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Abstract

Objective: The identification of methodology for modelling cardiovascular disease (CVD) risk using longitudinal data
and risk factor trajectories.

Methods: We screened MEDLINE-Ovid from inception until 3 June 2020. MeSH and text search terms covered three
areas: data type, modelling type and disease area including search terms such as “longitudinal’, “trajector*”and “cardio-
vasc*"respectively. Studies were filtered to meet the following inclusion criteria: longitudinal individual patient data

in adult patients with >3 time-points and a CVD or mortality outcome. Studies were screened and analyzed by one
author. Any queries were discussed with the other authors. Comparisons were made between the methods identified

looking at assumptions, flexibility and software availability.

Results: From the initial 2601 studies returned by the searches 80 studies were included. Four statistical approaches
were identified for modelling the longitudinal data: 3 (4%) studies compared time points with simple statistical tests,
40 (50%) used single-stage approaches, such as including single time points or summary measures in survival models,
29 (36%) used two-stage approaches including an estimated longitudinal parameter in survival models, and 8 (10%)
used joint models which modelled the longitudinal and survival data together. The proportion of CVD risk prediction
models created using longitudinal data using two-stage and joint models increased over time.

Conclusions: Single stage models are still heavily utilized by many CVD risk prediction studies for modelling lon-
gitudinal data. Future studies should fully utilize available longitudinal data when analyzing CVD risk by employing
two-stage and joint approaches which can often better utilize the available data.
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Background

Cardiovascular disease (CVD) is a leading cause of mor-
bidity and mortality worldwide, accounting for 47 and
39% of deaths in females and males, respectively, in
European Society of Cardiology member states [1]. Risk
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prediction models inform the understanding and man-
agement of CVD and have become an important part of
clinical decision making. Many risk prediction models for
CVD use one data point per patient (usually at baseline),
such as the widely used Framingham Risk Score which
predicts risk for coronary heart disease, [2] or QRISK3
which predicts risk of CVD in a subset of the UK pop-
ulation, and is widely used in CVD risk stratification in
the UK [3]. These models use many variables at baseline
including systolic blood pressure (SBP), total cholesterol,
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high-density lipoprotein cholesterol, or smoking status.
As such, many cardiovascular risk prediction models do
not account for measurement error or changes in risk
factors over time [4, 5] which could lead to biased esti-
mation. For example, SBP generally increases as people
age, while diastolic blood pressure initially rises but starts
decreasing after the age of 60 [6]. Further, as people age,
they accumulate more risk factors. These complex and
dynamic changes over time must be accounted for when
modelling CVD risk to achieve the most robust possible
risk prediction.

In risk prediction, longitudinal data permits the study
of change in risk factors over time, accounting for within
person-variance and usually provides an increase in
power while reducing the number of patients needed [7].
However, analysis of longitudinal data adds complexity,
such as dependence between observations, informatively
censored or incomplete data and non-linear trajectories
of longitudinal risk factors over time. Addressing these
issues can add significant complexity and computational
burden to the analysis.

The association between longitudinal measurements of
blood pressure and risk of CVD has been studied using
summaries such as time-averaged, cumulative, [8] trajec-
tory patterns [9] and variability [10, 11]. However, less
effort has been invested in modelling the complete record
of longitudinal measurements, e.g. as time-varying
covariates. Using summary measures in risk prediction
models could be ineffective due to possible heterogene-
ity of variance for the summary measure. A review of risk
prediction models covering the period 2009-2016 found
that 46/117 (39.3%) studies considered longitudinal data,
and only 9/117 (7.7%) studies included longitudinal data
as time-varying covariates [12]. A more recent review of
available methods adopted for harnessing longitudinal
data in clinical risk prediction showed a further increase
in the development of risk prediction models over the
period 2009-2018 and identified seven different meth-
odological frameworks [13].

The aim of this review was to conduct a comprehensive
methodological evaluation of the estimation of risk for
developing CVD in the general population, specifically
targeting studies with a longitudinal design with three or
more time-points, to allow for the trajectory of the longi-
tudinal variable(s) to be modelled in predicting CVD risk.

Material and methods

Selection criteria

This review focused on risk prediction for CVD. Stud-
ies were included if they had a longitudinal design with
data analyzed over at least three time points, where the
outcome was a clinical diagnosis of a cardiovascular
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disease(s) or mortality. Cross-sectional, animal, and pae-
diatric studies were excluded.

Search strategy

MEDLINE-Ovid was searched from inception until 3
June 2020 with no language restrictions. Search terms
used for data type and modelling type were “longitudinal,
repeat* measure*, hierarchical, multilevel model*” and
“change, slope, trajector*, profile, growth curve” respec-
tively in all text. For disease area, the following search
terms were used: “cardiovasc*, cerebrovasc*, atrial fibril-
lation, coronary (and artery or disease), stroke” in title,
“cardiovascular disease, brain ischemia, heart diseases” in
MeSH with subheadings or “myocardial infarction, coro-
nary disease, stroke, intracranial hemorrhages (without
intracranial hemorrhage, traumatic)” in MeSH without
subheadings. The standardized search filter, along with
the search approach and search terms are listed in Fig. 1
and Supplementary Table 1. Studies needed at least one
term for data type, modelling type and disease area. Fur-
ther, the reference lists of included studies were reviewed
to identify any additional relevant articles.

Consideration of studies for inclusion followed a
three-step process. First, titles were considered. Second,
abstracts of potentially eligible studies were considered.
Third, after abstract screening, the full-text articles were
retrieved and assessed for eligibility. The first author (DS)
completed the screening of studies and other authors
were consulted to resolve any queries. Reasons for exclu-
sion were recorded.

Data extraction

The following information were extracted from each
study: first author, year of publication, model type, data-
set region, time period for data collection, age range, pro-
portion of males, length of follow-up, number of patients,
number of longitudinal time points, longitudinal and sur-
vival outcome data types, covariates adjusted for in lon-
gitudinal and survival models, survival and longitudinal
outcomes, and characteristics of the statistical and mod-
elling approaches used including assumptions, handling
of missing data, model selection, and software used. Data
extraction was conducted by the first author (DS), with
other authors consulted to resolve any queries.

Results

The searches returned 2601 studies with 12 duplicates
(Fig. 2). Based on screening titles and abstracts, 2150
studies were excluded. The full texts were considered
for 439 articles and a further 34 were excluded due
to >1 of the following reasons: data not longitudinal,
review article, data were summary measures rather
than individual patient data, or non-CVD/mortality



Stevens et al. BMC Medical Research Methodology (2021) 21:283

Page 3 of 24

Data type:
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Diseases

MeSH without
subheadings:
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Fig. 1 Summary of search strategy

outcome. The number of repeated measures was
assessed for 405 studies. A further 325 further studies
were excluded due to having less than three repeated
measures reported. Eighty studies were included in the
review (Fig. 2) [14-93].

