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A B S T R A C T

Purpose: To investigate the phenotypic presentation of Mendelian disease across the diagnostic
trajectory in the electronic health record (EHR).
Methods: We applied a conceptual model to delineate the diagnostic trajectory of Mendelian
disease to the EHRs of patients affected by 1 of 9 Mendelian diseases. We assessed data avail-
ability and phenotype ascertainment across the diagnostic trajectory using phenotype risk scores
and validated our findings via chart review of patients with hereditary connective tissue disorders.
Results: We identified 896 individuals with genetically confirmed diagnoses, 216 (24%) of
whom had fully ascertained diagnostic trajectories. Phenotype risk scores increased following
clinical suspicion and diagnosis (P < 1 × 10−4, Wilcoxon rank sum test). We found that of all
International Classification of Disease–based phenotypes in the EHR, 66% were recorded after
clinical suspicion, and manual chart review yielded consistent results.
Conclusion: Using a novel conceptual model to study the diagnostic trajectory of genetic disease
in the EHR, we demonstrated that phenotype ascertainment is, in large part, driven by the
clinical examinations and studies prompted by clinical suspicion of a genetic disease, a process
we term diagnostic convergence. Algorithms designed to detect undiagnosed genetic disease
should consider censoring EHR data at the first date of clinical suspicion to avoid data leakage.
© 2023 The Authors. Published by Elsevier Inc. on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The study of Mendelian disorders has yielded a great body
of knowledge about the phenotypic manifestations of
Mendelian genetic disease (hereafter referred to as genetic
disease).1-4 Knowledge of phenotype/genotype correlation
is essential for the recognition and diagnosis of genetic
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disease and is summarized in resources such as the Online
Mendelian Inheritance in Man (OMIM) and Orphanet.5,6

Despite the availability of sophisticated knowledgebases,
recognizing genetic disease can still be a great challenge for
clinicians, leading to prolonged diagnostic delay.7-9 Diag-
nostic delay continues to be a problem for a variety of ge-
netic diseases, which has not consistently improved with
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time.10-14 Current evidence suggests that neither increased
availability of genetic testing nor targeted campaigns aimed
at increasing awareness of rare diseases are sufficient to
fully address diagnostic delay.10-12 The persistence of
diagnostic delay has led to an interest in diagnosis support
systems to identify undiagnosed patients using data from the
electronic health record (EHR).15-19

To effectively identify undiagnosed patients, EHR-based
algorithms must “recognize” the clinical patterns of the
genetic disease, just as clinicians do. But unlike clinicians,
these algorithms cannot examine patients. Rather, they must
make use of phenotypic clues that are available in real-world
clinical data. As such, they must address 2 key challenges of
EHR data.20 First, EHRs are often missing data. A leading
cause of incompleteness is information fragmentation,
which occurs when patients receive care at multiple care
sites.21 EHR chart fragmentation may be particularly prob-
lematic for patients with rare genetic disease, who are more
likely to seek care at disparate referral centers. For algo-
rithms that seek to identify undiagnosed disease, fragmented
EHRs may be inappropriate for training and testing. Second,
EHRs are affected by ascertainment bias.22 EHRs contain
myriad observations, measurements, and diagnoses that
simultaneously reflect the physiology of a patient, as well as
the process of health care itself. True facts about a patient
are often missing from a record until they become clinically
relevant. Consequently, the way that genetic disease “pre-
sents” in the EHR may differ from clinical descriptions in
resources such as OMIM, the latter of which are based on
highly detailed physical examinations of patients known to
be affected by a genetic condition.

In this paper, we develop a conceptual model to study
the phenotypic manifestations of genetic disease from the
perspective of the EHR. A recent scoping review noted
that there is no systematic framework to test, train, and
evaluate EHR-based diagnosis support systems in rare
disease, hindering the ability to realistically assess and
compare different algorithms whilst increasing the risk of
data leakage.23 Our conceptual model seeks to describe
the diagnostic trajectory as reflected in the EHR. The
notion of a diagnostic trajectory is analogous to a disease
trajectory, in which the progression of a disease is tracked
over time.24 The model delineates longitudinal data into
pre-suspicion, pre-diagnosis, and post-diagnosis intervals,
enabling the assessment of data availability and phenotype
ascertainment at different phases of the diagnostic
trajectory.

