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Here we describe methods for assessing heterogeneity of treatment effects over prespecified subgroups in
observational studies, using outcome-model-based (g-formula), inverse probability weighting, doubly robust, and
matching estimators of subgroup-specific potential outcome means, conditional average treatment effects, and
measures of heterogeneity of treatment effects. We compare the finite-sample performance of different estimators
in simulation studies where we vary the total sample size, the relative frequency of each subgroup, the magnitude
of treatment effect in each subgroup, and the distribution of baseline covariates, for both continuous and binary
outcomes. We find that the estimators’ bias and variance vary substantially in finite samples, even when there is
no unobserved confounding and no model misspecification. As an illustration, we apply the methods to data from
the Coronary Artery Surgery Study (August 1975-December 1996) to compare the effect of surgery plus medical
therapy with that of medical therapy alone for chronic coronary artery disease in subgroups defined by previous

myocardial infarction or left ventricular ejection fraction.
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subgroup analysis
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Observational studies can be useful for estimating
subgroup-specific (conditional) average treatment effects
and examining whether these effects are heterogeneous,
because, compared with randomized trials, observational
studies can have larger sample sizes, leading to more precise
effect estimates, especially within subgroups defined by
covariates (1, 2). Valid assessment of heterogeneity in
observational studies, however, requires the use of statistical
methods to control confounding, such as outcome-model
(OM)-based (g-formula) (3), inverse probability weighting
(IPW) (4, 5), doubly robust (e.g., augmented IPW) (6, 7),
or matching methods (8). While the large-sample behavior
of these methods is well-understood, their finite-sample
performance for assessing heterogeneity of treatment effects
is less studied (9-16). In particular, few studies have used
simulations to evaluate the finite-sample performance of
methods for assessing heterogeneity of treatment effects in
observational studies (10-12, 15, 16): 2 studies exclusively
evaluated matching estimators (10, 16), 1 study exclusively

evaluated regression-based estimators (15), and 2 compared
IPW estimators against matching estimators (11, 12). To our
knowledge, no study has systematically examined doubly
robust estimators for assessing heterogeneity of treatment
effects.

In this paper, we consider methods for assessing heteroge-
neity of treatment effects in observational studies. We focus
on the setting where investigators use observational data to
assess heterogeneity over prespecified subgroups defined in
terms of 1 or more variables selected on the basis of substan-
tive knowledge (e.g., in confirmatory subgroup analysis (1,
2, 17)). In this setting, we describe OM-based, [IPW, doubly
robust, and matching estimators of subgroup-specific poten-
tial outcome means, conditional average treatment effects,
and measures of heterogeneity of treatment effects. We
compare the performance of different estimators in simula-
tions for continuous and binary outcomes. Lastly, we apply
the estimators to data from the Coronary Artery Surgery
Study (CASS) to compare the effect of surgery plus medical
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therapy with the effect of medical therapy alone for chronic
coronary artery disease in subgroups defined by previous
myocardial infarction and left ventricular ejection fraction.

CAUSAL QUANTITIES

In observational cohort studies investigating heterogene-
ity of treatment effects for time-fixed (non—time-varying)
treatments, the data can be modeled as realizations of
independent and identically distributed random tuples
(Si, Xi, A, Yy), i = 1,...,n, where S is a baseline (pretreat-
ment) covariate defining the subgroups of interest, X denotes
other baseline covariates, A is the treatment, and Y is the
observed outcome. For simplicity of exposition, in this paper
we consider only binary treatments A and binary candidate
effect modifiers §; extensions to multivalued treatments
and effect modifiers are straightforward (continuous effect
modifiers are outside the scope of this work). Furthermore,
we only consider covariates S and X measured at baseline,
to avoid conditioning on variables affected by treatment (18,
19). Throughout, we use capital letters for random variables
and lowercase letters for realizations of the corresponding
random variables.

Let Y be the potential (counterfactual) outcome for the
ith individual under an intervention that sets treatment A
to a (20-22). When reporting effect modification findings,
a key target of inference is the subgroup-specific potential
outcome mean, E[Y4|S = s], for each treatment a (23).
Stratum-specific treatment effect measures are functions of
these potential outcome means; for example, the subgroup-
specific (conditional) average treatment effect (ATE) is
defined as

ATE(S=s)=E[Y' = Y?|S=3s] = E[Y'|S=s]— E[Y"|S=35].

We can quantify heterogeneity over strata of S by compar-
ing stratum-specific treatment effects; for example, we can
examine whether ATE(S = 1) = ATE(S = 0). The differ-
ence between the stratum-specific average treatment effects
(dATE), dATE = ATE(S = 1) — ATE(S = 0), quantifies
the magnitude of effect modification and is a measure of
heterogeneity. A proposal for reporting effect modification
findings (23) recommended that investigators report esti-
mates of stratum-specific potential outcome means under the
treatments of interest and evaluate treatment effects on both
additive and multiplicative scales, when appropriate (e.g.,
report both the risk difference and the relative risk, for binary
outcomes).

IDENTIFICATION
Identifiability conditions

To identify stratum-specific average treatment effects and
measures of heterogeneity, we can reexpress their com-
ponents, the subgroup-specific potential outcome means
E[Y*|S = 5], in terms of observed variables. We assume
consistency of potential outcomes: Among individuals who
actually receive treatment a, the potential outcome Y equals
the observed outcome Y; that is, if A; = a, then Yf’ =Y
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for every individual i and every treatment a (24). We
also assume “no unmeasured confounding” (conditional
exchangeability) (25), such that the potential outcome under
an intervention that sets treatment A to a is independent
of treatment conditional on the subgroup indicator and
other baseline covariates: Y9Il A|(X,S). In observational
studies, treatment choice is often influenced by baseline
(pretreatment) patient characteristics that are also prognostic
factors for the outcome (confounders), inducing dependence
between Y“ and A; nevertheless, background knowledge
may suggest that the different treatment groups are
exchangeable conditional on covariates. In practice, this
exchangeability assumption is untestable using the observed
data, and sensitivity analyses are needed to assess the impact
of potential violations on study results (26). Finally, we
assume positivity of the conditional probability of treatment:
If fx s(x,s) # 0, then Prf[A = a|X = x,§ = 5] > 0.

Identification of the subgroup-specific potential
outcome mean

As we show in Web Appendix 1 (available online at
https://doi.org/10.1093/aje/kwaa235), when the identifiabil-
ity conditions hold, we can rewrite the subgroup-specific
potential outcome mean for treatment a using the observed
data as

E[YS=s|=E[E[Y|X.S\A=a]|S=s]=n(a,s).
(1)
The functional w(a,s) can be estimated in observational
studies that collect information on (S, X,A,Y) (3).

Under positivity, |L(a,s) has an algebraically equivalent
IPW (27) reexpression,

1 E|:I(S:s,A:a)Yj|’ @)

W@ ) = 5= 0F | A = aiX.s]
where I(-) denotes the indicator function. Furthermore, under
positivity,

[ r@=&A=aq}‘ r@=&A=anq
wa,)={E|—>" " |1 p|=——22 """ |

Pr{A = a|X, S] Pr{A = a|X, S]
(3)

It follows that subgroup-specific average treatment effects
can be identified by taking differences and that measures
of heterogeneity can be identified as contrasts of these
subgroup-specific effects. For example, ATE(S = s) =
w(l,s) —p(0,s) and dATE = p(1,1) — (0, 1) — (1,0) +
1(0,0).

ESTIMATION AND INFERENCE

We now describe methods for estimation and inference for
subgroup-specific potential outcome means, which are the
components of subgroup-specific average treatment effects
and measures of heterogeneity. Throughout, we assume that
parametric models are used to estimate conditional proba-
bilities or expectations, because this is the most common
approach in practice. In the Discussion section, we consider
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the use of data-adaptive modeling methods (e.g., machine
learning).

