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ABSTRACT

In this article we introduce the concept of inverse probability of treatment weighting (IPTW) and describe how this method
can be applied to adjust for measured confounding in observational research, illustrated by a clinical example from
nephrology. IPTW involves two main steps. First, the probability—or propensity—of being exposed to the risk factor or
intervention of interest is calculated, given an individual’s characteristics (i.e. propensity score). Second, weights are
calculated as the inverse of the propensity score. The application of these weights to the study population creates a
pseudopopulation in which confounders are equally distributed across exposed and unexposed groups. We also elaborate
on how weighting can be applied in longitudinal studies to deal with informative censoring and time-dependent
confounding in the setting of treatment-confounder feedback.
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INTRODUCTION

Randomized controlled trials (RCTs) are considered the gold
standard for studying the efficacy of an intervention [1].
Randomization highly increases the likelihood that both inter-
vention and control groups have similar characteristics and
that any remaining differences will be due to chance, effectively
eliminating confounding. Any difference in the outcome be-
tween groups can then be attributed to the intervention and the
effect estimates may be interpreted as causal. However, many
research questions cannot be studied in RCTs, as they can be

too expensive and time-consuming (especially when studying
rare outcomes), tend to include a highly selected population
(limiting the generalizability of results) and in some cases ran-
domization is not feasible (for ethical reasons).

In contrast, observational studies suffer less from these limi-
tations, as they simply observe unselected patients without in-
tervening [2]. Observational research may be highly suited to
assess the impact of the exposure of interest in cases where
randomization is impossible, for example, when studying the
relationship between body mass index (BMI) and mortality risk.
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However, because of the lack of randomization, a fair compari-
son between the exposed and unexposed groups is not as
straightforward due to measured and unmeasured differences
in characteristics between groups. Certain patient characteris-
tics that are a common cause of both the observed exposure
and the outcome may obscure—or confound—the relationship
under study [3], leading to an over- or underestimation of the
true effect [3].

To control for confounding in observational studies, various
statistical methods have been developed that allow researchers
to assess causal relationships between an exposure and out-
come of interest under strict assumptions. Besides traditional
approaches, such as multivariable regression [4] and stratifica-
tion [5], other techniques based on so-called propensity scores,
such as inverse probability of treatment weighting (IPTW), have
been increasingly used in the literature. In short, IPTW involves
two main steps. First, the probability—or propensity—of being
exposed, given an individual’s characteristics, is calculated.
This is also called the propensity score. Second, weights for
each individual are calculated as the inverse of the probability
of receiving his/her actual exposure level. The application of
these weights to the study population creates a pseudopopula-
tion in which measured confounders are equally distributed
across groups. In this article we introduce the concept of IPTW
and describe in which situations this method can be applied to
adjust for measured confounding in observational research, il-
lustrated by a clinical example from nephrology. We also dem-
onstrate how weighting can be applied in longitudinal studies
to deal with time-dependent confounding in the setting of
treatment-confounder feedback and informative censoring.

Case study—Introduction

We will illustrate the use of IPTW using a hypothetical example
from nephrology. In this example we will use observational
European Renal Association–European Dialysis and Transplant
Association Registry data to compare patient survival in those
treated with extended-hours haemodialysis (EHD) (>6-h ses-
sions of HD) with those treated with conventional HD (CHD)
among European patients [6]. In this example, patients treated
with EHD were younger, suffered less from diabetes and various
cardiovascular comorbidities, had spent a shorter time on dialy-
sis and were more likely to have received a kidney transplanta-
tion in the past compared with those treated with CHD. For

these reasons, the EHD group has a better health status and im-
proved survival compared with the CHD group, which may ob-
scure the true effect of treatment modality on survival. These
variables, which fulfil the criteria for confounding, need to be
dealt with accordingly, which we will demonstrate in the para-
graphs below using IPTW.