We applied our framework to the EHRs of patients
diagnosed with 1 of 9 genetic diseases. We (1) measure the
degree of EHR fragmentation in our cohort, (2) assess EHR
data availability within each diagnostic time interval defined
by clinical suspicion or diagnosis, and (3) characterize the
way ascertainment bias influences how phenotypes are
documented in the EHR data at different points. We found
that EHR fragmentation is a major barrier to ascertaining
undiagnosed patients before clinical suspicion for disease.
And we note that the ascertainment of phenotypes
characteristic of Mendelian disease often occurs only after
clinical suspicion and/or diagnosis.
Material and Methods

Defining the conceptual model and key terms

We defined a conceptual model (Figure 1) that describes key
events of the diagnostic process as reflected in EHR data,
including the following: first encounter within the health
system, first clinical suspicion (the date when a disease is
first mentioned in clinical notes), diagnosis (the date when a
clinical diagnosis is established), and final encounter. These
events delineate the following time intervals: pre-
ascertainment, pre-suspicion, pre-diagnosis, suspicion to
diagnosis, and post-diagnosis. Within these intervals, we
characterize data availability by both quantity (number of
encounters) and EHR temporal length (length of time in
days). A patient has a fully ascertained diagnostic trajectory
if they have encounters in the pre-suspicion, suspicion to
diagnosis, and post-diagnosis intervals. A full glossary of
the definition of terms can be found in Table 1.

Data source

Our cohort comprised all individuals with at least 3 en-
counters within Vanderbilt University Medical Center
(VUMC) between January 1, 2002, and January 1, 2022.
Data were drawn from the Research Derivative, a copy of
VUMC’s EHR stored in the Observational Medical Out-
comes Partnership common data model that includes de-
mographics, clinical notes, International Classification of
Disease (ICD) and Current Procedural Terminology codes
used in this project.25 All EHR clinical data were available
for extraction in the current project and was not filtered by if
it was related to the diagnosis or not.

Applying the conceptual model to genetic diseases

We elected to study genetic diseases with prominent
multisystem phenotypes (caused by diverse biological
etiologies) that have reports of diagnostic delay in the
literature and vary by age of onset (Supplemental
Table S1).8,9,12,26-29 These included 5 hereditary connec-
tive tissue diseases (HCTDs)—Marfan syndrome (MFS),
Loeys-Dietz syndrome (LDS), Stickler syndrome (STL),
classical Ehlers-Danlos syndrome type 1 and 2 (cEDS),
and vascular Ehlers-Danlos syndrome (vEDS)—as well as
hereditary hemorrhagic telangiectasia (HHT), hypo-
phosphatasia (HPP), Noonan syndrome (NS), and cystic
fibrosis (CF). We restricted our cohort to adults diagnosed
with CF (age ≥ 18) to exclude patients diagnosed from
newborn screening. We used OMIM to generate a list of
causal genes in the phenotypic series for these disorders
and indexed all clinical notes for gene names. Because of



An EHR-based trajectory of the diagnostic process in genetic disease
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Figure 1 A graphical representation of the diagnostic trajectory as represented in EHR data. This model is intended to help assemble
and code EHR data to both study the diagnostic process and test/train models to identify undiagnosed patients. It includes the following
temporal events: (1) date of birth, (2) date at first encounter, (3) date of first clinical suspicion, (4) date of clinical diagnosis, and (5) date at
last encounter. These time points define the following EHR temporal length intervals: (6) pre-suspicion interval (first encounter to 1 week
before clinical suspicion), (7) suspicion to diagnosis interval (date of suspicion to 1 week before diagnosis), (8) pre-diagnosis interval (first
encounter to 1 week before diagnosis) and (9) post-diagnosis interval (date of diagnosis to final encounter). Two periods were also defined
(gray) pre-ascertainment period (birth to first encounter) and (blue) EHR capture period (date of clinical date of first encounter to date of last
encounter). Key time points are indicated by black circles, key time intervals are denoted by brackets, and key periods are indicated in color.
EHR, electronic health record.
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clinical heterogeneity of the various forms for NS, we
restricted our search to PTPN11, SOS1, and RAF1, 3 of the
most common genetic causes of NS.30 The chart of every
individual with a mention of a gene name in their record
was manually reviewed, and individuals with a pathogenic,
diagnostic variant were flagged for further review. Because
of the many matches for the ENG gene, we restricted our
review to patients with a gene mentioned plus at least 1
ICD code for HHT (448.0 or I78.0). For adult CF cases, we
identified potential cases using ICD codes requiring 2 or
more ICD codes (277* or E84*) with the first occurrence at
age 18 or older.31 Previous studies have demonstrated that
ICD codes have a high sensitivity for CF.32