Estimation

Outcome modeling and standardization. The identifica-
tion result in equation 1 suggests the following OM-based
(g-formula) estimator for the potential outcome mean under
treatment a for stratum s,

n -1 n

fom (a,s) = [Zl(s,- = s)} D IS =9) g (X1, S)
i=1 i=1

)

where g,(X,S) is an estimator for E[Y|X,S,A = a]. Typ-
ically, we use a parametric model for the conditional out-
come mean in each treatment group, g, (X, S; 8,), with finite
dimensional parameter 6,. Separate models for the rela-
tionship of ¥ with X can be estimated in each treatment
group and each stratum of S, if the data allow it. In many
applications, however, because of the curse of dimensional-
ity, it will be necessary to “borrow strength” by assuming
some degree of homogeneity across strata of S (even if
separate models are fitted within each treatment group).
When the parametric outcome model g, (X, S; 0,) is correctly
specified, the estimator jLom(a, s) converges in probability
to w(a,s) (25).

Inverse probability weighting. The IPW reexpressions of
the identification results suggest 2 IPW estimators: one based
on equation 2,

n 71 n
iipwi (a,s) = [ZI(Si = S)] zfva,s (Xi, Si,A) Yi,
i=1 i=1
)
and the other based on equation 3,

Ripw2 (a, s)

n -1 n
= [Zw (X,-,Si,Ai)} > Vas (X0 S A) Yi, (6)
i=1

i=1

where W, (X, Si, Aj) = {3454 and 24(X, S) is an esti-
mator for Pr[A = alX, §] (i.e., the propensity score (4, 5)).
When the treatment A is binary, estimates of Pr[A =
alX,S] are typically obtained using a logistic regression
model, e,(X,S;y), with finite dimensional parameter y.
Separate models for the relationship of A with X can
be estimated within each stratum of S, if the data allow
it. When the parametric model for the probability of
treatment e, (X, S; y) is correctly specified, both estimators,
fLipwi(a,s) and [lLipw2(a,s), converge in probability to
w(a,s). When weights are highly variable, [irpw2(a,s)
should usually be preferred over [ippwi(a,s) because it
normalizes the weights by their sum (28) and produces
estimates that always fall within the support of the outcome
variable (29). For example, estimates of the potential
outcome mean for a binary outcome are always between

0 and 1 from [irpwa(a,s); in contrast, estimates from
fLipw1 (@, s) can be greater than 1.

Doubly robust estimators. For consistent estimation, the
OM-based estimator and the IPW estimator rely on correct
specification of models for the expectation of the outcome
or the probability of treatment, respectively. To gain some
robustness to model misspecification, it may be advanta-
geous to use estimators that combine both models and are
doubly robust (7), in the sense that they are consistent when
either model is correctly specified. When both models are
correctly specified and converge at a sufficiently fast rate,
doubly robust estimators of the stratum-specific outcome
mean are semiparametric efficient (30-32). Perhaps more
important for practical applications, doubly robust estima-
tors often produce estimates that are more precise than those
produced by IPW estimators (even when the outcome model
is not correctly specified) (33). One doubly robust (DR)
estimator is

fipr1 (a,s) 1
= { >, I(Si:S)] > Was Xi, iy A) {Yi — 8a (X3, S0}
i=1 i=1

n

" .
+|21(5i=5)] D IS =5) 8a (Xi S
i= ;

=

@)

with w, (X, S, A) and g,(X, S) as defined above.
Normalizing the weights, we obtain a second doubly ro-
bust estimator:

fiDR2 (@, $)

-1
n
= [Z 1',i)(/z,s (X,’, SisAi)]

i=1

Wa,s(Xi, Sis AD{Yi— 8a (X3, S)}
1

n
=

n -1 n
+[ZI(Si=S)] 1(S; = 5) 8a (Xi,Si) -
i=1 i=1
®)

A third doubly robust estimator relies on fitting a multi-
variable regression model for the outcome estimated using
IPW (with weights as described above), followed by stan-
dardization over the distribution of baseline covariates (29,
34). The potential outcome mean is estimated as

n -1 n
iiDR3 (a,5) ={Zl<s,- = s)} D I(Si=5) ga(X;, i3 0),

i=1 i=1
©))

where g,(X,S;0) is an estimator for E[Y|X,S,A = a]
obtained by a multivariable outcome model estimated by
IPW. When the outcome is modeled in the linear exponential
family with a canonical link, and estimation is carried out
using quasilikelihood methods (e.g., linear or logistic regres-
sion) (35), this estimator has the double robustness property.

Notably, {ipr3(a,s) always produces estimates that fall
within the support of the distribution of the outcome (as
long as the outcome model is reasonable); while neither
Lpr1 (4, s) nor fipra(a, s) has this property, flpr2(a, s) uses
normalized weights that sum to the subgroup sample size
and often is more well-behaved than [Lpri(a,s) in finite
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samples. Asymptotically, all of the estimators converge in
probability to w(a, s) when either the model for the proba-
bility of treatment or the model for the mean of the outcome
is correctly specified (29, 34).

Matching. Matching is probably the most popular approach
for estimating causal effects in applied work (e.g., in the
literature on ischemic heart disease (36, 37), from which
our data example stems), including in work assessing het-
erogeneity of treatment effects using observational data (11,
16, 38). For comparison with the methods described above,
we implemented a simple matching estimator that relied on
nearest-neighbor 1:1 Mahalanobis distance matching on the
estimated propensity score, with replacement (39).

This matching estimator can be thought of as an imputa-
tion estimator for individual-level potential outcomes (40).
Specifically, for unit i in subgroup s, let j(i) be the index
J €{1,...,n} that satisfies A; = 1 — A;, §; = §; and selects
the nearest neighbor of unit i in subgroup s. Then, for 1:1
matching, the matching estimator imputes individual-level
potential outcomes, Yl.“ under treatment a, as

~ Y
ya— | i
! [ Yiq

The matching (MT) estimator of w(a, s) is

if Aj=a;
if Al‘ ;é a.

n -1 n
@MT(a,s>=[Zl<S,-=s>] D ISi=97¥. (10)
i=1 i=1

In large samples, this estimator converges in probability to
W (a, s), provided that the propensity score model is correctly
specified (40, 41) (large-sample properties for matching
estimators are not as straightforward to derive as for other
estimators in this paper; here, we focus on a fairly simple
estimator).

Inference

For all of the estimators described above except match-
ing, inference using standard M-estimation methods (42)
is straightforward when using parametric working models
(e.g., see Lunceford and Davidian (43) and Williamson et al.
(44)). Inference based on the nonparametric bootstrap (45)
is also easy to obtain and will often be preferred in practice.
Inference about matching estimators, especially those that
are more complicated than the simple estimator we use in
this paper, is more challenging because of the nonsmooth
nature of matching procedures; however, both large-sample
approximations and specialized bootstrap procedures are
available (46, 47).

SIMULATION STUDY

We conducted a simulation study to compare the finite-
sample behavior of OM-based, IPW, doubly robust, and
matching estimators in observational studies with no unmea-
sured confounding and correctly specified parametric mod-
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els. Though our simulation reflects a “best-case scenario” in
which the causal and statistical modeling assumptions are
satisfied, it suffices to uncover important differences among
the estimators we consider. We examined both continuous
and binary outcomes across different scenarios where we
varied the sample size, the subgroup prevalence, the mag-
nitude of the treatment effect, and the correlation between
baseline covariates. Here in the main text of this article, we
describe the simulation methods and report selected results
for continuous outcomes; in Web Appendix 2, we pro-
vide additional implementation details for binary outcomes.
Software code with which to replicate our simulations is
available on GitHub (see Web Appendix 3 for the link to
our GitHub repository).

Targets of inference and measures of performance

For each simulation scenario, we generated data, applied
the estimators, and used 100,000 replications to assess per-
formance. Specifically, we estimated the bias and standard
deviation when using each of the estimators described in the
previous section for subgroup-specific potential outcome
means and for differences between subgroup-specific
average treatment effects that quantify effect modification.
We scaled (multiplied) bias and standard deviation results
by 4/ to facilitate comparisons of the behavior of different
estimators as n increases; if [L(a,s) is an asymptotically
normal estimator of (a,s), the 1 /n-scaled difference
between [ (a, ) and . (a, s)—thatis, \/n({i(a, s) —pn(a, 5))—
converges to a mean-zero normal distribution as n — 00 (25,
48).