Propensity scores

The propensity score was first defined by Rosenbaum and
Rubin in 1983 as ‘the conditional probability of assignment to a
particular treatment given a vector of observed covariates’ [7].
In other words, the propensity score gives the probability (rang-
ing from 0 to 1) of an individual being exposed (i.e. assigned to
the intervention or risk factor) given their baseline characteris-
tics. The aim of the propensity score in observational research
is to control for measured confounders by achieving balance in
characteristics between exposed and unexposed groups. By ac-
counting for any differences in measured baseline characteris-
tics, the propensity score aims to approximate what would have
been achieved through randomization in an RCT (i.e. pseudor-
andomization). In contrast to true randomization, it should
be emphasized that the propensity score can only account
for measured confounders, not for any unmeasured confound-
ers [8].

Assuming a dichotomous exposure variable, the propensity
score of being exposed to the intervention or risk factor is typi-
cally estimated for each individual using logistic regression, al-
though machine learning and data-driven techniques can also
be useful when dealing with complex data structures [9, 10].
The calculation of propensity scores is not only limited to di-
chotomous variables, but can readily be extended to continuous
or multinominal exposures [11, 12], as well as to settings involv-
ing multilevel data or competing risks [12, 13]. Although there is
some debate on the variables to include in the propensity score
model, it is recommended to include at least all baseline covari-
ates that could confound the relationship between the exposure
and the outcome, following the criteria for confounding [3]. In
addition, covariates known to be associated only with the out-
come should also be included [14, 15], whereas inclusion of
covariates associated only with the exposure should be avoided
to avert an unnecessary increase in variance [14, 16]. Any inter-
actions between confounders and any non-linear functional
forms should also be accounted for in the model. Importantly,

Box 1. Key concepts

• Inverse probability of treatment weighting (IPTW) can be used to adjust for confounding in observational studies. IPTW
uses the propensity score to balance baseline patient characteristics in the exposed and unexposed groups by weighting
each individual in the analysis by the inverse probability of receiving his/her actual exposure.

• It is considered good practice to assess the balance between exposed and unexposed groups for all baseline characteristics
both before and after weighting.

• An important methodological consideration is that of extreme weights. These can be dealt with either weight stabilization
and/or weight truncation.

• To adjust for confounding measured over time in the presence of treatment-confounder feedback, IPTW can be applied to
appropriately estimate the parameters of a marginal structural model. Weights are calculated at each time point as the
inverse probability of receiving his/her exposure level, given an individual’s previous exposure history, the previous values
of the time-dependent confounder and the baseline confounders.

• In time-to-event analyses, inverse probability of censoring weights can be used to account for informative censoring by up-
weighting those remaining in the study, who have similar characteristics to those who were censored.
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prognostic methods commonly used for variable selection, such
as P-value-based methods, should be avoided, as this may lead
to the exclusion of important confounders. Instead, covariate
selection should be based on existing literature and expert
knowledge on the topic. Confounders may be included even if
their P-value is >0.05. It should also be noted that, as per the cri-
teria for confounding, only variables measured before the expo-
sure takes place should be included, in order not to adjust for
mediators in the causal pathway.

After correct specification of the propensity score model, at
any given value of the propensity score, individuals will have,
on average, similar measured baseline characteristics (i.e. co-
variate balance). The propensity score can subsequently be
used to control for confounding at baseline using either stratifi-
cation by propensity score, matching on the propensity score,
multivariable adjustment for the propensity score or through
weighting on the propensity score. Several weighting methods
based on propensity scores are available, such as fine stratifica-
tion weights [17], matching weights [18], overlap weights [19]
and inverse probability of treatment weights—the focus of this
article. These different weighting methods differ with respect to
the population of inference, balance and precision. A thorough
overview of these different weighting methods can be found
elsewhere [20].