General characteristics

Characteristics of the included studies are summarized
in Table 1. Sixty (75%) studies reported analyses on large
sample sizes (>1000 patients). Exactly three longitudi-
nal measurements were available in 27 (33.8%) studies,
while 47 (58.8%) reported >3 data points with a mixture
of median, mean or maximum number of longitudinal
observations per patient; however, many studies did not
utilize all available measurements. Follow-up lengths
varied widely from 31days [48] to 35years, [50] with 29
(36.2%) reporting over a 10-20-year period. Patients
were often followed up for survival after the last repeated
measure, with 47 (58.8%) studies reporting a total follow-
up of >10years, while 31 (38.8%) reported a longitudinal
outcome follow-up of >10years. Over three-quarters
(m =65, 81.3%) were published after 2010, 15 studies
(18.8%) were published prior to 2010. Data collection for
many longitudinal datasets (n =20, 25.0%) began in the
1980s, only 13 (16.2%) studies were from the 1990s, and
about one-third were completed in the 2000s (n =26,
32.5%).

Outcome data

Most (n =63, 78.8%) studies reported disease outcomes
as time-to-event or survival outcomes. Fewer stud-
ies examined disease outcomes as binary (n =5, 6.2%),
continuous (# =8, 10.0%) or rates (n =4, 5.0%). Most
(n =69, 86.2%) longitudinal outcomes were continuous;
other longitudinal outcome types were binary (n =3,
3.8%), categorical (n=5, 6.2%), or ordinal (n=3, 3.8%).

Adjusting for covariates

Sixty-one studies (76.2%) adjusted for age and 45 (56.2%)
adjusted for sex as covariates in their survival analysis,
while four (5.0%) stratified by age and three (3.8%) for
sex. Nine (11.2%) studies analyzed data separately for
each sex. Seventeen (21.2%) longitudinal analyses were
adjusted for age, while 30 (37.5%) were not. Sex was
adjusted for as a covariate in 9 (11.2%) longitudinal analy-
ses. Four (5.0%) studies analyzed longitudinal data sepa-
rately by sex, and 28 (35.0%) did not adjust for sex.

Statistical analysis

This review has identified a variety of statistical analy-
sis methods that have been incorporated to analyze
time-to-event and longitudinal outcome data. Three
(3.8%) used a simple statistical test [14—16]. For exam-
ple, Albani et al. [16] used the Wilcoxon signed rank
test to compare two risk scores (the Framingham Risk
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Score and an atherosclerotic cardiovascular disease
risk score) before treatment with pasireotide and 6 and
12 months after treatment. Other statistical approaches
for modelling CVD risk using longitudinal data
can be divided into three categories: 1) single-stage
approaches including basic summary measures, 40
(50.0%), [17-56] 2) two-stage approaches using an esti-
mated longitudinal parameter as a covariate in a sur-
vival outcome model, 29 (36.3%), [57—-85] and 3) joint
models fitting longitudinal and survival data simultane-
ously, 8 (10.0%) [86—-93].

