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Study selection

1. They had a longitudinal design with data analyzed over at least three time points
2. The outcome was a clinical diagnosis of a cardiovascular disease(s) or mortality.
3. Cross-sectional, animal, and pediatric studies were excluded.
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Modelling approaches

1. Single-stage approaches ( 40 studies (50%))

- Cox proportional hazards (PH) model ( 25 studies (62.5%))
- Time dependent covariate in cox model ( 6 studies (15%))
- Other models : logistic regression(n=3), linear mixed effects model(n=4)
2. Two-stage models ( 29 studies (36.3%))
2.1) Generate summaries from the longitudinal data
- Group-based trajectory model (GBTMs) ( 17 studies (58.6%))
- Linear regression model ( 9 studies (31%))

2.2) Survival model
- Cox PH model was used in most studies (26 studies (89.7%))
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3. Joint modelling ( 8 studies (10%))

- Both the longitudinal variable and the survival model are fitted simultaneously.
- This approach makes full use of the available data and may be more statistically

efficient than fitting a two-stage model; however, this increases the computational

complexity.
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Fig. 3 Stacked bar chart showing the frequency of the statistical model types by year
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Discussion

* There has been an increase in the complexity of methodology used over the past two decades.

* Atime-dependent covariate Cox PH model provides an advantage by enabling risk estimates to be
updated during follow-up for new individuals, the model assumes that values are constant between
two time-points and are measured without error. This model is also prone to greater overfitting.

* Group-based trajectory model (GBTMs) is an effective way of identifying a fixed number of groups of

individuals who follow similar trajectories.

Limitation: They are computationally difficult to fit, difficult to apply in clinical practice.
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* The reasons for the slow increase in the utilization of two-stage and joint models.
1) Computationally these models can be much harder to fit than single-stage models
2) There is poor awareness of inefficiency in simple methods.
3) Many studies may not include a statistician as part of the research team and therefore, authors may
not have the requisite experience of analyzing longitudinal data.
* Two-stage and joint models become more common, and software to fit the models becomes more

accessible and computationally more powerful, the utilization of more efficient methods should

increase over time.
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Conclusions
* The use of two-stage and joint models is a critical part of understanding the relationship between
the longitudinal risk factors and CVD.

* Many studies still employ single stage approaches which often underutilize available longitudinal

data when modelling cardiovascular risk.

* Further studies should aim to optimize the use of longitudinal data by using two-stage and joint

models whenever possible for a more accurate estimation of cardiovascular risk.
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DeepSurv: personalized treatment recommender
system using a Cox proportional hazards deep neural
network

Jared L. Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting_Jiang & Yuval Kluger &

BMC Medical Research Methodology 18, Article number: 24 (2018) ‘ Cite this article
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- DeepSurv has an advantage over traditional Cox regression because it does not require an a priori selection of

covariates, but learns them adaptively.
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Table 1: Experimental Results for All Experiments: C-index (95% Confidence Interval)

Experiment CPH DeepSurv RSF
Simulated Linear || 0.773677 0.774019 0.764925
(0.772,0.775) (0.772,0.776) (0.763,0.766)
Simulated Non- || 0.506951 0.648902 0.645540
linear (0.505,0.509) (0.647, 0.651) (0.643,0.648)
WHAS 0.817620 0.862620 0.893623
(0.814, 0.821) (0.859,0.866) (0.891,0.896)
SUPPORT 0.582870 0.618308 0.613022
(0.581,0.585) (0.616,0.620) (0.611,0.615)
METABRIC 0.630618 0.643374 0.624331
(0.627,0.635) (0.639,0.647) (0.620,0.629)
Simulated Treat- || 0.481540 0.582774 0.569870
ment (0.480,0.483) (0.580,0.585) (0.568,0.572)
Rotterdam & || 0.657750 0.668402 0.651190
GBSG (0.654, 0.661) (0.665,0.671) (0.648, 0.654)

Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural
network. BMC Med Res Methodol. 2018 Feb 26;18(1):24. doi: 10.1186/512874-018-0482-1. PMID: 29482517; PMCID: PM(C5828433.
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C. Lee, W. R. Zame, J. Yoon, M. van der Schaar, "DeepHit: A Deep Learning Approach to Survival Analysis with
Competing Risks," AAAI Conference on Artificial Intelligence (AAAI), 2018

Dynamic-DeepHit

C. Lee, J. Yoon and M. v. d. Schaar, "Dynamic-DeepHit: A Deep Learning Approach for Dynamic Survival
Analysis With Competing Risks Based on Longitudinal Data," in IEEE Transactions on Biomedical
Engineering, vol. 67, no. 1, pp. 122-133, Jan. 2020, doi: 10.1109/TBME.2019.2909027.
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DeepHit

- A deep neural network that learns the distribution of first hitting
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Figure 2: The architecture of DeepHit with two competing
events.
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Dynamic-DeepHit
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) - The existing works provide only static survival
analysis: they use only the current information to

: perform the survival predictions and most of the
works focus on a single risk rather than multiple risks.
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estimate the joint distribution of the first hitting time
and competing events that is further used for risk

predictions.

(a) The network architecture with K competing risks.

I 0 e o pe \ -The cause-specific subnetworks take the context

We employ a temporal attention mechanism in
the hidden states of the RNN structure when
constructing the context vector.
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TABLE I: Comparison of C}.(t, At) (mean =+ std) for various methods. Higher the better.