Case study—Propensity scores

In our example, we start by calculating the propensity score us-
ing logistic regression as the probability of being treated with
EHD versus CHD. We include in the model all known baseline
confounders as covariates: patient sex, age, dialysis vintage,
having received a transplant in the past and various pre-
existing comorbidities. In addition, as we expect the effect of
age on the probability of EHD will be non-linear, we include a
cubic spline for age. We also include an interaction term be-
tween sex and diabetes, as—based on the literature—we expect
the confounding effect of diabetes to vary by sex. The logistic re-
gression model gives the probability, or propensity score, of re-
ceiving EHD for each patient given their characteristics.

IPTW

IPTW uses the propensity score to balance baseline patient char-
acteristics in the exposed (i.e. those who received treatment) and
unexposed groups by weighting each individual by the inverse
probability of receiving his/her actual treatment [21]. Weights are
calculated for each individual as 1=propensity score for the ex-
posed group and 1=ð1� propensity scoreÞ for the unexposed
group. As such, exposed individuals with a lower probability of
exposure (and unexposed individuals with a higher probability of
exposure) receive larger weights and therefore their relative influ-
ence on the comparison is increased. Subsequent inclusion of the
weights in the analysis renders ‘assignment’ to either the ex-
posed or unexposed group independent of the variables included
in the propensity score model. For example, suppose that the per-
centage of patients with diabetes at baseline is lower in the ex-
posed group (EHD) compared with the unexposed group (CHD)
and that we wish to balance the groups with regards to the distri-
bution of diabetes. In patients with diabetes, the probability of re-
ceiving EHD treatment is 25% (i.e. a propensity score of 0.25). In
order to balance the distribution of diabetes between the EHD and
CHD groups, we can up-weight each patient in the EHD group by
taking the inverse of the propensity score. In patients with diabe-
tes this is 1=0:25 ¼ 4. Conceptually this weight now represents

not only the patient him/herself, but also three additional
patients, thus creating a so-called pseudopopulation. Similarly,
weights for CHD patients are calculated as 1/(1 � 0.25) ¼ 1.33. In
this weighted population, diabetes is now equally distributed
across the EHD and CHD treatment groups and any treatment ef-
fect found may be considered independent of diabetes (Figure 1).
Conceptually IPTW can be considered mathematically equivalent
to standardization.

As IPTW aims to balance patient characteristics in the ex-
posed and unexposed groups, it is considered good practice to
assess the standardized differences between groups for all base-
line characteristics both before and after weighting [22]. The ta-
ble standardized difference compares the difference in means
between groups in units of standard deviation (SD) and can be
calculated for both continuous and categorical variables [23].
The advantage of checking standardized mean differences is
that it allows for comparisons of balance across variables mea-
sured in different units. As a rule of thumb, a standardized dif-
ference of <10% may be considered a negligible imbalance

Original
sample

Weighted
sample

CHD EHD

1 1 1 1 1

4 4

1 1 1

1.33 1.33 1.33 1.33 1.33 1.33

FIGURE 1: Example of balancing the proportion of diabetes patients between the

exposed (EHD) and unexposed groups (CHD), using IPTW. In this example, the

probability of receiving EHD in patients with diabetes (red figures) is 25%. The in-

verse probability weight in patients receiving EHD is therefore 1/0.25¼4 and 1/

(1�0.25) ¼ 1.33 in patients receiving CHD. Conversely, the probability of receiv-

ing EHD treatment in patients without diabetes (white figures) is 75%. The in-

verse probability weight in patients without diabetes receiving EHD is therefore

1/0.75¼1.33 and 1/(1�0.75) ¼ 4 in patients receiving CHD. In the original sam-

ple, diabetes is unequally distributed across the EHD and CHD groups. After ap-

plying the inverse probability weights to create a weighted pseudopopulation,

diabetes is equally distributed across treatment groups (50% in each group).