To define the diagnostic trajectory of each genetic disease
patient, we extracted key time points from the EHR
(Figure 1). Date of birth was derived from the demographics
table, and the first and last encounters were defined using the
first and last ICD billing code dates. Initial suspicion was
defined as the first mention of an individual genetic disease in
clinical notes, either by a specific disease name (eg, MS) or
disease class (eg, connective tissue disease). Supplemental
Table 2 indicates keywords used to search across the clin-
ical notes during manual review. The date of diagnosis was
defined as the first date when a treating physician states that
the patient is clinically diagnosed with the condition, also
defined via manual chart review. We calculated patient age at
each of the key time points and computed EHR temporal
length (length of time in days) and quantity within each in-
terval. Encounters were defined using ICD billing dates.

Phenotype risk score analysis

The phenotype risk score (PheRS) is a measurement of the
similarity of a patient’s EHR data and the clinical
presentation of a disease as described in OMIM. PheRS
represents characteristic phenotypes of genetic disease with
phecodes: ICD based high-throughput phenotypes. PheRS
has been used to assess the pathogenicity of genetic variants,
as well as to detect undiagnosed individuals using EHR
data.31,33 Here, we tested the ability of PheRS to distinguish
between cases diagnosed with Mendelian disease and unaf-
fected controls at multiple time points along the diagnostic
trajectory.

As OMIM has multiple clinical synopses for similar
genetic diseases, we merged the synopses into a single
feature set for cEDS, NS, LDS, STL, and HHT. We applied
PheRS for each of the 9 genetic diseases to our entire cohort
of 1.8 million individuals. A linear regression was used to
normalize the PheRS using sex (assigned within the EHR by
the clinician at birth), age, and record length as covariates,
producing a “residualized PheRS” (rPheRS). This method
used the EHR records (N = 1.8 million) of individuals in our
cohort as controls to ascertain a baseline rPheRS for unaf-
fected individuals. We compared rPheRS in cases with
controls using the Wilcox rank sum test. We also counted
the number of cases with “highly elevated” scores (rPheRS
> 4 standard deviations above the median).

We repeated the above analysis after censoring genetic
disease data at different time points of the diagnostic tra-
jectory, using ICDs from the pre-suspicion interval, the pre-
diagnosis interval, and the post-diagnosis interval. For each
analysis, a new cohort was generated in which the data from
the individual genetic disease patients were censored to
match the target interval, using covariates that reflected the
censored data. Finally, we used a Wilcoxon signed-rank test
to compare rPheRS of the same individuals at different
time intervals, comparing scores from pre-suspicion, pre-
diagnosis, and post-diagnosis time intervals.



Table 1 A glossary of key terms used in the current study

Term Definition Note

Date of birth Date of patient’s birth as listed in the demographics
table

—

Date at first encounter The first encounter date recorded in an EHR Encounter dates can be defined in several ways (eg,
billing codes or clinic notes). For a predictive
algorithm, encounter should be defined as dates
where new phenotypic information is ascertained
(ie, an ascertainment event). For algorithms that
use claims data to define features, the
ascertainment event may be defined as billing
days. For those that use clinical notes, a clinical
encounter may be used.

Date of first clinical suspicion The first date a clinician documents a suspicion of a
disease in clinical notes, whether specific (eg,
“Marfan syndrome”) or more general (eg,
“connective tissue disease”)

—

Date of diagnosis The first date when a treating physician states that
the patient is clinically diagnosed with the
condition. This declaration is often preceded by
statements that the diagnosis is “probable” or
“likely.” Such conditional statements do not
qualify as a diagnosis

—

Date at last encounter Last encounter date in the EHR —

Pre-ascertainment period Birth to first encounter in calendar days —

EHR capture period Date of clinical date of first encounter to date of last
encounter

Pre-suspicion interval First encounter to 1 week before clinical suspicion in
calendar days

—

Suspicion to diagnosis interval Date of suspicion to 1 week before diagnosis
Pre-diagnosis interval First encounter to 1 week before diagnosis in

calendar days
—

Post-diagnosis interval Date of diagnosis to final encounter in calendar days —

Data quantity The number of unique encounter dates The pre-suspicion data quantity indicates the amount
of information available on which to make a
prediction

EHR temporal length Length of time interval in days between 2 events
within the EHR. This could be a billing event or
alternatively a clinical event (eg, suspicion or
diagnosis).