Simulation study setup

We use X = (1,X),...,X3)" to denote the vector of
pretreatment covariates other than the effect modifier under
consideration; the covariates in X are of 2 kinds: confound-
ing variables, X1, . . ., X4, which affect the treatment and the
outcome, and “pure” outcome predictors, Xs, . . . , X3, which
affect the outcome but not the treatment (after condition-
ing on X1,...,X4). As above, S denotes a binary baseline
(pretreatment) covariate for the subgroups of interest, A the
treatment received, and Y the observed outcome.

Data generation for S, X, and A

We generated the subgroup indicator S as a Bernoulli
random variable with parameter Pr[S = 1]. We considered
both balanced (equal prevalence) subgroups with Pr[S =
1] = 0.5 and imbalanced (unequal prevalence) subgroups
with Pr[S§ = 1] = 0.25. We generated all other baseline
covariates from independent standard normal distributions,
Xj ~ N(@©,1),j=1,...,8. Wealso considered a case where
the baseline covariates in X may be correlated with each
other, following a standard normal distribution with a cor-
relation varying between —0.2 and 0.2 (the full correlation
structure is provided in Web Appendix 2). We simulated the
treatment choice in each subgroup using a binary indicator
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X1,...,X4 Xs,...,Xs

Figure 1. Structural model used to simulate the performance of dif-
ferent estimators of heterogeneity of treatment effects with indepen-

dent baseline covariates. S is the subgroup indicator, X;,j =1,...,8
are additional baseline covariates, A is the treatment variable, and
Y is the observed outcome. Confounding variables, X, j=1, ..., 4,

affect both A and Y, while pure outcome predictors, X;, j = 5, ...,
8, affect only Y. Note that S is structurally a (potential) confounder;
we graph it separately to emphasize that it is the variable over which
heterogeneity is to be examined.

A with Pr[A = 1|S = s, X] = expit(a;X) and oy = (0, oy,
In(3), In(2),In(3), 0, 0, 0, 0), so the value of the coeffi-
cient of X1 in § = 1, ¢1 = In(1.5) corresponded to a condi-
tional odds ratio that was half the value in § = 0, ¢ = In(3),
but all other coefficients of baseline covariates were the
same.

Figure | is a directed acyclic graph showing the data-
generating mechanism in the simulations where the covari-
ates in X are independently drawn. Web Appendix 2 contains
Web Figure 1, the corresponding graph for the simulation
with correlated covariates.

Data generation for continuous Y

We generated the observed continuous outcome, for sub-
group S = s and treatment group A = a, as ¥ = B, X + ¢,
with B4 = (hgys, 8, 1.5,1.5,1, 1,1, 1, 1), where A, s depends
on subgroup and treatment and the coefficient of X
depends on subgroup, with £; = 3 and gy = 1.5. Coeffi-
cients of ), were chosen to obtain a desired subgroup-
specific average treatment effect; € had an independent
standard normal distribution. We examined 4 different aver-
age treatment effects for § = 1: namely, ATE(S = 1) = 0,
—0.5,—1, or — 2. For each of these treatment effects, we
examined 4 different versions of effect modification:
ATE(S = 0) = ATE(S = 1) (absence of effect modifica-
tion); ATE(S = 0) = —0.5 + ATE(S = 1); ATE(S = 0) =
—1 + ATE(S = 1); and ATE(S = 0) = —ATE(S = 1)
(qualitative effect modification, when the treatment effect
is not null). Web Table 1 in Web Appendix 2 lists all of the
parameter values for the simulation study for continuous
outcomes.

Model specification in the simulation study

We used correctly specified parametric models. We mod-
eled the probability of treatment using a logistic regression

model with main effects for all pretreatment covariates,
including confounding variables and pure outcome predic-
tors, Xi,...,Xg and S, and the product term X; x S. We
also modeled the probability of treatment using a logistic
regression model that included only confounding variables,
X1,...,X4 and S, and the product term X; x S. We always
modeled the expectation of the continuous outcome Y using
a linear regression model with main effects for Xi,..., X3
and S, the product term X; x S, treatment A, and the product
term A x S.

Software

We implemented the numerical methods described in Web
Appendix 2 to determine simulation parameters for binary
outcomes in R, version 3.5.1 (R Foundation for Statistical
Computing, Vienna, Austria). All simulations were carried
out in Stata, version MP/15.1 (StataCorp LLC, College
Station, Texas).

SIMULATION RESULTS

Here in the main text, we report simulation results from
scenarios with continuous outcomes, Pr[S = 1] = 0.5,
and independent baseline covariates, when estimators rely
on models that include all confounders and pure outcome
predictors. We briefly summarize results for other continu-
ous outcome simulation scenarios and for binary outcomes;
we report detailed results from these simulations in Web
Appendix 2. Web Table 2 in Web Appendix 2 lists the full
parameter values for the simulation study for binary out-
comes. Furthermore, in this paper, we report results for anal-
yses in which the target parameter is the difference between
the stratum-specific average treatment effects. We use this
“difference-in-differences” parameter as a convenient sum-
mary of the simulation results (results for subgroup-specific
potential outcome means are available on GitHub; see Web
Appendix 3 for a link).

Bias

Table 1 shows that the OM-based estimator and the 3
doubly robust estimators had little /n-scaled bias, even
in small sample sizes. In contrast, IPW estimators and the
matching estimator had substantial bias with small sample
sizes. This bias became smaller for IPW estimators as the
sample size increased, and for the matching estimator (in
exploratory simulations with a sample size of 100,000), but
the decrease was most pronounced for the IPW estimator
without normalized weights. In general, the IPW estimator
with normalized weights had larger bias than the IPW esti-
mator with nonnormalized weights for all sample sizes.