Percentage of diabetes CHD EHD

Original sample 3/4¼ 75% 1/4¼ 25%
Weighted sample 4/8¼ 50% 4/8¼ 50%
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between groups. P-values should be avoided when assessing
balance, as they are highly influenced by sample size (i.e. even a
negligible difference between groups will be statistically signifi-
cant given a large enough sample size). If the standardized dif-
ferences remain too large after weighting, the propensity model
should be revisited (e.g. by including interaction terms, transfor-
mations, splines) [24, 25]. Besides having similar means, contin-
uous variables should also be examined to ascertain that the
distribution and variance are similar between groups. This can
be checked using box plots and/or tested using the
Kolmogorov–Smirnov test [25].

An important methodological consideration of the calcu-
lated weights is that of extreme weights [26]. In studies with
large differences in characteristics between groups, some
patients may end up with a very high or low probability of being
exposed (i.e. a propensity score very close to 0 for the exposed
and close to 1 for the unexposed). In these individuals, taking
the inverse of the propensity score may subsequently lead to
extreme weight values, which in turn inflates the variance and
confidence intervals of the effect estimate. This may occur
when the exposure is rare in a small subset of individuals,
which subsequently receives very large weights, and thus have
a disproportionate influence on the analysis. As these patients
represent only a small proportion of the target study popula-
tion, their disproportionate influence on the analysis may affect
the precision of the average effect estimate. In such cases the
researcher should contemplate the reasons why these odd indi-
viduals have such a low probability of being exposed and
whether they in fact belong to the target population or instead
should be considered outliers and removed from the sample.
After all, patients who have a 100% probability of receiving a
particular treatment would not be eligible to be randomized to
both treatments. In addition, extreme weights can be dealt with
through either weight ‘stabilization’ and/or weight truncation.
Weight stabilization can be achieved by replacing the numera-
tor (which is 1 in the unstabilized weights) with the crude prob-
ability of exposure (i.e. given by the propensity score model
without covariates). In case of a binary exposure, the numerator
is simply the proportion of patients who were exposed.
Stabilized weights can therefore be calculated for each individ-
ual as proportion exposed=propensity score for the exposed
group and proportion unexposed=ð1� propensity scoreÞ for the
unexposed group. Stabilized weights should be preferred over
unstabilized weights, as they tend to reduce the variance of the
effect estimate [27]. It should also be noted that weights for con-
tinuous exposures always need to be stabilized [27]. As an addi-
tional measure, extreme weights may also be addressed
through truncation (i.e. trimming). Weights are typically trun-
cated at the 1st and 99th percentiles [26], although other lower
thresholds can be used to reduce variance [28]. However, trun-
cating weights change the population of inference and thus this
reduction in variance comes at the cost of increasing bias [26].

After calculation of the weights, the weights can be incorpo-
rated in an outcome model (e.g. weighted linear regression for a
continuous outcome or weighted Cox regression for a time-to-
event outcome) to obtain estimates adjusted for confounders.
IPTW estimates an average treatment effect, which is inter-
preted as the effect of treatment in the entire study population.
Importantly, as the weighting creates a pseudopopulation con-
taining ‘replications’ of individuals, the sample size is artifi-
cially inflated and correlation is induced within each individual.
This lack of independence needs to be accounted for in order to
correctly estimate the variance and confidence intervals in the

effect estimates, which can be achieved by using either a robust
‘sandwich’ variance estimator or bootstrap-based methods [29].

Causal assumptions

Treatment effects obtained using IPTW may be interpreted as
causal under the following assumptions: exchangeability, no
misspecification of the propensity score model, positivity and
consistency [30]. Exchangeability means that the exposed and
unexposed groups are exchangeable; if the exposed and unex-
posed groups have the same characteristics, the risk of outcome
would be the same had either group been exposed. Importantly,
exchangeability also implies that there are no unmeasured con-
founders or residual confounding that imbalance the groups. In
observational research, this assumption is unrealistic, as we are
only able to control for what is known and measured and there-
fore only ‘conditional exchangeability’ can be achieved [26].

Related to the assumption of exchangeability is that the pro-
pensity score model has been correctly specified. Important
confounders or interaction effects that were omitted in the pro-
pensity score model may cause an imbalance between groups.
As described above, one should assess the standardized differ-
ence for all known confounders in the weighted population to
check whether balance has been achieved.