Algorithms Resp. Failure Other Causes
At=1 At=3 At=5 At=10 At=1 At =3 At=5 At =10
cs-Cox 0.840=0.097 | 0.837£0.087 | 0.837+0.087 | 0.837+0.087 || 0.667=0.10* | 0.664+0.10* | 0.665+£0.10* | 0.665+0.10*
RSF 0.936:0.01FT | 0.93240.01 0.9314£0.027 | 0.9294+0.017 || 0.79840.04* | 0.79240.04* | 0.773£0.05* | 0.776+0.05*
M 0.882+0.03* | 0.896+0.01* | 0.896+0.01* | 0.897+0.01* || 0.760+0.02* | 0.795+£0.03* | 0.802+0.02* | 0.812+0.01*
- IM-LC 0.89740.04F | 0.89440.05% | 0.8944+0.057 | 0.894+0.05T || 0.856+£0.02* | 0.8554+0.02* | 0.8554+0.02* | 0.8554+0.02*
S 77051 7 T [0910F0.02%7 |T0.907£0.02% | T0907£0.02% | 0.9074£0.01F || T0.819+£0.07T T| 0.8314£0.07T | 0.8344£0.077 | 0.839+0.07T ]
ﬂ Exponential | 0.895+0.03* | 0.8904+0.03* | 0.8904+0.03* | 0.890+0.02* || 0.82440.05* | 0.8254+0.05* | 0.824+0.05* | 0.82440.05*
Proposed
FEV1% 0.948+0.01 0.93940.01 0.938+0.01 0.937+0.01 0.924-+0.02 0.922+0.02 0.92140.02 0.92140.02
cause-spec. | 0.946+0.01 0.9374+0.02 0.93640.02 0.93340.02 0.875+0.047 | 0.8674£0.05T | 0.862+£0.05T | 0.866+0.05%
| tull-fledged 0.949=0.01 0.941+0.01 0.9321+0.01 0.941+0.01 0.929=F0.02 V927002 0.9251+0.02 V.92010.02
cs-Cox 0.84220.03F | 0.842L0.03F | 0.842F0.03% | 0.842E0.03% || 0.748=0.10F | 0.749£0.10F | 0.749L0.10% | 0.749L0.10%
RSF 0.888+0.01* | 0.887+£0.02* | 0.886+0.03* | 0.8914+0.03* || 0.803=0.067 | 0.771+£0.05* | 0.749+0.05* | 0.746+0.05*
M 0.9060.01* | 0.905+£0.01* | 0.908+0.01* | 0.909+0.01* || 0.818+0.03* | 0.814+0.03* | 0.813+£0.02* | 0.840+0.02*
- IM-LC 0.911+0.047 | 0.910+£0.04T | 0.910+0.047 | 0.910+0.047 || 0.851+0.02* | 0.851+0.02* | 0.850+0.02* | 0.850+0.02*
= 7 7151 7 [ 0913£0.02% | 0.923£0.02* | T0.923£0.01* | 0.923£0.01* || 0.837L£0.07T | 0.845+£0.07T | 0.846+£0.07T | 0.849+0.07T ]
ﬂ Exponential | 0.883+0.03* | 0.883+0.03* | 0.8824+0.03* | 0.88240.03* || 0.81640.04* | 0.8174+0.04* | 0.816+0.04* | 0.8160.04*
Proposed
FEV1% 0.956=0.01 0.958+0.01 0.957+40.01 0.957+0.01 0.934=+0.02 0.931+0.02 0.93140.02 0.93140.02
cause-spec. | 0.955+0.01 0.95740.01 0.957+0.01 0.958+0.01 0.907+0.02F | 0.9094+0.02T | 0.906+0.037 | 0.909+0.02F
| tull-fledged 0.961-+0.01 0.9653+0.01 0.965+0.01 0.965+0.01 0.939F0.01 0.956+0.01 0.939+0.01 0.939F0.01T |
cs-Cox 0.851=0.117 | 0.851£0.11T7 | 0.851£0.117 | 0.851£0.117 || 0.721=0.09* | 0.720+£0.09* | 0.720£0.09* | 0.720%0.09*
RSF 0.898+0.01* | 0.890+0.03* | 0.8924+0.02* | 0.8914+0.02* || 0.741+0.05* | 0.764+0.03* | 0.763+£0.03* | 0.768+0.04*
M 0.900+0.01* | 0.90240.01* | 0.9084+0.01* | 0.9084+0.01* || 0.824+0.03* | 0.82340.02* | 0.826+0.01* | 0.84340.02*
- IM-LC 0.916£0.04* | 0.916£0.04* | 0916+0.04* | 0.916+0.04* || 0.852+0.02* | 0.852+0.02* | 0.8524+0.02* | 0.8534+0.02*
o [T [5] | 0.929£0.01* | 0.929+0.01* | 0.929-£0.01* | 0.92940.01* || 0.851£0.07T | 0.858-£0.06T | 0.8594+0.06T | 0.8624+0.067 |
jl Exponential | 0.87540.02* | 0.874+0.02* | 0.87440.02* | 0.87340.02* || 0.806=+0.04* | 0.8064+0.04* | 0.806+£0.04* | 0.80610.04*
Proposed |~~~ ("~~~ ~""~"~"“""*""(~~"~"~"~""~+"94~"~"~""""~“"")~"“~“"“"“"“"“"4"~"“"“"“"*“""“"A°"“""""JF°~"~""~""7777
FEV.1% 0.962+0.01 0.96240.00 0.96240.00 0.961+0.00 0.926+0.03 0.935+0.02 0.93040.02 0.93410.02
cause-spec. | 0.96220.01 0.96140.01 0.94440.03 0.954+0.02 0.8960.047 | 0.92940.03 0.9294+0.03 0.92540.03
tull-fledged 0.9660.00 0.965+0.01 0.967+0.01 0.967+0.01 0.941+-0.01 0.942+0.01 0.945+0.01 0.936+0.02 |

+ indicates p-value < 0.01,  indicates p-value < 0.05

Lee C, Yoon J, Schaar MV. Dynamic-DeepHit: A Deep Learning Approach for Dynamic Survival Analysis With Competing Risks Based on Longitudinal Data. IEEE Trans
Biomed Eng. 2020 Jan;67(1):122-133. doi: 10.1109/TBME.2019.2909027. Epub 2019 Apr 3. PMID: 30951460.
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