Characteristics of included studies

The characteristics of the included studies by different
modelling approaches is shown in Table 2. Joint models
have been fitted on smaller datasets with only one study
using a joint model on a dataset of over 10,000 patients
[87]. A larger proportion of two-stage or joint mod-
els had patients with a variable number of time points
included compared to single-stage approaches (24/37
(64.9%) vs. 23/40 (57.5%), respectively). Five (6.3%)
studies did not report the number of time points used
in their analyses. Two-stage approaches were used on
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Model or study characteristic Number References
of articles
(%)
Number of patients <100 5(6.3) [15,16, 21,38, 58]
100-999 13 (16.5) [14,26,43,45,57,61,62,64,82,85,89,90, 92]
1000-9999 39 (49.4) [17,19,23,27,28,30-35,37,39-42,44, 46, 47,
50, 53-56, 63, 66,68, 70,71,73,74,76,78,79,
83,86,88,91,93]
10,000+ 21 (26.6) [18,20, 22,24, 25,29, 36,49, 51,52, 59, 60, 65,
67,69,72,75,77,81,84,87]
Not reported 1(1.3) [80]
Number of time points Median 2 1.2) [90]
3 27 (33.8) [14-16, 20, 22, 24, 27-29, 31-33, 35, 36, 41,
53,60, 61,64, 65,67,69,75,78,81,86,93]
>3 (median, mean or maximum) 47 (58.8) [17-19, 21, 23, 30, 34, 37-39, 42-46, 48-52,
54-58, 62,63, 66,68, 70-74,76,77,79, 80,
82-85,87-89, 91, 92]
Not reported 5(6.2) [25, 26, 40,47, 59]
Follow-up for longitudinal and survival <5 16 (20.0) [14-16, 21, 28,32,40,43,47,48,51,57-59,
length (years) 81,87]
5t0 10 17 (21.2) [22,24,26,27,31,38,54,55,60,61,64, 65,67,
72,82,84,93]
10to 20 29 (36.2) [18,25,29, 30, 33-35,37,41,44, 45,49, 62, 63,
69,71,74,76-79, 83, 85, 86, 88-92]
>20 18 (22.5) [17,19, 20, 23, 36, 39,42, 46, 50, 52, 53, 56, 66,
68,70,73,75,80]
Follow-up for longitudinal length (years) <5 24 (30.0) [14-16, 21, 28, 32, 38,40, 43, 47,48,51, 57-61,
64,65,67,69,71,81,87]
5t0 10 25(31.2) [22,24,26,27,31,33-35,49, 53-56,62, 72,74,
76,78,79,82-86, 93]
10to 20 23(28.38) [17-20, 25, 29, 30, 37,41, 44, 45, 50, 63, 66, 70,
75,77,80,88-92]
>20 8(10.0) [23,36,39,42,46,52,68,73]
Follow-up for survival length (years) <5 19 (23.8) [21, 24, 28,32, 40, 43,47,48,51,57-61, 64, 67,
77,81,87]
5t0 10 26 (32.5) [19,26,27,29,31,34,35,38,41,49, 54, 55, 65,
68-74,76,82-85, 93]
10to 20 23 (28.8) [17,18, 20, 25, 30, 36, 37, 39, 45, 56, 62, 63, 66,
75, 78-80, 86, 88-92]
>20 4 (5.0) [23,42,50, 53]
No survival analysis 8(10.0) [14-16, 22, 33, 44, 46, 52]
Time-period for start of data collection 1950s 2(2.5) [39, 80]
1960s 6(7.5) [36,50, 53,56, 73, 78]
1970s 5(6.2) [23,42, 46, 66, 68]
1980s 20 (25.0) [17,20, 26, 35,37,41,44,49,52,55,62,71,74,
75,79,82,85,86,88,91]
1990s 13(16.2) [18,19,27, 29, 30,43, 45,63, 70, 83, 89, 90, 92]
2000s 26 (32.5) [15,22,24,25,28,31-34,38,47,48,51,59-61,
65,67,69,72,76,77,81,84,87,93]
2010s 4(5.0) [14,21,58, 64]
Not reported 4(5.0) [16, 40, 54, 57]
Decade of publication Prior to 2000 8(10.0) [26, 43, 53-56, 78, 80]
2000s 7(8.8) [15,35,49-52, 82]
2010s 63 (78.8) [14,16, 18-25, 27-34, 36-42, 44-48, 57-68,
70-77,79,81,83-93]
2020 2(25) [17,69]
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Model or study characteristic Number References
of articles
(%)
Baseline Age - mean/median <40 5(6.2) [19,26,76,77,84]
40-49 12 (15.0) [16,33,39,41,44,46,47,54,68,72,86,91]
50-59 18 (22.5) [14,20, 23, 25, 28, 30, 34, 43, 45, 50, 56, 59, 60,
64-67, 69]
60-69 17(21.2) [18,21,31,32,36-38,40,51,57,61,63,73,79,
81,92,93]
70-79 7(8.8) [17,48,71,74,85,89,90]
>80 2(2.5) [83,87]
Not reported 19 (23.8) [15,22,24,27,29,35,42,49, 52,53, 55, 58, 62,
70,75,78, 80, 82, 88]
Region of dataset Asia 16 (20.0) [21,22,25,34,38,58,60,61,65,67,69, 76,77,
80, 84, 88]
Europe 22 (27.5) [16,20, 23,24, 31,36,37,39-41,43,44, 47,49,
50,52,57,75,86,87,90,91]
International 3(3.8) [28,32,93]
Middle East 3(3.8) [14, 45, 53]
North America 33(41.2) [15,17-19, 26, 29, 30, 33, 35,42, 46,48, 51,
54-56, 59, 62-64, 66, 68,70,71,73,74,78,79,
81-83, 85, 92]
Australia & New Zealand 3(3.8) [27,72,89]
Males (%) <40 7(8.8) [16,24,46,57,74,83,91]
40s 28 (35.0) [14,17-19, 25,29, 31, 33, 35, 36, 40-42, 49, 52,
62,64, 66,68,70,71,73,75,79,82,87-89]
50s 7(8.8) [27,43,48,77,81,84,86]
60-99 20 (25.0) [20, 21, 28,32, 34,37, 38,44,45,47,58-61, 63,
65,67,69, 76, 93]
All male 11(13.8) [23, 26, 39,50, 53, 54, 56, 78, 85, 90, 92]
Not reported 7 (8.8) [15,22,30,51,55,72,80]
Survival outcome type Binary 5(6.2) [17,27,30,31,64]
Continuous 8(10.0) [14-16, 22,33, 44,46, 52]
Rate 4(5.0) [23,26,37,79]
Time to event 63 (78.8) [18-21,24,25, 28, 29, 32, 34-36, 38-43, 45,
47-51,53-63,65-78, 80-93]
Longitudinal outcome type Binary 3(3.8) [24, 30, 55]
Categorical 5(6.2) [20,22,65,72,73]
Continuous 69 (86.2) [14-19, 21, 23, 25-29, 31-33, 35, 36, 38-40,
42-54,56-64, 66—71, 74-93]
Ordinal 3(3.8) [34,37,41]
Survival analysis adjusted for age Unadjusted 8(10.0) [21, 23, 30, 35,57, 68, 86, 87]
Yes, Stratified 3(3.8) [22, 54, 80]
Yes, Baseline hazard 1(1.2) [39]
Yes, Covariate 61(76.2) [17-20,24-29, 31, 32, 34, 36-38, 40-43,
45,47-51,53,55, 56, 58-67,69-79, 81-85,
88-93]
No survival analysis 7(8.8) [14-16,33, 44,46, 52]
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Table 1 (continued)
Model or study characteristic Number References
of articles
(%)
Survival analysis adjusted for sex Unadjusted 4 (5.0) [21,57, 58, 87]
Single sex 12 (15.0) [23, 26, 39, 50, 53, 54, 56, 78, 85, 90-92]
Yes, separate models 9(11.2) [29, 30, 35,42, 49, 75, 76, 82, 88]
Yes, stratified 3(3.8) [22, 68, 80]
Yes, covariate 45 (56.2) [17-20,24,25,27,28,31,32,34,36-38,40, 41,
43,45,47,48,51,55,59-67,69-74,77,79, 81,
83,84, 86, 89, 93]
No survival analysis 7 (8.8) [14-16, 33, 44, 46, 52]
Longitudinal Analysis adjusted for age Unadjusted 30(37.5) [33,44,49,57,58,60-67,69, 71-75,78-83,
85,87, 89,90, 93]
Yes, covariate 17 (21.2) [17,18,31,46,47,52,54,59,68,70,76,77,84,
86, 88,91, 92]
No longitudinal analysis 33(41.2) [14-16, 19-30, 32, 34-43, 45, 48, 50, 51, 53,
55, 56]
Longitudinal Analysis adjusted for sex Unadjusted 28 (35.0) [33,44, 49,57, 58,60-69, 71-75, 79-83, 87,
89, 93]
Single sex 6(7.5) [54,78, 85,90-92]
Yes, separate models 4 (5.0 [52,70,76,88]
Yes, covariate 9(11.2) [17,18,31,46,47,59,77,84, 86]
No longitudinal analysis 33(41.2) [14-16, 19-30, 32, 34-43, 45, 48, 50, 51, 53,
55, 56]
Disease area Chronic kidney disease 1(1.2) [87]
Cushing’s disease 1(1.2) [16]
Cardiovascular disease 61(76.2) [14,15,17,19-23, 2642, 44, 45, 47-52, 54,
56-58,60, 61, 64, 66-76, 78,79, 81, 84-86,
88,91-93]
Diabetes 1(1.2) [25]
Gout 1(1.2) [59]
Hypertension 1(1.2) [63]
Impaired sleep 1(1.2) [24]
Mortality 5(6.2) [43,62,82,83,89]
Systemic lupus erythematosus 101.2) [46]
Stroke 7(8.8) [18,53,55,65,77,80,90]
Primary Outcome Acute coronary syndrome 4 (5.0 [30, 36,60, 81]
Atrial fibrillation 2(2.5) [25, 66]
Cardiovascular mortality 7 (8.8) [32,39,49-51, 54, 73]
Cardiovascular Mortality/acute coronary 101.2) [93]
syndrome/stroke
Cardiovascular disease 36 (45.0) [17,19, 20, 23, 26, 27,29, 31,34, 35,37, 38,
41,42,47,56, 58,59, 64,68-72,74-76,78,79,
84-86, 88, 89, 91, 92]
Cardiovascular disease risk 8(10.0) [14-16, 22,33, 44, 46, 52]
Cardiovascular disease/cancer/mortality 1(1.2) [40]
Cardiovascular disease/mortality 2(2.5) [21,57]
Hospitalization/heart failure/cardiovascular 1 (1.2) [28]
mortality
Hypertension 101.2) [24]
Mortality 9(11.2) [43,45,48,55,61-63, 82, 83]
Stroke 8(10.0) [18,53,65,67,77,80,87,90]