Standard deviation

Table 2 shows that OM-based estimators had the lowest
ﬁ-scaled standard deviation; doubly robust estimators had
a standard deviation slightly larger than that of OM-based
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Table 1. Bias Multiplied by /n for Estimators of the Difference Between Average Treatment Effects in a Simulation Study?
Sample ATEP Estimatord
Size (n) dATE®
ATE(S=1) ATE(S=0) oM IPW1 IPW2 DR1 DR2 DR3 MT
500¢ 0.0 0.0 0.0 —0.005 —0.296 -1.618 0.014 0.006 —0.002 —0.968
500 0.0 -0.5 0.5 0.008 0.031 —1.487 0.021 0.015 0.026 -0.917
500 0.0 -1.0 1.0 -0.013 —0.191 —1.463 0.001 —0.008 -0.012 -0.934
500¢ 0.0 0.0 0.0 0.009 —0.101 —1.501 0.014 0.011 0.007 —1.043
500 -0.5 -0.5 0.0 0.012 0.280 —1.259 0.026 0.008 0.008 -0.829
500 -0.5 -1.0 0.5 —0.022 —0.142 —1.431 —0.024 —0.018 —0.016 —0.880
500 -0.5 -15 1.0 0.015 0.213 —1.275 0.008 —0.002 —0.001 —0.856
500 -0.5 0.5 -1.0 —0.015 0.081 —1.507 0.015 —0.006 —0.009 —0.957
500 -1.0 -1.0 0.0 —0.005 —0.328 -1.618 0.014 0.006 —0.002 —0.968
500 -1.0 -15 0.5 0.008 0.013 —1.487 0.021 0.015 0.026 -0.917
500 -1.0 -2.0 1.0 —0.013 -0.207 —1.463 0.001 —0.008 —0.012 —0.934
500 -1.0 1.0 -2.0 0.009 —0.085 —1.501 0.014 0.011 0.007 -1.043
500 -2.0 -2.0 0.0 0.012 0.296 —1.259 0.026 0.008 0.008 —0.829
500 -2.0 -25 0.5 —0.022 —0.138 —1.431 —0.024 —0.018 —0.016 —0.880
500 -2.0 -3.0 1.0 0.015 0.241 —1.275 0.008 —0.002 —0.001 —0.856
500 -2.0 2.0 —4.0 —0.015 0.112 —1.507 0.015 —0.006 —0.009 —0.957
1,000°¢ 0.0 0.0 0.0 —0.000 —0.066 -1.318 —0.004 —0.009 —0.015 —0.906
1,000 0.0 -0.5 0.5 0.019 —0.038 —1.354 0.028 0.022 0.020 —1.069
1,000 0.0 -1.0 1.0 —0.007 —0.033 —1.308 —0.010 —0.004 —0.005 —1.013
1,000° 0.0 0.0 0.0 0.007 —0.130 —1.303 0.018 0.011 0.007 -0.927
1,000 -0.5 -0.5 0.0 0.030 0.077 —1.244 0.023 0.034 0.040 —0.961
1,000 -0.5 -1.0 0.5 —0.005 —0.188 —1.380 0.019 0.010 0.004 —0.967
1,000 -0.5 -15 1.0 —0.016 —0.166 —1.446 0.000 —0.004 —0.008 —1.007
1,000 -0.5 0.5 -1.0 —0.008 —0.076 —1.333 —0.002 —0.004 —0.006 —0.978
1,000 -1.0 -1.0 0.0 —0.000 —0.085 -1.318 —0.004 —0.009 —0.015 —0.906
1,000 -1.0 -15 0.5 0.019 —0.041 —1.354 0.028 0.022 0.020 —1.069
1,000 -1.0 -2.0 1.0 —0.007 —0.038 —1.308 —0.010 —0.004 —0.005 —1.013
1,000 -1.0 1.0 -2.0 0.007 —0.125 —1.303 0.018 0.011 0.007 -0.927
1,000 -2.0 -2.0 0.0 0.030 0.088 —1.244 0.023 0.034 0.040 —0.961
1,000 -2.0 -25 0.5 —0.005 —0.221 —1.380 0.019 0.010 0.004 —0.967
1,000 -2.0 -3.0 1.0 -0.016 —0.188 —1.446 0.000 —0.004 —0.008 -1.007
1,000 -2.0 2.0 —-4.0 —0.008 —0.034 —1.333 —0.002 —0.004 —0.006 -0.978
5,000¢ 0.0 0.0 0.0 0.021 0.121 -0.738 0.046 0.042 0.036 —1.030
5,000 0.0 -0.5 0.5 —0.011 0.100 -0.723 -0.027 -0.027 —0.023 —1.086
5,000 0.0 -1.0 1.0 —0.002 0.215 —0.671 0.018 0.017 0.015 —0.995
5,000¢ 0.0 0.0 0.0 —0.003 0.316 —0.531 0.019 0.021 0.017 —0.960
5,000 -0.5 -0.5 0.0 0.011 —0.159 -0.927 0.013 0.016 0.022 —1.022
5,000 -0.5 -1.0 0.5 0.025 0.105 —0.709 0.001 0.000 0.001 —1.111
5,000 -0.5 -15 1.0 —0.010 —0.065 —0.855 —0.005 —0.011 —0.016 —1.040
5,000 -0.5 0.5 -1.0 0.005 0.004 —0.845 0.008 0.006 0.008 —1.053
5,000 -1.0 -1.0 0.0 0.021 0.112 —0.738 0.046 0.042 0.036 —1.030
5,000 -1.0 -15 0.5 —0.011 0.108 —0.723 —0.027 —0.027 —0.023 —1.086
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Table 1. Continued

Sample ATEP Estimatord
Size (n) dATE®
ATE(S=1) ATE(S=0) oM IPW1 IPW2 DR1 DR2 DR3 MT

5,000 -1.0 —-2.0 1.0 —0.002 0.219 —0.671 0.018 0.017 0.015 —0.994
5,000 -1.0 1.0 —-2.0 —0.003 0.333 —0.531 0.019 0.021 0.017 —0.960
5,000 -2.0 -2.0 0.0 0.011 —-0.172 —0.927 0.013 0.016 0.022 —1.022
5,000 -2.0 -2.5 0.5 0.025 0.139 —0.709 0.001 0.000 0.001 —1.111
5,000 -2.0 -3.0 1.0 —0.010 —0.073 —0.855 —0.005 —-0.011 —0.016 —1.040
5,000 -2.0 2.0 —-4.0 0.005 0.009 —0.845 0.008 0.006 0.008 —1.053

Abbreviations: ATE, average treatment effect; dATE, difference between the stratum-specific average treatment effects; DR, doubly robust;
IPW, inverse probability weighting; MT, matching; OM, outcome modeling.

2 Results for continuous outcome simulations with Pr[S = 1] = 0.5 and independent baseline covariates.

b ATE(S = s), mean difference in stratum s.
¢ ATE(S = 1) — ATE(S = 0).

d Notation: OM, OM estimator in equation 4; IPW1, IPW estimator in equation 5; IPW2, IPW estimator in equation 6; DR1, DR estimator in
equation 7; DR2, DR estimator in equation 8; DR3, DR estimator in equation 9; MT, MT estimator in equation 10.

€ For each set of results by sample size (n), the fourth row has the same simulation parameters as the first row because setting ATE(S = 1) =0
leads to ATE(S = 0) = 0, both when ATE(S = 0) = ATE(S = 1) and when ATE(S = 0) = —ATE(S = 1). Results may differ between the first

and fourth rows due to simulation error.

estimators but much lower than those of matching and [PW
estimators. The IPW estimator with normalized weights had
a smaller standard deviation than the IPW estimator with
nonnormalized weights.

Additional simulation results for continuous outcomes

Web Tables 3-8 in Web Appendix 4 show the results
for simulation scenarios with correlated baseline covariates
and with Pr[S = 1] = 0.25. We found similar trends and
magnitudes in terms of bias and standard deviation, as de-
scribed above. When subgroups were imbalanced in terms
of their prevalence (Pr[S = 1] = 0.25) we found that
estimators generally had more bias and higher variance
when compared with the simulation scenarios with balanced
subgroup prevalences (Pr[S = 1] = 0.5).

Simulation results for binary outcomes

Web Tables 9-20 in Web Appendix 5 show results for
binary outcome simulations using 10,000 runs for each
scenario (the smaller number of runs compared with con-
tinuous outcomes was deemed appropriate because the sim-
ulation error was smaller for binary outcomes). Trends in
the estimators’ bias and variance were similar to the results
from simulations with continuous outcomes. Occasionally,
convergence issues (caused by extreme weights) prevented
estimation using the estimator in equation 9 (DR3); this
occurred in fewer than 1% of all simulation runs and in only
1 simulation scenario (scenario 16), which has relatively
large subgroup-specific potential outcome means. Notably,
for binary outcomes, some of the estimators can return
potential outcome mean estimates that are lower than O

or greater than 1 (this can happen for estimators that can
produce estimates that do not fall within the support of the
distribution of the outcome Y—that is, the IPW estimator
with nonnormalized weights and the 2 doubly robust esti-
mators that are not based on weighted regression.

ILLUSTRATION OF THE METHODS IN CASS
CASS design and data

To illustrate the methods, we used data (August 1975—
December 1996) from CASS, a comprehensive cohort study
(49) that compared coronary artery bypass grafting surgery
plus medical therapy (henceforth, “surgery”) with medical
therapy alone for patients with chronic coronary artery dis-
ease. Details about the design of CASS are available else-
where (50, 51). In brief, patients undergoing angiography in
11 institutions were screened for eligibility. From a total of
2,099 eligible patients, 780 consented to randomization and
1,319 declined and were enrolled in an observational study
of the same treatments. We excluded 6 patients for consis-
tency with prior CASS analyses (52, 53) and in accordance
with CASS data release notes.