The longitudinally of the pre-suspicion interval
defines a theoretical maximum of how much earlier
a diagnosis could have been made.

EHR, electronic health record.
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Individual phenotype analysis

We explored the phenotypes driving the changes in rPheRS
across the diagnostic trajectory by analyzing when individual
phenotypes appear in the EHR. For each genetic disease
clinical feature, we counted the number of individuals who
had a phecode dated prior to suspicion, between suspicion
and diagnosis, following diagnosis, and ever. We also
counted the first occurrence of each phenotype.

Targeted ascertainment analysis

We hypothesized that, from the perspective of the EHR,
clinical suspicion of a specific Mendelian disorder prompts
the clinician to look for and ascertain signs and symptoms of
the disease. To test this hypothesis, we analyzed the timing
of procedure codes for diagnostic examinations related to
HCTDs. We extracted Current Procedural Terminology
codes and dates for the following procedures: transthoracic
echocardiography (93303, 93304, 93306, 93307, and
93308), ophthalmological examination and evaluation
(92002, 92004, 92012, 92014, 92015, 92018, and 92019),
and complete blood count (CBC) (85027 and 85025); the
latter served as a control test, unrelated to HCTD. Among
patients with HCTDs, we counted the number of individuals
within each code group, as well as the total number of
procedure codes prior to suspicion.

ICD billing code chart review

We assessed the possibility that clinical notes contained
relevant information that was not captured in ICD codes.



Table 2 EHR data availability in our genetic disease cohort

Disease Name Gene(s) Abbreviation Total

Diagnosed Before
First Visit
N (%)

Suspicion On First
Encounter
N (%)

Fully Ascertained
Trajectory
N (%)

Marfan syndrome FBN1 MFS 145 55 (37.9) 57 (39.3) 33 (22.8)
Ehlers Danlos, Classic COL5A1/2 cEDS 9 2 (22.2) 1 (11.1) 6 (66.6)
Ehlers Danlos, Vascular COL3A1 vEDS 27 5 (20.8) 9 (33.3) 13 (48.1)
Loeys-Dietz syndrome TGFBR1/2, TGFB2, SMAD2/3 LDS 32 7 (21.9) 8 (25.0) 17 (53.1)
Stickler syndrome COL2A1, COL11A1, COL9A1,

COL9A3
STL 40 8 (20.0) 14 (35.0) 18 (45.0)

Hereditary Hemorrhagic
Telangiectasia

ACVRL1, ENG HHT 79 28 (35.4) 19 (24.1) 32 (40.5)

Hypophosphatasia ALPL HPP 93 53 (57.0) 10 (10.8) 30 (32.3)
Noonan syndrome PTPN11, SOS1, RAF1 NS 92 17 (18.5) 26 (28.3) 49 (53.3)
Cystic Fibrosis CFTR CF 379 353 (93.1) 7 (1.85) 18 (4.75)
All — All 896 528 (60.8) 151 (16.9) 216 (24.1)
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We conducted a chart review of patients with HCTDs (MFS,
LDS, STL, cEDS, and vEDS). This review was conducted
by a clinical geneticist who was blinded to all data used in
the prior analyses except for the target condition. Briefly, we
reviewed the consensus guidelines, OMIM, and Gene Re-
views and selected the 3 cardinal features most reported in
these databases. We chose to do this to note the most spe-
cific common features that a nongeneticist would likely note
outside of OMIM. We noted the date that these phenotypic
features were first noted in the chart and determined if this
was before or after clinical suspicion.

Statistical tools

All statistical analyses were conducted in R. We used the
PheRS R package to generate scores.34 For the residual
scores (rPheRS), we included covariates for sex, age at first
visit (days), age at last visit (days), and total number of
ascertainment events (unique dates with ICD codes). Phe-
codeX was used to translate ICDs into phecodes.35
Results

We indexed the records of 1.8 million patients for 21 genes
associated with our 9 individual genetic diseases. A total of
4711 records included a mention of 1 of our target genes,
896 (19%) of which indicated a positive genetic testing that
confirmed a diagnosis for a target condition (Supplemental
Table S3).

