurate estimation of cardiovascular 
risk.
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