We separately analyzed individuals in the observational
and randomized components of CASS to estimate the 10-
year mortality risk (cumulative incidence proportion), risk
difference, and risk ratio among subgroups defined by previ-
ous myocardial infarction (about 60% of patients) or ejection
fraction >50% (about 80%). No patients were lost to follow-
up in the first 10 years of the study; therefore, cumulative
incidence proportions are reasonable measures of incidence.
For individuals in the trial, because randomization ensures
exchangeability, we used an unadjusted analysis. For indivi-
duals in the observational study, we used outcome regression
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Table 2. Standard Deviation Multiplied by /» for Estimators of the Difference Between Average Treatment Effects in a Simulation Study?

Sample ATEP Estimatord
Size (n) dATE?
ATE(S=1) ATE(S=0) OoM IPW1 IPW2 DR1 DR2 DR3 MT
500° 0.0 0.0 0.0 4.180 53.224 33.413 8.310 6.689 5.961 19.890
500 0.0 -0.5 0.5 4.198 63.124 33.276 9.386 6.706 5.973 19.933
500 0.0 -1.0 1.0 4.207 56.154 33.273 8.395 6.715 5.979 20.030
500° 0.0 0.0 0.0 4.191 51.647 33.123 8.257 6.694 5.964 19.987
500 -0.5 -0.5 0.0 4.194 53.923 33.252 8.250 6.716 5.972 19.939
500 -0.5 -1.0 0.5 4.186 55.147 33.233 8.122 6.695 5.971 20.036
500 -0.5 -15 1.0 4.193 57115 33.402 8.293 6.718 5.991 20.002
500 -0.5 0.5 -1.0 4.197 53.988 33.124 8.895 6.710 5.996 19.990
500 -10 -1.0 0.0 4.180 56.423 33.413 8.310 6.689 5.961 19.890
500 —-1.0 -15 0.5 4.198 65.909 33.276 9.386 6.706 5.973 19.933
500 -1.0 -2.0 1.0 4.207 59.634 33.273 8.395 6.715 5.979 20.030
500 -1.0 1.0 -2.0 4.191 50.782 33.123 8.257 6.694 5.964 19.987
500 -2.0 -2.0 0.0 4.194 58.845 33.252 8.250 6.716 5.972 19.939
500 -2.0 -25 0.5 4.186 59.968 33.233 8.122 6.695 5.971 20.036
500 -2.0 -3.0 1.0 4.193 62.706 33.402 8.293 6.718 5.991 20.002
500 -2.0 2.0 —-4.0 4197 52.605 33.124 8.895 6.710 5.996 19.990
1,000° 0.0 0.0 0.0 4.181 47983 36.048 7.961 6.931 6.262 20.517
1,000 0.0 -0.5 0.5 4.154 51.191 36.320 8.102 6.948 6.254 20.467
1,000 0.0 -1.0 1.0 4.160 58.206 35.916 8.392 6.918 6.255 20.532
1,000° 0.0 0.0 0.0 4.164 48.328 36.109 7.882 6.953 6.273 20.542
1,000 -0.5 -0.5 0.0 4.164 56.436 36.093 7.964 6.946 6.259 20.584
1,000 —-0.5 -1.0 0.5 4173 50.983 36.181 7.837 6.943 6.273 20.628
1,000 -0.5 —-15 1.0 4.148 53.126 36.182 7914 6.915 6.238 20.617
1,000 —-0.5 0.5 -1.0 4.163 46.729 35.842 7.901 6.925 6.255 20.527
1,000 -1.0 -1.0 0.0 4.181 50.895 36.048 7.961 6.931 6.262 20.517
1,000 -1.0 -15 0.5 4.154 54.325 36.320 8.102 6.948 6.254 20.467
1,000 -10 —-2.0 1.0 4.160 60.764 35.916 8.392 6.918 6.255 20.532
1,000 -10 1.0 -2.0 4.164 47927 36.109 7.882 6.953 6.273 20.542
1,000 -2.0 -2.0 0.0 4.164 61.549 36.093 7.964 6.946 6.259 20.584
1,000 -2.0 -2.5 0.5 4,173 55.683 36.181 7.837 6.943 6.273 20.628
1,000 -2.0 -3.0 1.0 4.148 58.284 36.182 7914 6.915 6.238 20.617
1,000 -2.0 2.0 —-4.0 4.163 46.110 35.842 7.901 6.925 6.255 20.527
5,000¢ 0.0 0.0 0.0 4.140 47303 41.677 7.654 7.304 6.833 21.782
5,000 0.0 -0.5 0.5 4.150 47486 41.390 7.698 7.320 6.844 21.829
5,000 0.0 -1.0 1.0 4.161 53.405 41.765 7.728 7.321 6.856 21.866
5,000¢ 0.0 0.0 0.0 4.152 47555 41.394 7.793 7.291 6.827 21.783
5,000 -0.5 -0.5 0.0 4.159 46.686 41.189 7.548 7.280 6.834 21.843
5,000 -0.5 -1.0 0.5 4.136 50.979 41.335 7.619 7.291 6.832 21.812
5,000 -0.5 -15 1.0 4.153 49.273 41.428 7.666 7.337 6.859 21.817
5,000 -0.5 0.5 -1.0 4.148 47167 41.634 7.627 7.308 6.852 21.842
5,000 -10 -1.0 0.0 4.140 50.059 41.677 7.654 7.304 6.833 21.782
5,000 -10 -15 0.5 4.150 50.377 41.390 7.698 7.320 6.844 21.830
5,000 -1.0 -2.0 1.0 4.161 56.144 41.765 7.728 7.321 6.856 21.866
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Table 2. Continued

ATEP Estimatord
Sample dATES
Size (n)
ATE(S=1) ATE(S=0) OoM IPW1 IPW2 DR1 DR2 DR3 MT

5,000 -1.0 1.0 —-2.0 4.152 46.955 41.394 7.793 7.291 6.827 21.783
5,000 -2.0 -2.0 0.0 4.159 51.201 41.189 7548 7.280 6.834 21.843
5,000 -2.0 -2.5 0.5 4.136 55.658 41.335 7619 7.291 6.832 21.812
5,000 -2.0 -3.0 1.0 4.153 53.927 41.428 7.666 7.337 6.859 21.817
5,000 -2.0 2.0 —4.0 4.148 46.360 41.634 7.627 7.308 6.852 21.842

Abbreviations: ATE, average treatment effect; dATE, difference between the stratum-specific average treatment effects; DR, doubly robust;

IPW, inverse probability weighting; MT, matching; OM, outcome modeling.

2 Results for continuous outcome simulations with Pr[S = 1] = 0.5 and independent baseline covariates.

b ATE(S = s), mean difference in stratum s.
© ATE(S = 1) — ATE(S = 0).

d Notation: OM, OM estimator in equation 4; IPW1, IPW estimator in equation 5; IPW2, IPW estimator in equation 6; DR1, DR estimator in
equation 7; DR2, DR estimator in equation 8; DR3, DR estimator in equation 9; MT, MT estimator in equation 10.

€ For each set of results by sample size (n), the fourth row has the same simulation parameters as the first row because setting ATE(S = 1) =0
leads to ATE(S = 0) = 0, both when ATE(S = 0) = ATE(S = 1) and when ATE(S = 0) = —ATE(S = 1). Results may differ between the first

and fourth rows due to simulation error.

followed by standardization, IPW, doubly robust weighted
regression, and matching methods to adjust for confounding
from the following baseline covariates: age, severity of
angina, history of previous myocardial infarction, percent
obstruction of the proximal left anterior descending artery,
left ventricular wall motion score, number of diseased ves-
sels, and ejection fraction. We chose these variables on the
basis of a previous study that analyzed the same data (53),
and we did not perform any model specification search for
the outcome model or the propensity score (37). In the
observational study, we also used an unadjusted analysis
for comparison with the adjusted analyses to informally
evaluate the impact of confounding.

Of the 2,093 patients in the CASS data set, 1,686 had com-
plete data on all baseline covariates (731 randomized, 368
to surgery and 363 to medical therapy; 955 nonrandomized,
430 receiving surgery and 525 receiving medical therapy).
For simplicity, we restricted our analyses to patients with
complete data. In Web Appendix 6, Web Table 21, we give
the baseline characteristics of patients contributing data to
our analyses.