Description of diagnostic delay in cohort

Among our cohort of patients diagnosed with genetic
disease, 528 (59%) were diagnosed before their first visit
to VUMC (Table 2). For another 151 individuals (17%),
the date of clinical suspicion occurred within a week of
their first visit. In total, 216 individuals (24%) were found
to have fully ascertained diagnostic trajectories, including
33 MFS, 6 cEDS, 13 vEDS, 17 LDS, 18 STL, 32 HHT, 30
HPP, 49 NS, and 18 adult CF cases. Among individuals
with fully ascertained trajectories, the age of diagnosis in
years varied widely, with a median of 12 (interquartile
range [IQR]: 3.5-36); 84 patients (38.8%) were diagnosed
as adults, which is suggestive of a long diagnostic delay
(Table 3, Figure 2A).

The impact of data fragmentation on the
ascertainment of a complete diagnostic trajectory

An algorithm designed to shorten diagnostic delay must rely
on data from before the date of diagnosis or, better yet,
clinical suspicion. Thus, the measures of EHR temporal
length and quantity indicate how much information is
available for predictive algorithms. The median time from
first visit to clinical suspicion was 3.23 years (IQR: 153
days-6.4 years), indicating a theoretical opportunity to
shorten the time to diagnosis. Within that interval, a median
of 6 visits (IQR: 2-20) occurred (Figure 2B). EHR temporal
length and quantity were significantly correlated (R = 0.43;
P ≤ .001), though there were many instances with high data
quantity and low EHR temporal length (Supplemental
Figure 1). The median time from clinical suspicion to
diagnosis was 71 days (IQR: 20.8-235), indicating that, for
most patients, diagnosis occurred soon after a genetic dis-
ease was suspected.

PheRS signal increases over the diagnostic
trajectory

The PheRS feature definition included 91 phenotypes for the
9 diseases tested (Supplemental Table S4). The median
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rPheRS for each disease was lowest in the pre-suspicion
period, followed by the pre-diagnosis period, and the post-
diagnosis period (Figure 3). We found that cases affected
by genetic disease had higher rPheRS compared with con-
trols when using all available data and when using data with
each time interval tested (pre-suspicion, pre-diagnosis, and
post-diagnosis). The difference between cases and controls
was statistically significant (P < .05) for each disease,
except for vEDS, which was not significant for any time
interval, and HPP, which was not significant in the pre-
suspicion interval. The difference in location between
cases and controls for rPheRS was 0.56 (95% CI, 0.45-0.71)
in the pre-suspicion interval, 1.59 (95% CI, 1.32-1.85) in the
pre-diagnosis interval, and 2.43 (95% CI, 2.16-2.70) in the
post diagnosis period (Supplemental Table S5). In the paired
analysis, we found that the PheRS increased significantly
across each time interval (P < .05), including from the pre-
suspicion and post-diagnosis intervals (1.56 [95% CI, 1.15-
1.97]; P = 5.2 × 10−21) (Supplemental Table S6). Addi-
tionally, the number of individuals with highly elevated
scores increased across the diagnostic trajectory, from 22
(10%) in the pre-suspicion interval, to 48 (22%) in the pre-
diagnosis interval, to 64 (29%) in the post-diagnosis inter-
val, and 90 (42%) when all available data were used
(Supplemental Table S7).

Phenotypic features of genetic disease are more
likely to be present in the EHR after clinical
suspicion

Only a minority of genetic disease-related phenotypes were
first ascertained before clinical suspicion (Supplemental
Tables S8-16) (Figure 4). This pattern was true for most in-
dividual phenotypes. For example, for MFS patients only 3
features were most likely to be ascertained before suspicion
(tall stature; congenital deformities of skull, face, and jaw;
and hammer toe), whereas 11 were more common after
clinical suspicion, including aortic aneurysm and ectasia,
mitral valve disorders, pectus excavatum, and lens disloca-
tion. Similar patterns were found for other genetic diseases
(Supplemental Tables S8-16). We call this phenomenon
diagnostic convergence: wherein the key features of a Men-
delian disease are ascertained in the EHR only after the
disease is suspected.