Stevens et al. BMC Medical Research Methodology (2021) 21:283

Table 1 (continued)

Page 8 of 24

Model or study characteristic Number References
of articles
(%)
Population focus Acute coronary syndrome 4 (5.0) [21, 32,45, 58]
Atrial fibrillation and chronic kidney disease 1 (1.2) [87]
Chronic kidney disease 2(2.5) [43,51]
Cushing’s disease 1(1.2) [e6]
Cardiovascular disease 37 (46.2) [15,17,19, 20, 23, 26, 27,29, 33-35, 38, 40,
42,44, 48, 53,56,57,60-62,65-71,74,78,79,
81-83, 85, 88]
Diabetes 3(3.8) [25, 64, 93]
General population 27 (33.8) [14,18,22,24,30,31,36,37,39,41,49, 50, 52,
54,55,63,72,73,75-77,80, 84, 86, 90-92]
Gout 1001.2) (59
Heart failure 1(1.2) [28]
HIV 1(1.2) [47]
Systemic lupus erythematosus 1(1.2) [46]
Mental health 1(1.2) [89]

10/16 (62.5%) datasets collected in Asia but only in 2/22
(9.1%) on European datasets. The longitudinal analysis
in two-stage approaches rarely adjusted for age or sex,
with adjustments made in 6/29 (20.7%) and 7/29 (24.1%),
respectively. The frequency of studies using each model
type over time is shown in Fig. 3. Since 2010, a substan-
tial increase in the number of papers using two-stage
approaches was observed with 26/65 (40.0%) using them
after 2010 vs. 3/15 (20.0%) before. Use of joint models
also commenced later that decade with only one study
before 2015.

A complete case analysis was used in 65/80 (81.3%)
studies, more often in smaller (<1000, 16/18, 88.9%) and
very large (> 10,000, 18/21, 85.7%) cohorts than medium-
sized studies (1000-9999, 29/39, 74.4%) and those with a
variable number of time-points (39/48, 81.3%) compared
with exactly three time points (21/27, 77.8%). In addition,
those with shorter follow-ups (< 10vyears, 19/33, 57.6%)
were more likely to use a complete case analysis. The
methods used for handling missing data included mul-
tiple imputation (n =6), single imputations (n =3), last
observation carried forward (# =2) and indicators for
missing variables (n =2).

Single-stage approaches

A single-stage approach was used in 40 (50%) studies
[17-56] (Table 3). The most common risk prediction
model for single-stage models was the Cox proportional
hazards (PH) model (n =25, 62.5%) [94]. The model

assumes a proportional effect on the hazard; the PH
assumption should be checked, either by including time-
varying coefficients or by a variety of graphical testing
methods, such as Schoenfeld residual plots and log-log
plots. Only 9/25 (62.5%) of articles utilizing Cox PH
models as a single-stage approach stated that the PH
assumption was checked [95].

The simplest method of utilizing the Cox PH model
was used by including the values of the longitudinal out-
come at baseline (Time 0) (n=7, 17.5%) [18, 21, 24, 43,
50, 53, 54]. For example, Tanne et al. used baseline val-
ues of SBP to predict ischemic stroke mortality [53]. This
model is easily interpretable clinically; it only uses data
from a single time-point per patient and does not take
into account all available data. Clustering and meta-anal-
ysis techniques were also incorporated through the Cox
PH model. A study using impaired sleep as a CVD risk
factor included patients in two separate baseline waves.
Patients could appear in both waves and clustering was
accounted for when fitting the Cox PH model [24]. A
study examining the association between cholesterol and
cardiovascular mortality fitted Cox PH models for each
year of follow-up, and combined the coefficients from
these models using meta-analysis techniques [50].

Three (7.5%) studies included the difference between
the longitudinal predictor at baseline and a previous value
as a covariate in the Cox model, [28, 35, 38] for example,
risk of coronary heart disease was predicted by using the
difference between a patient’s current Framingham Risk
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Table 2 Summary of characteristics of studies included in the review by model type