Model specification

In analyses of the observational component of CASS,
we fitted logistic regression models for the probability of
treatment and the probability of the outcome. We fitted
the treatment model with the main effects of the baseline
covariates, using restricted cubic splines for continuous
covariates, and all possible 2-way interactions between the
baseline covariates and the subgroup variable of interest
(either ejection fraction or history of previous myocardial
infarction). We fitted the outcome model with the main
effects of these baseline covariates and treatment, the
interaction between treatment and the subgroup variable

of interest (either ejection fraction or history of previous
myocardial infarction), and all possible 2-way interactions
between the baseline covariates and the subgroup variable of
interest.

Results

Estimates of the 10-year mortality risk and treatment
effects at 10 years are shown in Tables 3 and 4 on the risk
difference scale. We report results on the odds ratio scale in
Web Appendix 6, in Web Tables 22 and 23, and the potential
outcome means in Web Tables 24 and 25. We used bootstrap
resampling (10,000 samples) to obtain percentile 95% con-
fidence intervals for each estimator; normal-distribution—
based bootstrap intervals were nearly identical and are not
shown. Results in the observational data were similar across
different estimators. Because different estimators rely on
different working models—the IPW estimator relies on
modeling the covariate-treatment association and the OM-
based estimator relies on modeling the treatment/covariate-
outcome association—agreement between them suggests
that the results are not driven by modeling choices (54).
The magnitudes of effect heterogeneity across subgroups
defined by previous myocardial infarction were similar in
the observational and randomized components of CASS
(on both the odds ratio scale and the risk difference scale).
The magnitude of effect heterogeneity across subgroups
defined by ejection faction in the observational component
was substantially smaller compared with the randomized
component of CASS (on both scales, as indicated by the
larger relative odds ratio and difference of risk differences
in the trial vs. the observational analyses). The difference
between the trial and observational analyses comparing
patients within ejection fraction subgroups may be explained
by lack of conditional exchangeability between the treated
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Table 3. Subgroup Analysis of Previous Myocardial Infarction (S = 1 if History of Myocardial Infarction; S = 0
Otherwise) in the Coronary Artery Surgery Study, August 1975-December 1996

Effectin S =1 EffectinS =0 Comparison of Effects
Estimator?

RDP 95% CI° RDP 95% CI°® DRD 95% CI°®
Trial (unadjusted) —4.43 -12.13, 3.37 1.36 —6.22, 8.89 -5.78 —16.50, 4.92
Obs (unadjusted) -3.52 -10.39, 3.73 4.66 -2.11, 11.58 —8.18 —17.97,1.52
oM —4.25 -11.19, 3.07 4.84 —2.07, 11.99 -9.10 -19.09, 0.86
IPWA1 —4.89 -11.95, 2.55 4.59 —2.09, 11.50 -9.49 -19.59, 0.39
IPW2 —4.82 -11.79, 2.61 4.40 —2.31, 11.29 -9.21 —19.07, 0.64
DR1 —4.89 -11.82, 2.58 4.48 —2.40, 11.56 -9.36 —19.30, 0.64
DR2 —4.88 —11.80, 2.58 4.48 —2.38, 11.56 -9.37 —19.30, 0.62
DR3 —4.84 -11.70, 2.56 4.45 —2.32, 11.56 -9.29 -19.17,0.72
MT —6.74 —12.93, 4.70 2.96 —2.97,13.21 -9.70 —21.36, 2.61

Abbreviations: ClI, confidence interval; DR, doubly robust; DRD, difference between the RDs; IPW, inverse
probability weighting; MT, matching; Obs, observational; OM, outcome modeling; RD, risk difference.

@ Notation: OM, OM estimator in equation 4; IPW1, IPW estimator in equation 5; IPW2, IPW estimator in equation
6; DR1, DR estimator in equation 7; DR2, DR estimator in equation 8; DR3, DR estimator in equation 9; MT, MT
estimator in equation 10.

b Risk difference x 100 (% scale).

¢ 95 percent percentile Cls from 10,000 bootstrap resamples.

and untreated groups in the observational study (e.g., due DISCUSSION
to unmeasured confounding) or lack of exchangeability

between the randomized and nonrandomized groups (e.g., Assessing heterogeneity of treatment effects is a key
due to differences in the distribution of effect modifiers other challenge in comparative effectiveness research (1, 2), but
than ejection fraction) (55, 56). only a handful of studies have evaluated the performance of

Table 4. Subgroup Analysis for the Ejection Fraction (S = 1 if Ejection Fraction > 50%; S = 0 Otherwise) in the
Coronary Artery Surgery Study, August 1975-December 1996

Effectin S =1 EffectinS =0 Comparison of Effects
Estimator?

RD® 95% CI° RD® 95% CI° DRD 95% CI°¢
Trial (unadjusted) 1.89 —4.06, 7.75 —18.32 —32.02, —4.42 20.22 4.93, 35.15
Obs (unadjusted) 1.63 —3.31,6.72 —9.15  —22.84,5.00 10.78 —4.12, 25.52
OoM 1.28 —3.78, 6.46 —12.06 —26.46, 2.19 13.35 —1.81, 28.76
IPW1 1.36 —3.80, 6.55 —11.11 —25.93, 4.87 12.46 —4.33, 28.26
IPW2 1.34 —3.84,6.52 —10.81 —25.76, 4.74 12.14 —4.18, 28.19
DR1 1.28 —3.87,6.47 —-11.09 —25.70, 4.12 12.37 —3.75, 28.02
DR2 1.28 —3.87,6.47 —-11.08 —-25.71, 3.99 12.36 —3.59, 28.02
DR3 1.31 —3.85, 6.51 —-11.16 —25.75, 3.40 12.47 —2.85, 28.08
MT 2.32 —4.40, 8.53 -6.70 —29.01, 799 9.02 —6.90, 32.08

Abbreviations: Cl, confidence interval; DR, doubly robust; DRD, difference between the RDs; IPW, inverse
probability weighting; MT, matching; Obs, observational; OM, outcome modeling; RD, risk difference.

@ Notation: OM, OM estimator in equation 4; IPW1, IPW estimator in equation 5; IPW2, IPW estimator in equation
6; DR1, DR estimator in equation 7; DR2, DR estimator in equation 8; DR3, DR estimator in equation 9; MT, MT
estimator in equation 10.

b Risk difference x 100 (% scale).

¢ 95 percent percentile Cls from 10,000 bootstrap resamples.
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different methods for estimating subgroup-specific average
treatment effects and examining whether these effects vary
(9-16). Some investigators reported results from case studies
using empirical data (9, 13, 14) and thus provided limited
information about the performance of estimators; others
only compared a limited number of competing methods in
simulation studies (10-12, 15, 16).

‘We compared the performance of OM-based, IPW, doubly
robust, and matching estimators of subgroup-specific poten-
tial outcome means, conditional average treatment effects,
and differences of conditional average treatment effects for
continuous and binary outcomes. We found that the bias and
standard deviation of the sampling distribution of estimators
varies substantially even under the best-case scenario of
no confounding by unmeasured covariates and no model
misspecification. When the working models for the expec-
tation of the outcome and the probability of treatment were
correctly specified, all estimators were nearly unbiased,
even with fairly small sample sizes; there were, however,
important difference in 1/n-scaled bias, which was much
higher for IPW and matching estimators than for OM-based
and doubly robust estimators. Furthermore, the OM-based
estimator had the lowest /n-scaled standard deviation; the
doubly robust estimators had a standard deviation larger than
the OM-based estimator but much lower than that of the IPW
or matching estimator.

In practice, we suggest using multiple estimators in order
to assess whether model specification choices influence
results (54). Combining outcome mean and probability-of-
treatment models in doubly robust estimators is particu-
larly attractive because it offers robustness against model
specification and, as we discuss below, also has advantages
when data-adaptive methods are needed. Normalizing the
weights by their sum, both for IPW and for doubly robust
estimators, usually leads to better performance overall (i.e.,
often the decreases in variance are more substantial than the
increases in bias), especially when the sample size is large
and weights are highly variable (28, 29). The performance
of a simple matching estimator in our simulations was less
than satisfactory; further research is needed to evaluate more
refined estimation strategies that incorporate matching (e.g.,
see Colson et al. (57)) and to assess performance for different
causal quantities (e.g., the conditional average treatment
effect on the treated).