The assumption of positivity holds when there are both ex-
posed and unexposed individuals at each level of every con-
founder. If there are no exposed individuals at a given level of a
confounder, the probability of being exposed is 0 and thus the
weight cannot be defined. An almost violation of this assump-
tion may occur when dealing with rare exposures in patient
subgroups, leading to the extreme weight issues described
above.

The last assumption, consistency, implies that the exposure
is well defined and that any variation within the exposure
would not result in a different outcome. Take, for example,
socio-economic status (SES) as the exposure. SES is often com-
posed of various elements, such as income, work and educa-
tion. If we were to improve SES by increasing an individual’s
income, the effect on the outcome of interest may be very dif-
ferent compared with improving SES through education. SES is
therefore not sufficiently specific, which suggests a violation of
the consistency assumption [31].

Case study—IPTW

Using the propensity scores calculated in the first step, we can
now calculate the inverse probability of treatment weights for
each individual. Weights are calculated as 1=propensity score
for patients treated with EHD and 1=ð1� propensity scoreÞ for
the patients treated with CHD. After checking the distribution of
weights in both groups, we decide to stabilize and truncate the
weights at the 1st and 99th percentiles to reduce the impact of
extreme weights on the variance. We then check covariate bal-
ance between the two groups by assessing the standardized dif-
ferences of baseline characteristics included in the propensity
score model before and after weighting. As depicted in Figure 2,
all standardized differences are <0.10 and any remaining differ-
ence may be considered a negligible imbalance between groups.
We can now estimate the average treatment effect of EHD on
patient survival using a weighted Cox regression model.

IPTW to account for time-dependent confounding

So far we have discussed the use of IPTW to account for con-
founders present at baseline. In longitudinal studies, however,
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exposures, confounders and outcomes are measured repeatedly
in patients over time and estimating the effect of a time-
updated (cumulative) exposure on an outcome of interest
requires additional adjustment for time-dependent confound-
ing. A time-dependent confounder has been defined as a covari-
ate that changes over time and is both a risk factor for the
outcome as well as for the subsequent exposure [32]. In certain
cases, the value of the time-dependent confounder may also be
affected by previous exposure status and therefore lies in the
causal pathway between the exposure and the outcome, other-
wise known as an intermediate covariate or ‘mediator’.
Subsequently the time-dependent confounder can take on a
dual role of both confounder and mediator (Figure 3) [33]. This
situation in which the confounder affects the exposure and the
exposure affects the future confounder is also known as ‘treat-
ment-confounder feedback’. Adjusting for time-dependent con-
founders using conventional methods, such as time-dependent
Cox regression, often fails in these circumstances, as adjusting
for time-dependent confounders affected by past exposure (i.e.
in the role of mediator) may inappropriately block the effect of
the past exposure on the outcome (i.e. overadjustment bias)
[32]. For example, we wish to determine the effect of blood pres-
sure measured over time (as our time-varying exposure) on the
risk of end-stage kidney disease (ESKD) (outcome of interest),
adjusted for eGFR measured over time (time-dependent con-
founder). As eGFR acts as both a mediator in the pathway be-
tween previous blood pressure measurement and ESKD risk, as
well as a true time-dependent confounder in the association be-
tween blood pressure and ESKD, simply adding eGFR to the
model will both correct for the confounding effect of eGFR as
well as bias the effect of blood pressure on ESKD risk (i.e. inap-
propriately block the effect of previous blood pressure measure-
ments on ESKD risk).