Model or study characteristic No of papers n Simple Single model® Two-stage  Joint model“n Complete
(%) statistical n (%) model® n (%) case analysis
tests n (%) (%) n (%)
Number of <100 5(6.3) 2(66.7) 2(50) 1(34) 0(0.0) 5(100.0)
patients 100-999 13(16.5) 1(333) 3(7.5) 6(20.7) 3(37.5) 11 (84.6)
1000-9999 39 (49.4) 0(0.0) 24 (60.0) 11 (379 4(50.0) 29 (74.4)
10,0004 21 (26.6) 0(0.0) 10 (25.0) 10 (34.5) 1(12.5) 18(85.7)
Not reported 1(1.3) 0(0.0) 0(0.0) 1(34) 0(0.0) 1(100.0)
Number of time Median 2 1(1.2) 0(0.0) 0(0.0) 0(0.0) 1(12.5) 0(0.0)
points 3 27 (338) 3(100.0) 13(32.5) 9(31.0) 2(25.0) 21(77.8)
>3 (median, mean 47 (58.8) 0(0.0) 23(57.5) 19 (65.5) 5(62.5) 39(83.0)
or maximum)
Not reported 6.2) 0(0.0) 4(10.0) 1(34) 0(0.0) 5(100.0)
Follow-up for <5 16 (20.0) 3(100.0) 8(20.0) 4(13.8) 1(12.5) 4(87.5)
longitudinaland 544 10 7(21.2) 0(00) 8(200) 8(27.6) 1(12.5) 5(88.2)
survival length
(years) 1010 20 29 (36.2) 0(0.0) 12 (30.0) 11379 6(75.0) 23(79.3)
>20 8(22.5) 0(0.0) 12 (30.0) 6 (20.7) 0(0.0) 3(72.2)
Follow-up for <5 4 (30.0) 3(100.0) 9(225) 11(37.9) 1(12.5) 1(87.5)
'(;)Qagrist)‘idma' length 54510 5(31.2) 0(00) 13(325) 10 (34.5) 2(250) 3(920)
1010 20 3(288) 0(0.0) 12 (30.0) 6(20.7) 5(62.5) 16 (69.6)
>20 8(10.0) 0(0.0) 6(15.0) 2(69) 0(0.0) 5(62.5)
Follow-up for <5 19 (23.8) 0(0.0) 9(22.5) 9(31.0) 1(12.5) 16 (84.2)
survival length 5t010 26 (32.5) 0(00) 12 (30.0) 13 (44.8) 1(125) 23 (88.5)
(years) 1010 20 23(28.8) 0(0.0) 10 (25.0) 7(24.) 6(75.0) 16 (69.6)
>20 4(50) 0(0.0) 4(100) 0(0.0) 0(0.0) 2(50.0)
No survival 8(10.0) 3(100.0) 5(12.5) 0(0.0) 0(0.0) 8(100.0)
analysis
Time-period for 1950s 2(2.5) 0(0.0) 1(2.5) 1(34) 0(0.0) 1(50.0)
‘Seti;toorf datacol- 19605 6(7.5) 0(00) 4(100) 2(69) 0(00) 6 (100.0)
1970s 5(6.2) 0(0.0) 3(7.5) 2(69) 0(0.0) 3(60.0)
1980s 20 (25.0) 0(0.0) 10 (25.0) 7(24.) 3(37.5) 16 (80.0)
1990s 13(16.2) 0(0.0) 7(17.5) 3(10.3) 3(37.5) 9(69.2)
2000s 26 (32.5) 1(333) 12 (30.0) 11379 2(25.0) 22 (84.6)
2010s 4(50) 1(33.3) 1(2.5) 2(69) 0(0.0) 4(100.0)
Not reported 4(5.0) 1(333) 2(5.0) 1(34) 0(0.0) 4(100.0)
Decade of publica- Prior to 2000 8(10.0) 0(0.0) 6 (15.0) 2 (6.9) 0(0.0) 8 (100.0)
tion 2000s 7(88) 1(333) 5(12.5) 1(34) 0(0.0) 6(85.7)
2010s 63 (78.8) 2(66.7) 28 (70.0) 25 (86.2) 8(100.0) 49 (77.8)
2020 2(25) 0(0.0) 1(2.5) 1(34) 0(0.0) 2(100.0)
Baseline Age - <40 5(6.2) 0(0.0) 2(50) 3(10.3) 0(0.0) 5(100.0)
mean/median 40-49 12(15.0) 1(333) 7(17.5) 2(69) 2(25.0) 8(66.7)
50-59 18(22.5) 1(333) 10 (25.0) 7(24.1) 0(0.0) 13(72.2)
60-69 17(212) 0(0.0) 9(22.5) 6(20.7) 2(25.0) 14 (82.4)
70-79 7 (88) 0(0.0) 2(5.0) 3(10.3) 2(25.0) 6(85.7)
>80 2(25) 0(0.0) 0(0.0) 1(34) 1(12.5) 2(100.0)
Not reported 19(23.8) 1(33.3) 10 (25.0) 7(24.) 1(12.5) 17 (89.5)
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Table 2 (continued)
Model or study characteristic No of papers n Simple Single model® Two-stage  Joint model“n Complete
(%) statistical n (%) model® n (%) case analysis
tests n (%) (%) n (%)
Data Region Asia 16 (20.0) 0(0.0) 5(12.5) 10 (34.5) 1(12.5) 15(93.8)
Europe 22 (27.5) 1(33.3) 15(37.5) 2(6.9) 4(50.0) 14 (63.6)
International 3(3.8) 0(0.0) 2(5.0) 0(0.0) 1(12.5) 2 (66.7)
Middle East 3(3.8) 1(33.3) 2(5.0) 0(0.0) 0(0.0) 2 (66.7)
North America 33(41.2) 1(33.3) 15(37.5) 16 (55.2) 1(12.5) 29(87.9)
Australia & NZ 3(3.8) 0(0.0) 1(2.5) 1(34) 1(12.5) 3(100.0)
Males (%) <40 7(8.8) 1(33.3) 2(5.0) 3(10.3) 1(12.5) 6(85.7)
40s 28(35.0) 1(33.3) 14 (35.0) 10 (34.5) 3(37.5) 24(85.7)
50s 7(8.8) 0(0.0) 3(7.5) 3(10.3) 1(12.5) 6(85.7)
60-99 20(25.0) 0(0.0) 10 (25.0) 9(31.0) 1(12.5) 16 (80.0)
All male 11(13.8) 0(0.0) 7(17.5) 2(6.9) 2(25.0) 8(72.7)
Not reported 7(8.8) 1(33.3) 4(10.0) 2(6.9) 0(0.0) 5(71.4)
Survival outcome  Binary 5(6.2) 0(0.0) 4(10.0) 134) 0(0.0) 3(60.0)
type Continuous 8(10.0) 3(100.0) 5(12.5) 0(0.0) 0(00) 8(100.0)
Rate 4(5.0) 0(0.0) 3(7.5 1(34) 0(0.0) 3(75.0)
Time to event 63 (78.8) 0(0.0) 28 (70.0) 27 (93.1) 8(100.0) 51(81.0)
Longitudinal Binary 3(3.8) 0(0.0) 3(7.5) 0(0.0) 0(0.0) 2 (66.7)
outcome type Categorical 5(6.2) 0(0.0) 2(5.0) 3(103) 0(0.0) 4(80.0)
Continuous 69 (86.2) 3(100.0) 32(80.0) 26 (89.7) 8(100.0) 57 (82.6)
Ordinal 3(3.8) 0(0.0) 3(7.5) 0(0.0) 0(0.0) 2 (66.7)
Survival analysis Unadjusted 8(10.0) 0(0.0) 4(10.0) 2 (6.9) 2 (25.0) 5(62.5)
adjusted forage  veg Spratified 3(38) 0(0.0) 2(50) 134) 0(00) 3(100.0)
Yes, Baseline 1(1.2) 0(0.0) 1(2.5) 0(0.0) 0(0.0) 0(0.0)
hazard
Yes, Covariate 61(76.2) 0(0.0) 29(72.5) 26 (89.7) 6 (75.0) 50(82.0)
No survival 7(8.8) 3(100.0) 4(10.0) 0(0.0) 0(0.0) 7 (100.0)
analysis
Survival analysis Unadjusted 4(5.0) (0.0 1(2.5) 2 (6.9) 1(12.5) 4(100.0)
adjustedforsex  gjqje sex 12(15.0) 00) (17.5) 2(69) 3(37.5) 8(66.7)
Yes, separate 9(11.2) 0.0) (12.5) 3(103) 1(12.5) 7(77.8)
models
Yes, stratified 3(3.8) 0(0.0) 1(2.5) 2(6.9) 0(0.0) 3(100.0)
Yes, covariate 45 (56.2) 0(0.0) 22 (55.0) 20 (69.0) 3(37.5) 36 (80.0)
No survival 7(8.8) 3(100.0) 4(10.0) 0(0.0) 0(0.0) 7(100.0)
analysis
Longitudinal Unadjusted 30(37.5) 0(0.0) 3(7.5) 23(79.3) 4 (50.0) 28(93.3)
g;z'éseis adjusted  veg covariate 17212) 0(0.0) 7(175) 6(207) 4(50.0) 13 (76.5)
No longitudinal 33(41.2) 3(100.0) 30(75.0) 0(0.0) 0(0.0) 24(72.7)
analysis
Longitudinal Unadjusted 28(35.0) (0.0) 3(7.5) 22 (75.9) 3(37.5) 27 (96.4)
?Or;as'eyjs adjusted  gingle sex 607 0.0) 12.5) 3(37.5) 4(66.7)
Yes, separate 4(5 0.0) 2.5) 2 (6.9) 1(12.5) 3(75.0)
models
Yes, covariate 9(11.2) 0(0.0) 5(12.5) 3(103) 1(12.5) 7(77.8)
No longitudinal 33(41.2) 3(100.0) 30(75.0) 0(0.0) 0(0.0) 24(72.7)