Our simulations used parametric regression models, fit-
ted with standard maximum (quasi-) likelihood methods,
because this is by far the most commonly used approach
in applications and because we wanted to compare esti-
mators under a best-case scenario. We also note that these
fairly simple methods can form the basis for more sophis-
ticated approaches for assessing heterogeneity of treatment
effects—for example, for subgroup identification using tree-
based methods with observational data (32). Nevertheless,
further research is needed to examine the performance of the
methods described in this paper when parametric models are
misspecified (58).

To mitigate the risk of model misspecification, data-adap-
tive methods (e.g., machine learning methods) may be used
to estimate the conditional expectation of the outcome or the
probability of treatment (59-62). When using such methods,

which typically converge to the true model at a rate slower
than parametric, doubly robust estimators such as DR1 and
DR2 can still converge at a 1/n rate (31, 32).

ACKNOWLEDGMENTS

Author affiliations: Center for Evidence Synthesis in
Health, School of Public Health, Brown University,
Providence, Rhode Island, United States (Sarah E.
Robertson, Andrew Leith, Christopher H. Schmid, Issa J.
Dahabreh); Department of Health Services, Policy and
Practice, School of Public Health, Brown University,
Providence, Rhode Island, United States (Sarah E.
Robertson, Issa J. Dahabreh); Department of Biostatistics,
School of Public Health, Brown University, Providence,
Rhode Island, United States (Christopher H. Schmid);
Center for Statistical Sciences, School of Public Health,
Brown University, Providence, Rhode Island, United States
(Christopher H. Schmid); Department of Epidemiology,
School of Public Health, Brown University, Providence,
Rhode Island, United States (Issa J. Dahabreh); and
Department of Epidemiology, Harvard T.H. Chan School of
Public Health, Boston, Massachusetts, United States (Issa
J. Dahabreh).

This work was funded by Patient-Centered Outcomes
Research Institute (PCORI) awards ME-1306-03758 and
ME-1502-27794 and Agency for Healthcare Research and
Quality National Research Service Award
T32AGHS00001.

The content of this article is solely the responsibility of
the authors and does not necessarily represent the official
views of PCORI, its Board of Governors, the PCORI
Methodology Committee, or the Agency for Healthcare
Research and Quality. The data analyses carried out in this
paper used Coronary Artery Surgery Study (CASS)
research materials obtained from the National Heart, Lung,
and Blood Institute’s Biologic Specimen and Data
Repository Information Coordinating Center. This paper
does not necessarily reflect the opinions or views of the
CASS investigators or the National Heart, Lung, and Blood
Institute.

Conflict of interest: none declared.

REFERENCES

1. Dahabreh 1J, Hayward R, Kent DM. Using group data to treat
individuals: understanding heterogeneous treatment effects in
the age of precision medicine and patient-centered evidence.
Int J Epidemiol. 2016;45(6):2184-2193.

2. Dahabreh 1J, Trikalinos TA, Kent DM, et al. Heterogeneity of
treatment effects. In: Gatsonis C, Morton SC, eds. Methods in
Comparative Effectiveness Research. Boca Raton, FL:
Chapman & Hall/CRC Press; 2017:227-271.

3. Robins JM. A new approach to causal inference in mortality
studies with a sustained exposure period—application to
control of the healthy worker survivor effect. Math Model.
1986;7(9):1393-1512.

Am J Epidemiol. 2021;190(6):1088-1100

€20z 8unr £z uo Jasn [e)idsoH Ipogiylewey audips|y Jo Anoed - Ateiqr] Aq GL8E€65/8801/9/06 L /a10nIe/ele/woo dno olwepeoe//:sdny woly pspeojumoq



Heterogeneity in Observational Studies 1099

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

. Rosenbaum PR, Rubin DB. The central role of the propensity

score in observational studies for causal effects. Biometrika.
1983;70(1):41-55.

. Robins JM, Mark SD, Newey WK. Estimating exposure

effects by modelling the expectation of exposure conditional
on confounders. Biometrics. 1992;48(12):479-495.

. Scharfstein D, Rotnizky A, Robins JM. Adjusting for

nonignorable drop-out using semiparametric nonresponse
models, with comments and rejoinder. J Am Stat Assoc. 1999;
94(448):1096-1146.

. Bang H, Robins JM. Doubly robust estimation in missing

data and causal inference models. Biometrics. 2005;61(4):
962-973.

. Stuart EA. Matching methods for causal inference: a review

and a look forward. Star Sci. 2010;25(1):1-21.

. Liem YS, Wong JB, Hunink MM, et al. Propensity scores in

the presence of effect modification: a case study using the
comparison of mortality on hemodialysis versus peritoneal
dialysis. Emerg Themes Epidemiol. 2010;7(1):Article 1.
Rassen JA, Glynn RJ, Rothman KJ, et al. Applying
propensity scores estimated in a full cohort to adjust for
confounding in subgroup analyses. Pharmacoepidemiol Drug
Saf. 2012;21(7):697-709.

Radice R, Ramsahai R, Grieve R, et al. Evaluating treatment
effectiveness in patient subgroups: a comparison of
propensity score methods with an automated matching
approach. Int J Biostat. 2012;8(1):Article 25.

Kreif N, Grieve R, Radice R, et al. Methods for estimating
subgroup effects in cost-effectiveness analyses that use
observational data. Med Decis Making. 2012;32(6):750-763.
Xie Y, Brand JE, Jann B. Estimating heterogeneous treatment
effects with observational data. Sociol Methodol. 2012;42(1):
314-347.

Green KM, Stuart EA. Examining moderation analyses in
propensity score methods: application to depression and
substance use. J Consult Clin Psychol. 2014;82(5):773-783.
Eeren HV, Spreeuwenberg MD, Bartak A, et al. Estimating
subgroup effects using the propensity score method: a
practical application in outcomes research. Med Care. 2015;
53(4):366-373.

Wang SV, Jin Y, Fireman B, et al. Relative performance of
propensity score matching strategies for subgroup analyses.
Am J Epidemiol. 2018;187(8):1799-1807.

. Varadhan R, Segal JB, Boyd CM, et al. A framework for the

analysis of heterogeneity of treatment effect in
patient-centered outcomes research. J Clin Epidemiol. 2013;
66(8):818-825.

Rosenbaum PR. The consequences of adjustment for a
concomitant variable that has been affected by the treatment.
J R Stat Soc Ser A. 1984;656-666.

Robins JM, Greenland S. Adjusting for differential rates of
prophylaxis therapy for PCP in high-versus low-dose AZT
treatment arms in an AIDS randomized trial. J Am Stat Assoc.
1994;89(427):737-749.

Splawa-Neyman J, Dabrowska DM, Speed TP. On the
application of probability theory to agricultural experiments.
Essay on principles. Section 9. Stat Sci. 1990;5(4):465-472.
Rubin DB. Estimating causal effects of treatments in
randomized and nonrandomized studies. J Educ Psychol.
1974;66(5):688-701.

Holland PW. Statistics and causal inference. J Am Stat Assoc.
1986;81(396):945-960.

Knol MJ, VanderWeele TJ. Recommendations for presenting
analyses of effect modification and interaction. Int J
Epidemiol. 2012;41(2):514-520.

Am J Epidemiol. 2021;190(6):1088-1100

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

VanderWeele TJ. Concerning the consistency assumption in
causal inference. Epidemiology. 2009;20(6):880-883.
Hernan MA, Robins JM. Causal Inference. Boca Raton, FL:
Chapman & Hall/CRC Press; 2021.

Robins JM, Rotnitzky A, Scharfstein DO. Sensitivity analysis
for selection bias and unmeasured confounding in missing
data and causal inference models. In: Halloran ME, Berry D,
eds. Statistical Models in Epidemiology, the Environment,
and Clinical Trials. New York, NY: Springer Publishing
Company; 2000:1-94.