An additional issue that can arise when adjusting for time-
dependent confounders in the causal pathway is that of collider
stratification bias, a type of selection bias. This type of bias
occurs in the presence of an unmeasured variable that is a com-
mon cause of both the time-dependent confounder and the out-
come [34]. Controlling for the time-dependent confounder will
open a non-causal (i.e. spurious) path between the unobserved

variable and the exposure, biasing the effect estimate. An illus-
trative example of collider stratification bias, using the obesity
paradox, is given by Jager et al. [34]. The obesity paradox is the
counterintuitive finding that obesity is associated with im-
proved survival in various chronic diseases, and has several
possible explanations, one of which is collider-stratification
bias. In this example, the association between obesity and mor-
tality is restricted to the ESKD population. In this case, ESKD is a
collider, as it is a common cause of both the exposure (obesity)
and various unmeasured risk factors (i.e. lifestyle factors).
Restricting the analysis to ESKD patients will therefore induce
collider stratification bias by introducing a non-causal

Chronic heart failure (Y/N)

Malignancy (Y/N)

Sex

Cerebrovascular disease (Y/N)

Ischemic heart disease (Y/N)

Diabetes (Y/N)

Peripheral vascular disease (Y/N)

Previous tx (Y/N)

Age (years)

Dialysis vintage (years)

0.00 0.25 0.50 0.75 1.00
Absolute standardized mean differences

Sample
Unadjusted
Adjusted

Covariate balance
Max across treatment pairs

FIGURE 2: The standardized mean differences before (unadjusted) and after weighting (adjusted), given as absolute values, for all patient characteristics included in

the propensity score model. The standardized difference compares the difference in means between groups in units of standard deviation. After adjustment, the differ-

ences between groups were <10% (dashed line), showing good covariate balance.

OE1E0

C0 C1

Follow-up time

T = 0 T = 1

FIGURE 3: Directed acyclic graph depicting the association between the cumula-

tive exposure measured at t¼ 0 (E0) and t¼1 (E1) on the outcome (O), adjusted

for baseline confounders (C0) and a time-dependent confounder (C1) measured

at t¼1. The time-dependent confounder (C1) in this diagram is a true con-

founder (pathways given in red), as it forms both a risk factor for the outcome

(O) as well as for the subsequent exposure (E1). However, the time-dependent

confounder (C1) also plays the dual role of mediator (pathways given in purple),

as it is affected by the previous exposure status (E0) and therefore lies in the

causal pathway between the exposure (E0) and the outcome (O). This situation

in which the exposure (E0) affects the future confounder (C1) and the confounder

(C1) affects the exposure (E1) is known as treatment-confounder feedback. In

this situation, adjusting for the time-dependent confounder (C1) as a mediator

may inappropriately block the effect of the past exposure (E0) on the outcome

(O), necessitating the use of weighting.
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association between obesity and the unmeasured risk factors.
As a consequence, the association between obesity and mortal-
ity will be distorted by the unmeasured risk factors.

Under these circumstances, IPTW can be applied to appro-
priately estimate the parameters of a marginal structural model
(MSM) and adjust for confounding measured over time [35, 36].
As weights are used (i.e. a marginal approach), as opposed to re-
gression adjustment (i.e. a conditional approach), they do not
suffer from these biases. Unlike the procedure followed for
baseline confounders, which calculates a single weight to ac-
count for baseline characteristics, a separate weight is calcu-
lated for each measurement at each time point individually. To
achieve this, the weights are calculated at each time point as
the inverse probability of being exposed, given the previous ex-
posure status, the previous values of the time-dependent con-
founder and the baseline confounders. This creates a
pseudopopulation in which covariate balance between groups
is achieved over time and ensures that the exposure status is no
longer affected by previous exposure nor confounders, alleviat-
ing the issues described above. Extreme weights can be dealt
with as described previously. For the stabilized weights, the nu-
merator is now calculated as the probability of being exposed,
given the previous exposure status, and the baseline confound-
ers. Although including baseline confounders in the numerator
may help stabilize the weights, they are not necessarily re-
quired. If the choice is made to include baseline confounders in
the numerator, they should also be included in the outcome
model [26]. After establishing that covariate balance has been
achieved over time, effect estimates can be estimated using an
appropriate model, treating each measurement, together with
its respective weight, as separate observations. This type of
weighted model in which time-dependent confounding is con-
trolled for is referred to as an MSM and is relatively easy to im-
plement. For instance, a marginal structural Cox regression
model is simply a Cox model using the weights as calculated in
the procedure described above.