analysis
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Model or study characteristic No of papers n Simple Single model® Two-stage  Joint model“n Complete
(%) statistical n (%) model® n (%) case analysis
tests n (%) (%) n (%)
Disease area Chronic kidney 1(1.2) 0(0.0) 0(0.0) 0(0.0) 1(12.5) 1(100.0)
disease
Cushing’s disease 1 (1.2) 1(333) 0(0.0) 0(0.0) 0(0.0) 1(100.0)
Cardiovascular 61(76.2) 2 (66.7) 33(82.5) 21(72.4) 5(62.5) 47 (77.0)
disease
Diabetes 1(1.2) 0(0.0) 1(2.5) 0(0.0) 0(0.0) 1(100.0)
Gout 1(1.2) 0(0.0) 0(0.0) 1(34) 0(0.0) 1(100.0)
Hypertension 1(1.2) 0(0.0) 0(0.0) 1(34) 0 (0.0 1(100.0)
Impaired sleep 1(1.2) 0(0.0) 1(2.5) 0(0.0) 0(0.0) 1(100.0)
Mortality 5(6.2) 0(0.0) 1(2.5) 3(10.3) 1(12.5) 5(100.0)
Systemic lupus 1(1.2) 0(0.0) 1(2.5) 0(0.0) 0(0.0) 1(100.0)
erythematosus
Stroke (8.8) 0.0 (7.5) 3(10.3) 1(12.5) 6(85.7)
Primary Outcome  Acute coronary 5.0) 0.0) 5.0) 2(6.9) 0(0.0) (50.0)
syndrome
Atrial fibrillation (2.5 0.0) 1(2.5) 1(34) 0.0 2(100.0)
Cardiovascular (8.8) 0.0) 6(15.0) 1(34) 0.0) 4(57.1)
mortality
Cardiovascular 1(1.2) 0(0.0) 0(0.0) 0(0.0) 1(12.5) 1(100.0)
mortality/acute
coronary syn-
drome/stroke
Cardiovascular 36 (45.0) 0(0.0) 16 (40.0) 15(51.7) 5(62.5) 28(77.8)
disease
Cardiovascular 8(10.0) 3(100.0) 5(12.5) 0(0.0) 0(0.0) 8(100.0)
disease risk
Cardiovascular 101.2) 0(0.0) 1(2.5) 0(0.0) 0(0.0) 1(100.0)
disease/cancer/
mortality
Cardiovascular 2(2.5) 0(0.0) 1(2.5) 1(34) 0(0.0) 2(100.0)
disease/mortality
Hospitalization/ 1(1.2) 0(0.0) 1(2.5) 0(0.0) 0(0.0) 1(100.0)
heart failure/cardi-
ovascular mortality
Hypertension 1(1.2) 0.0) 1(2.5) 0.0) 0.0 1(100.0)
Mortality (11.2) 0.0) 4(10.0) (17.2) 0.0) 8(88.9)
Stroke (10.0) 0.0) 2(5.0) (138 2(25.0) 7(87.5)
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Table 2 (continued)
Model or study characteristic No of papers n Simple Single model® Two-stage  Joint model“n Complete
(%) statistical n (%) model® n (%) case analysis
tests n (%) (%) n (%)
Population focus Acute coronary 4(5.0) 0(0.0) 3(7.5) 1(34) 0 (0.0) 2 (50.0)
syndrome
Atrial fibrilla- 1(1.2) 0(0.0) 0(0.0) 0(0.0) 1(12.5) 1(100.0)
tion and chronic
kidney disease
Chronic kidney 2(2.5) 0(0.0) 2 (5.0) 0(0.0) 0(0.0) 1(50.0)
disease
Cushing's disease  1(1.2) 1(33.3) 0(0.0) 0(0.0) 0(0.0) 1(100.0)
Cardiovascular 37 (46.2) 1(33.3) 17 (42.5) 18 (62.1) 1(12.5) 32(86.5)
disease
Diabetes 3(3.8) 0(0.0) 1(2.5) 1(34) 1(12.5) 3(100.0)
General popula- 27 (33.8) 1(33.3) 14 (35.0) 8(27.6) 4 (50.0) 20 (74.1)
tion
Gout 1(1.2) 0(0.0) 0(0.0) 1(34) 0(0.0) 1(100.0)
Heart failure 1(1.2) 0(0.0) 1(2.5) 0(0.0) 0(0.0) 1(100.0)
HIV 1(1.2) 0(0.0) 1(2.5) 0(0.0) 0(0.0) 1(100.0)
Systemic lupus 1(1.2) 0(0.0) 1(2.5) 0(0.0) 0(0.0) 1(100.0)
erythematosus
Mental health 1(1.2) 0(0.0) 0(0.0) 0(0.0) 1(12.5) 1(100.0)

? One model is fitted e.g. fitted a Cox proportional hazards (PH) model for the survival outcome

b Two models are fitted separately; one model was fitted to summarise longitudinal data or estimate the time effect, and then used that information in the model for
disease or survival outcome. e.g. fitted a linear regression for longitudinal measurements for each individual, and then the estimated slopes were used in a Cox PH

model

¢ Longitudinal and survival outcomes are fitted simultaneously

Score and their score 3 or 6years ago [35]. This is a sim-
ple measure; however, it assumes that change is linear
between two time-points. Further, three (7.5%) studies
used a slope to predict CVD and the slope was calculated
manually by dividing the difference by time duration [25,
29, 32]. Other summaries were included in the Cox PH
models as covariates such as a mean, [36] mean change,
[36] standard deviation, [19] summaries of changes
between categories [20, 34, 41] and stability in categories
[20, 34, 41].