Investigating ascertainment procedures and
phenotyping error in HCTD diagnosis

Diagnostic convergence is consistent with good clinical
practice; a clinician who suspects a genetic disease should
conduct targeted additional examinations and tests that
might increase or decrease confidence in the diagnosis. In
this process, phenotypes that may have been present for a
long time might first be observed and noted in the EHR.
Indeed, we found that orders for transthoracic echocar-
diogram and ophthalmology examinations—2 procedures



Figure 2 A. Age of diagnosis for all individuals in the genetic disease cohort. Each dot represents an individual patient, color coded by
genetic disease. Line in figure represents median. B. EHR temporal length at different time intervals. Each patient is represented as a bar.
Time before diagnosis is plotted in the negative direction and post-diagnosis in the positive direction. Time intervals of the diagnostic
trajectory are represented in different colors. CF, Cystic Fibrosis; cEDS, classical Ehlers-Danlos syndrome; HHT, Hemorrhagic Telangi-
ectasia; HPP, Hypophosphatasia; LDS, Loeys-Dietz syndrome; MFS, Marfan syndrome; NS, Noonan syndrome; STL, Stickler syndrome;
vEDS, vascular Ehlers-Danlos syndromes.
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used to ascertain key features HCTD—were more likely to
be ordered after clinical suspicion of an HCTD.36,37

Among the 87 HCTD patients, 67 (89%) and 47 (54%)
received a transthoracic echocardiogram and ophthal-
mology examination, respectively. However, only a mi-
nority of transthoracic echocardiograms 28 of 308 (18%)
and ophthalmology examinations 46 of 278 (17%)
occurred before suspicion, in contrast with CBCs (one of
the most common clinical investigations and not specific
the HCTD), which were just as likely to be ordered before
suspicion as they were after (Supplemental Table S17).

However, because our analysis relied on ICD billing
codes, it is possible that genetic disease related pheno-
types were noted in the clinical text but not billed for
before clinical suspicion or diagnosis. To ensure that
phenotyping error did not occur in ICD codes capturing
the phenotypic features from the individuals EHR a
further chart review of the cardinal features of HCTD’s
was conducted. Of the individuals with HCTD who had
a fully ascertained diagnostic trajectory, there were
minimal phenotypic features in the patients notes outside
of ICD codes on chart review before clinical suspicion
(N = 7/87, 8%) with the majority of features present
post suspicion (N = 56/87, 64%) (Supplemental
Table S18).
Discussion

The clinical presentation of genetic disease has been studied
extensively, but less attention has been paid to the way these
diseases are reflected within EHR data. Understanding the
phenotypic expression in the EHR is key to developing al-
gorithms to detect undiagnosed patients. In this study, we
develop a conceptual model to quantify data availability and
the phenotypic manifestations of genetic disease from the
perspective of the EHR. We focused on 9 Mendelian dis-
eases, chosen because of their multisystem phenotypes,
varied reported age of onset, and evidence in the literature of
significant diagnostic delay. We demonstrated the relevancy
of EHR fragmentation—a problem that may be particularly
acute in tertiary care centers like VUMC—and found that
the majority of patients with genetically confirmed diagnosis
were already diagnosed before their first visit to VUMC.

Our results demonstrated the relevance of ascertainment
bias; analyzing the phenotypic signal throughout the ascer-
tainment process, we found that many of the key phenotypes
indicative of a genetic disease were ascertained only after a
clinician suspected the disease. Thus, the EHR phenotypes of
patients come to resemble the classical picture of the disease
during the diagnostic trajectory in a phenomenon we named
diagnostic convergence. Although diagnostic convergence is



Figure 2 continued
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Figure 3 Changes in the PheRS throughout the diagnostic process. Dots represent individual patients with outlying scores that were
included in our analysis. CF, Cystic Fibrosis; cEDS, classical Ehlers-Danlos syndrome; HHT, Hemorrhagic Telangiectasia; HPP,
Hypophosphatasia; LDS, Loeys-Dietz syndrome; MFS, Marfan syndrome; NS, Noonan syndrome; STL, Stickler syndrome; vEDS, vascular
Ehlers-Danlos syndromes.
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consistent with good clinical care, it poses a challenge for
designing EHR-based algorithms to detect undiagnosed dis-
ease. Using all available EHR data, PheRS effectively
distinguished individuals with genetic disease versus unaf-
fected controls. However, most genetic disease features were
ascertained after clinical suspicion and diagnosis. The PheRS
increased after every event in the diagnostic trajectory
resulting in a gradual convergence on the classical phenotype
known in the literature. Even phenotypic attributes that were
likely to have been present since birth (eg, congenital heart
defects and musculoskeletal deformities) or represent long
term chronic consequences of individual genetic disease (eg,
arteriovenous malformation in HHT or bronchiectasis in CF)
were often mentioned only after clinical suspicion.