Inverse probability of censoring weighting to account for
informative censoring

In time-to-event analyses, patients are censored when they are
either lost to follow-up or when they reach the end of the study
period without having encountered the event (i.e. administra-
tive censoring). Methods developed for the analysis of survival
data, such as Cox regression, assume that the reasons for cen-
soring are unrelated to the event of interest. In the case of ad-
ministrative censoring, for instance, this is likely to be true. In
other cases, however, the censoring mechanism may be directly
related to certain patient characteristics [37]. For instance,
patients with a poorer health status will be more likely to drop
out of the study prematurely, biasing the results towards the
healthier survivors (i.e. selection bias). As these censored
patients are no longer able to encounter the event, this will lead
to fewer events and thus an overestimated survival probability.
Similar to the methods described above, weighting can also be
applied to account for this ‘informative censoring’ by up-
weighting those remaining in the study, who have similar char-
acteristics to those who were censored. To achieve this, inverse
probability of censoring weights (IPCWs) are calculated for each
time point as the inverse probability of remaining in the study
up to the current time point, given the previous exposure, and
patient characteristics related to censoring. In situations where
inverse probability of treatment weights was also estimated,
these can simply be multiplied with the censoring weights to

attain a single weight for inclusion in the model. An illustrative
example of how IPCW can be applied to account for informative
censoring is given by the Evaluation of Cinacalcet
Hydrochloride Therapy to Lower Cardiovascular Events trial,
where individuals were artificially censored (inducing informa-
tive censoring) with the goal of estimating per protocol effects
[38, 39].

Advantages and limitations of IPTW

IPTW has several advantages over other methods used to con-
trol for confounding, such as multivariable regression. The pro-
pensity score–based methods, in general, are able to summarize
all patient characteristics to a single covariate (the propensity
score) and may be viewed as a data reduction technique. These
methods are therefore warranted in analyses with either a large
number of confounders or a small number of events. IPTW also
has some advantages over other propensity score–based meth-
ods. Compared with propensity score matching, in which
unmatched individuals are often discarded from the analysis,
IPTW is able to retain most individuals in the analysis, increas-
ing the effective sample size. In addition, whereas matching
generally compares a single treatment group with a control
group, IPTW can be applied in settings with categorical or con-

tinuous exposures. Furthermore, compared with propensity
score stratification or adjustment using the propensity score,
IPTW has been shown to estimate hazard ratios with less bias
[40]. In the longitudinal study setting, as described above, the
main strength of MSMs is their ability to appropriately correct
for time-dependent confounders in the setting of treatment-
confounder feedback, as opposed to the potential biases intro-
duced by simply adjusting for confounders in a regression
model.

IPTW also has limitations. Some simulation studies have
demonstrated that depending on the setting, propensity score–
based methods such as IPTW perform no better than multivari-
able regression, and others have cautioned against the use of
IPTW in studies with sample sizes of <150 due to underestima-
tion of the variance (i.e. standard error, confidence interval and
P-values) of effect estimates [41, 42]. The IPTW is also sensitive
to misspecifications of the propensity score model, as omission
of interaction effects or misspecification of functional forms of
included covariates may induce imbalanced groups, biasing the
effect estimate.

CONCLUSION

Conceptually analogous to what RCTs achieve through random-
ization in interventional studies, IPTW provides an intuitive ap-
proach in observational research for dealing with imbalances
between exposed and non-exposed groups with regards to base-
line characteristics. After careful consideration of the covariates
to be included in the propensity score model, and appropriate
treatment of any extreme weights, IPTW offers a fairly straight-
forward analysis approach in observational studies. Moreover,
the weighting procedure can readily be extended to longitudinal
studies suffering from both time-dependent confounding and
informative censoring.
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