Six studies (15.0%) included longitudinal predictors as
time-dependent covariates in the Cox model [39, 42, 45,
47,49, 51, 55] by splitting the timescale at each time point
when predictors are updated. Reinikainen et al. included
time-dependent summary measures as time-dependent
covariates; updated mean values and the change between
the current and previous time-points for SBP, total cho-
lesterol and current smoking status [39].

Three studies (7.5%) used logistic regression to model
a binary disease outcome [30, 31, 48]. One included the
predictor at baseline, [31] another compared the pre-
dictive power at multiple time points to predict risk of

myocardial infarction by including them in separate
models, [30] while the third used summary measures
(mean (SD), mean change from baseline, range and aver-
age daily risk range) of blood glucose to predict mortality
in myocardial infarction patients [48].

Four (10.0%) studies used generalized estimating equa-
tions (GEE) to model a disease outcome. Two had binary
outcomes, [17, 27] while two others modelled rates [22,
37]. Of the four studies, two used a logit link [17, 27] and
two used a log link [22, 37]. All four included data from
multiple time points. One of the studies used summaries
of changes in socioeconomic status and lifestyle habit
variables between categories such as stable, increasing (in
the second or third time point), decreasing or unstable,
to predict the Framingham Risk Score [22].

Two studies included baseline values of the longitudinal
predictor in a Poisson regression model, [23, 26] a form
of Generalized Linear Model (GLM) that can be used as
a fully parametric alternative to the Cox PH model. Pois-
son regression for survival analysis involves splitting the
follow-up time into intervals and assuming a constant
baseline hazard in each interval [97].
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Fig. 3 Stacked bar chart showing the frequency of the statistical model types by year

Four (10.0%) studies modelled changes in risk scores
over time using linear mixed effects (LME) models,
[33, 44, 46] for example, predicting the trajectory of the
Framingham Risk Score over four time-points [44]. Fixed
effects linear regression was used by one study [52] to
examine how change in body mass index (BMI) is corre-
lated with the Framingham Risk Score.

Two-stage models

A two-stage modelling approach was used in 29 (36.3%)
studies (Table 4) [57-85]. In a two-stage approach, the
longitudinal data is first summarized with a longitudi-
nal model(s). Parameters and/or estimates from this/
these model(s) are then included as covariates in a sur-
vival model. The Cox PH model was used in most studies
(n=26, 89.7%) [57, 58, 60-63, 65-73, 75-78, 80-85, 88].
A weakness of the two-stage approach is that uncertainty
in the longitudinal data summaries produced in the first
stage is ignored.

Two methods were commonly used to generate sum-
maries from longitudinal data to include in a Cox PH
model as a covariate. The simplest method calculated
summary measures such as a slope or the coefficient of
variation (equivalent to residual variance) using a linear
regression model for each patient in nine studies (31.0%)
[57, 62, 63, 71, 78, 80, 82, 83, 85] Gao et al. used linear
regression to estimate the intercept, slope, square of the
slope and coefficient of variation for blood pressure that
were then included in a Cox PH model to assess how
variation and changes in blood pressure were associated
with mortality [63].

The second most frequently used method (n=17,
58.6%) was group-based trajectory models (GBTMs) to
model the trajectory of the longitudinal variable [58, 60,
61, 65-70, 72, 73, 75-77, 81, 84, 88]. Wang et al. identi-
fied four separate trajectories of sleep duration and used
these to predict risk of cardiovascular events or mor-
tality [69]. Most models were fitted using the Proc Traj
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package from SAS [98] (n =10, 58.8%), [60, 65-70, 73,
75, 81] although other software, including Stata (traj) [99]
and R (lcmm) can be used [100]. Trajectory groups from
GBTMs were also used in logistic regression (n=1) [64]
and Poisson regression (n=1) [79] analyses of survival
outcomes.

Desai et al. used weighted pooled logistic regression
with inverse probability weights (IPWs) to examine the
association between changes in serum uric acid and risk
of incident diabetes, CVD and renal decline [59]. These
models are complex, but the resulting hazard ratios can
be interpreted as causal estimates assuming no unmeas-
ured confounders [101].

Joint models

A joint modelling approach, where both the longitudinal
variable and the survival model are fitted simultaneously,
was used for eight studies (10.0%) [86, 87, 89, 91-93];
(Table 5). This approach makes full use of the available
data and may be more statistically efficient than fitting a
two-stage model; however, this increases the computa-
tional complexity.

Five studies (62.5%) [86, 87, 91-93] modelled the lon-
gitudinal outcome using an LME model and the survival
outcome using a Cox PH model. One study used the
model to analyze the association between blood pressure
and coronary artery disease [92].

Batterham et al. used latent growth models, which is
similar to LME models, to predict the slope and inter-
cept of five different cognitive tests jointly with a Cox
PH model to predict the risk of all-cause mortality and
cause-specific mortality. The model is fitted using Mplus
[89]. Ogata et al. used a GBTM jointly with a Cox PH
model to predict risk of CVD using trajectories of fasting
plasma glucose [88]. van den Hout et al. used a Bayesian
approach to jointly model ordinal data from the Mini-
Mental State Examination. Item response theory (IRT)
models were used to model the ordinal data before using
Gompertz survival models to model a multi-state out-
come (e.g. healthy, history of strokes and death) [90].

Discussion
This review has identified a multitude of methods to ana-
lyze the risk of CVD using longitudinally repeated data.
There has been an increase in the complexity of method-
ology used over the past two decades, with an increasing
proportion of studies applying more efficient approaches
such as two-stage and joint models over time. However,
many studies only used simple analysis based on one
time-point, even when more data were available.