A deeper look at the diagnostic process revealed evi-
dence that diagnostic convergence in our cohort was largely
driven by the diagnostic process itself. Clinical suspicion
prompted the clinician to look for additional signs of the
disease, and diagnosis leading to heightened surveillance for
particular phenotypes. Both transthoracic echocardiograms
and ophthalmology examinations were far more likely to
occur after clinical suspicion than before, whereas CBC, a
test unrelated to the specific genetic disease, were just as
likely to be ordered before suspicion as after. In an inde-
pendent manual chart review of HCTD patients, we
observed the same phenomenon, indicating that diagnostic
convergence was not driven by billing practices alone.

Our findings have multiple implications for those who
seek to develop algorithms that detect undiagnosed genetic
disease. We demonstrate the challenge presented by EHR
fragmentation, a well-known phenomenon that may be
particularly problematic for the study of rare and difficult to
diagnose conditions. We also demonstrate the importance of
censoring data before suspicion to avoid data leakage
wherein information only available after the prediction time
point is used in the predictive model. Our results suggest
that the concern of leakage is not merely theoretical. The
diagnostic process itself elicits key phenotypes so that using
data after suspicion may bias algorithm performance.
Moreover, this process starts once a disease is suspected,
indicating that censoring data on the diagnosis date may not
be sufficient to prevent leakage. Our conceptual model may
be useful in preparing data sets to train or test algorithms
that seek to identify undiagnosed patients. As more re-
searchers are working on computational solutions to address
the problem of diagnostic delay, our model may help re-
searchers organize their data for testing.

Our study has some limitations. First, our decision to only
include individuals with a genetic and clinical confirmation of
genetic disease means our cohort is rigorous and of high
quality despite its size. However, this does have some im-
plications for our analysis. Furthermore, some individuals in
our control population would have reached a clinical diag-
nosis of MS (based on the application of the Ghent criteria)
without a positive genetic test. However, given the size of our
control cohort (1.8 million individuals used in our regression
model), this likely would have had minimal impact on our
results. Second, our cohort of genetic diseases is small and
based on a single tertiary medical center, which is based in a
major metropolitan area with primary and secondary care
inpatient and outpatient facilities. This prevents us being able
to conclude if diagnostic convergence is a global phenome-
non or one restricted to a particular medical context. Third, we
based our analysis on a subset of genetic diseases. Therefore,



Figure 4 A figure showing the % of phenotypic features ascertained during the specific time intervals within the diagnostic
trajectory. CF, Cystic Fibrosis; cEDS, classical Ehlers-Danlos syndrome; HHT, Hemorrhagic Telangiectasia; HPP, Hypophosphatasia; LDS,
Loeys-Dietz syndrome; MFS, Marfan syndrome; NS, Noonan syndrome; STL, Stickler syndrome; vEDS, vascular Ehlers-Danlos syndromes.
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future work is needed to establish whether diagnostic
convergence is a phenomenon seen in other genetic or non-
genetic diseases. Finally, our analysis was limited to only
what was recorded in the EHR. As a result, we cannot be
certain of the exact time a clinician became suspicious for a
genetic disease or when a phenotype was noticed. Clinicians
may not document all of their clinical assessments in the EHR
for various practical reasons (eg, not wanting to stigmatize
patients or affect their future insurability) or because a
particular finding does not seem medically relevant. However,
this constraint will likely be shared by researchers who wish
to use EHRs to identify undiagnosed patients.

Conclusion

Here, we present a conceptual model to evaluate the diag-
nostic trajectory of Mendelian genetic diseases in EHR data.
Using this model, we found that EHR fragmentation is a
challenge for observing the diagnostic trajectory of in-
dividuals affected by genetic disease. We also observed that
characteristic Mendelian disease phenotypes were more
likely to be ascertained after clinical suspicion and diagnosis
in a process we term diagnostic convergence. Our concep-
tual model may help in the design of algorithmic solutions
that seek to shorten diagnostic delay.
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