Robins JM, Herndn MA, Brumback B. Marginal structural
models and causal inference in epidemiology. Epidemiology.
2000;11(5):550-560.

Hajek J. J. Hijek: [comment]. In: Godambe VP, Sprott DA,
eds. Foundations of Statistical Inference. New York, NY:
Holt, Rinehart, & Winston; 1971:236. (Comment on “An
essay on the logical foundations of survey sampling, part
one” by D. Basu (pp. 203-233)).

Robins J, Sued M, Lei-Gomez Q, et al. Comment:
performance of double-robust estimators when “inverse
probability” weights are highly variable. Stat Sci. 2007;22(4):
544-559.

Hahn J. On the role of the propensity score in efficient
semiparametric estimation of average treatment effects.
Econometrica. 1998;66(2):315-331.

Chernozhukov V, Chetverikov D, Demirer M, et al. Double/
debiased machine learning for treatment and structural
parameters. Econom J. 2018;21(1):C1-C68.

Yang J, Dahabreh 1J, Steingrimsson JA. Causal interaction
trees: tree-based subgroup identification for observational
data [preprint]. arXiv. 2020. (doi: arXiv:2003.03042).

Tsiatis A. Semiparametric Theory and Missing Data. New
York, NY: Springer Publishing Company; 2007.

Wooldridge JM. Inverse probability weighted estimation for
general missing data problems. J Econom. 2007;141(2):
1281-1301.

Gourieroux C, Monfort A, Trognon A. Pseudo maximum
likelihood methods: theory. Econometrica. 1984;681-700.
Dahabreh 1J, Sheldrick RC, Paulus JK, et al. Do observational
studies using propensity score methods agree with
randomized trials? A systematic comparison of studies on
acute coronary syndromes. Eur Heart J. 2012;33(15):
1893-1901.

Ellis AG, Trikalinos TA, Wessler BS, et al. Propensity
score—based methods in comparative effectiveness research
on coronary artery disease. Am J Epidemiol. 2018;187(5):
1064-1078.

Kurth T, Walker AM, Glynn RJ, et al. Results of multivariable
logistic regression, propensity matching, propensity
adjustment, and propensity-based weighting under conditions
of nonuniform effect. Am J Epidemiol. 2006;163(3):262-270.
Leuven E, Sianesi B. Help for psmatch?2. http://repec.org/
bocode/p/psmatch2.html. Published 2003. Accessed August
17, 2020.

Abadie A, Imbens GW. Large sample properties of matching
estimators for average treatment effects. Econometrica. 2006;
74(1):235-267.

Abadie A, Imbens GW. Matching on the estimated
propensity score. Econometrica. 2016;84(2):781-807.
Stefanski LA, Boos DD. The calculus of M-estimation. Am
Stat. 2002;56(1):29-38.

Lunceford JK, Davidian M. Stratification and weighting

via the propensity score in estimation of causal treatment
effects: a comparative study. Stat Med. 2004;23(19):
2937-2960.

€20z 8unr £z uo Jasn [e)idsoH Ipogiylewey audips|y Jo Anoed - Ateiqr] Aq GL8E€65/8801/9/06 L /a10nIe/ele/woo dno olwepeoe//:sdny woly pspeojumoq


https://doi.org/arXiv:2003.03042
http://repec.org/bocode/p/psmatch2.html
http://repec.org/bocode/p/psmatch2.html

1100 Robertson et al.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Williamson EJ, Forbes A, White IR. Variance reduction in
randomised trials by inverse probability weighting using the
propensity score. Stat Med. 2014;33(5):721-737.

Efron B, Tibshirani RJ. An Introduction to the Bootstrap.
(Monographs on Statistics and Applied Probability, no. 57).
Boca Raton, FL: Chapman & Hall/CRC Press; 1993.

Abadie A, Imbens GW. On the failure of the bootstrap for
matching estimators. Econometrica. 2008;76(6):1537-1557.
Otsu T, Rai Y. Bootstrap inference of matching estimators for
average treatment effects. J Am Stat Assoc. 2017;112(520):
1720-1732.

Robins JM, Morgenstern H. The foundations of confounding
in epidemiology. Comput Math Appl. 1987;14(9-12):
869-916.

Olschewski M, Scheurlen H. Comprehensive Cohort Study:
an alternative to randomized consent design in a breast
preservation trial. Methods Inf Med. 1985;24(3):131-134.
William J, Russell R, Nicholas T, et al. Coronary Artery
Surgery Study (CASS): a randomized trial of coronary artery
bypass surgery. Circulation. 1983;68(5):939-950.

CASS Principal Investigators. Coronary Artery Surgery
Study (CASS): a randomized trial of coronary artery bypass
surgery. Comparability of entry characteristics and survival in
randomized patients and nonrandomized patients meeting
randomization criteria. J Am Coll Cardiol. 1984;3(1):
114-128.

Chaitman BR, Ryan TJ, Kronmal RA, et al. Coronary Artery
Surgery Study (CASS): comparability of 10 year survival in
randomized and randomizable patients. J Am Coll Cardiol.
1990;16(5):1071-1078.

Olschewski M, Schumacher M, Davis KB. Analysis of
randomized and nonrandomized patients in clinical trials

54.

55.

56.

57.

58.

59.

60.

61.

62.

using the comprehensive cohort follow-up study design.
Control Clin Trials. 1992;13(3):226-239.

Robins JM, Rotnitzky A. Comment on the Bickel and Kwon
article, “Inference for semiparametric models: some
questions and an answer”. Stat Sin. 2001;11(4):920-936.
Dahabreh 1J, Herndn MA. Extending inferences from a
randomized trial to a target population. Eur J Epidemiol.
2019;34(8):719-722.

Dahabreh 1J, Robertson SE, Steingrimsson JA, et al.
Extending inferences from a randomized trial to a new target
population. Stat Med. 2020;39(14):1999-2014.

Colson KE, Rudolph KE, Zimmerman SC, et al. Optimizing
matching and analysis combinations for estimating causal
effects. Sci Rep. 2016;6:23222.

Kang JDY, Schafer JL. Demystifying double robustness: a
comparison of alternative strategies for estimating a
population mean from incomplete data. Stat Sci. 2007;22(4):
523-539.

Lee BK, Lessler J, Stuart EA. Improving propensity score
weighting using machine learning. Stat Med. 2010;29(3):
337-346.

Westreich D, Lessler J, Funk MJ. Propensity score
estimation: machine learning and classification methods as
alternatives to logistic regression. J Clin Epidemiol. 2010;
63(8):826-833.

Watkins S, Jonsson-Funk M, Brookhart MA, et al. An
empirical comparison of tree-based methods for propensity
score estimation. Health Serv Res. 2013;48(5):1798-1817.
Setoguchi S, Schneeweiss S, Brookhart MA, et al. Evaluating
uses of data mining techniques in propensity score
estimation: a simulation study. Pharmacoepidemiol Drug Saf.
2008;17(6):546-555.

Am J Epidemiol. 2021;190(6):1088-1100

€20z dunf /z uo Jasn [eyidsoH Ipoqiyjewey suips|y Jo Aynoed - Ateiqi] Aq G1.8££65/8801/9/06L/a01e/ale/woo dno olwapede//:sdiy woly pspeojumoq



	Assessing Heterogeneity of Treatment Effects in Observational Studies
	CAUSAL QUANTITIES
	IDENTIFICATION
	Identifiability conditions
	Identification of the subgroup-specific potential outcome mean
	ESTIMATION AND INFERENCE
	Estimation
	Inference
	SIMULATION STUDY
	Targets of inference and measures of performance
	Simulation study setup
	Data generation for S, X, and A
	Data generation for continuous Y
	Model specification in the simulation study
	Software
	SIMULATION RESULTS
	Bias
	Standard deviation
	Additional simulation results for continuous outcomes
	Simulation results for binary outcomes
	ILLUSTRATION OF THE METHODS IN CASS
	CASS design and data
	Model specification
	Results
	DISCUSSION 