When CVD risk was modelled in a two-stage model,
two methods were commonly used: patient-level linear
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regression to account for longitudinal data, followed by
the Cox PH model to estimate CVD risk, or GBTMs fol-
lowed by the Cox PH model. On the other hand, in a joint
model, the longitudinal and survival data are modelled
simultaneously. Both models aimed to utilize a patient’s
time-varying risk factors to predict CVD risk. These
models can provide an important understanding of the
association between changes in risk factors over time and
CVD risk, which can be used to influence risk manage-
ment decisions.

The characteristics and assumptions of a model need to
be considered carefully when selecting and interpreting
models. Although a time-dependent covariate Cox PH
model provides an advantage by enabling risk estimates
to be updated during follow-up for new individuals, the
model assumes that values are constant between two
time-points and are measured without error. Computa-
tionally, the model can quickly become unfeasible to fit if
predictor values are updated at different time points for
each individual. This model is also prone to greater over-
fitting as a time-dependent covariate forms a complex
function over time which could lead to too much model-
ling; hence, this should be used with caution [102].

The disease risk is estimated as an odds ratio from
logistic regression, and it should be interpreted appro-
priately (not as a risk ratio), especially when the outcome
is not rare. Odds ratios cannot be compared between
datasets or models with different independent variables
because they reflect unobserved heterogeneity between
observations which varies between datasets and models
[103].

Three different methods to model within-patient vari-
ation with a continuous outcome were encountered:
GEEs, LME models and fixed effects regression. GEEs
are an extension of GLMs that allows a correlation struc-
ture between observations [104, 105]. Similarly to GLMs,
using different link functions or distributions, GEEs can
be used to model continuous, binary, count or binomial
outcomes. LME models are an alternative for continu-
ous outcomes, which assumes that the residual error is
normally distributed and models within-patient cor-
relation with random effects which are also assumed to
be normally distributed and independent of covariates.
This allows LME models to make individual patient pre-
dictions rather than just the population-level predic-
tions from a GEE [106]. Fixed effects regression relaxes
the assumption that random effects are independent
of covariates. The model is computationally easier to fit
than an LME model and is more appropriate if unob-
served heterogeneity is correlated with covariates [107].

GBTMs are a form of a finite mixture model that is
an effective way of identifying a fixed number of groups
of individuals who follow similar trajectories [108].
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However, they are computationally difficult to fit. The
results of this model may also be difficult to apply in clin-
ical practice as it can be difficult to assign a patient to one
trajectory group by hand accurately.

In a standard joint model, the longitudinal outcome is
modelled by an LME model and the survival outcome by
a Cox PH model. The two outcomes are linked via shared
random effects to capture the time-dependent associa-
tion between longitudinal measurements and the risk
of an event [109]. This association can be defined in a
variety of ways, but common approaches include a lin-
ear predictor (i.e. current value), a derivative (i.e. rate of
change) or an integral (i.e. cumulative effect) of the linear
predictor.

The reasons for the slow increase in the utilization
of two-stage and joint models is multi-factorial. Com-
putationally these models can be much harder to fit
than single-stage models, with joint models in par-
ticular conveying significant computational burden.
Also, there is poor awareness of inefficiency in simple
methods. Many studies may not include a statistician
as part of the research team and therefore, authors may
not have the requisite experience of analyzing longitu-
dinal data. However, as these methods become more
common, and software to fit the models becomes more
accessible and computationally more powerful, the uti-
lization of more efficient methods should increase over
time.

Different risk prediction models are appropriate for
different settings. Models may be used for prediction
in a clinical setting or used for studying the associa-
tion between an exposure and an outcome. Many risk
prediction models require computation to obtain a
precise risk prediction which poses difficulties in a
clinical setting. Existing risk prediction models such
as QRISK3 use online calculators to predict risk using
a complex model. Inputting all longitudinal data into
an online calculator may not be possible in a clinical
setting. Alternatives include either using single-stage
models including summaries of the longitudinal data
such as means, slopes or differences or integrating
the risk prediction model into EHRs software. More
complex models such as two-stage or joint models
are very useful for explaining associations although
interpretation can require more thought. Joint mod-
els especially need greater consideration when inter-
preting association structures such as random effect
associations. Assigning and interpreting complex
groups for GBTMs can be difficult for clinicians in
practice although it is sometimes possible to assign
clear descriptions to GBTM groups such as high, low,
increasing or decreasing.
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Reporting of the data in the included studies was
highly variable. For example, the number of time-points
used per patient in each study was disparate with stud-
ies choosing from a selection of mean, median, a range
(e.g. 3-5), the maximum possible or frequency over
the follow-up period; some studies, especially studies
based on electronic health records, did not report the
number of time-points, resulting in difficulties ascer-
taining exactly how many measurements were used.
Follow-up length was also described as a date range,
mean, median, maximum, dates of study waves etc.
This resulted in a loss of clarity, especially when studies
had a separate follow-up period for longitudinal data
collection and for the survival outcome. Also, some
studies did not report variables removed as part of var-
iable selection.

Strengths and limitations

This review examined all available studies that have
assessed the relationship between the trajectory of
longitudinal risk factors and the risk of a cardiovascu-
lar event or mortality, and summarized the methods
used in analyzing longitudinal risk factors for CVD
risk. This review can be readily used to identify meth-
ods for future analysis of longitudinal trajectories
and risk prediction in CVD. However, due to search
terms having this specific focus, single-stage models
underutilizing the data available are more likely to be
underrepresented.

Queries over eligibility or the article content were
thoroughly discussed among the authors of this review
before reaching the final decision. However, articles were
searched and screened by one author and there remains a
possibility of bias or error. This review focused solely on a
search of MEDLINE-Ovid providing a focused and con-
sistent search, although inclusion of other bibliographic
databases may have returned other studies.

This review was designed to highlight the strengths of
statistical methods for summarizing longitudinal data to
predict CVD risk. A deeper comparison of the methods
using simulated data have been discussed in the litera-
ture numerous times as the methods were first developed
or in their application [110-112]. A machine learning
approach may also be worth considering when design-
ing a study, although our search only identified one study
using machine learning methods [113]. Machine learning
algorithms have the potential to provide stronger predic-
tions of risk using many variables; however, this incurs
greater potential for overfitting and collinearity between
variables. To avoid this, machine learning applies a
greater focus on increased model validation, preferably
external validation [114].
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Conclusions

The use of two-stage and joint models is a critical part of
understanding the relationship between the longitudi-
nal risk factors and CVD. Many studies still employ sin-
gle stage approaches which often underutilize available
longitudinal data when modelling cardiovascular risk.
Further studies should aim to optimize the use of longitu-
dinal data by using two-stage and joint models whenever
possible for a more accurate estimation of cardiovascular
risk.
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