

Section for Clinical Epidemiology and Biostatistics

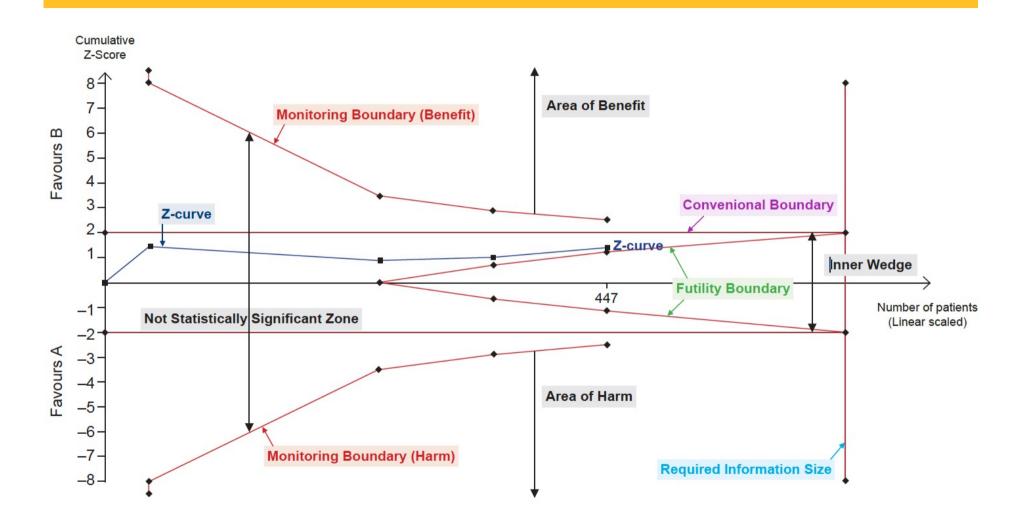
Trial sequential analysis

Sureerat Suwatcharangkoon, MD

March 4, 2022

Section for Clinical Epidemiology and Biostatistics

Problems of meta-analysis


The credibility of statistical significant meta-analyses with too few participants

- spuriously overestimated (type I errors)
- spuriously underestimated (type II errors)

Table 1 Showing the level of cumulated type 1-error risk, if a threshold of 5% is applied constantly at each sequential significance testing, on an accumulating number of trial participants

Number of statistical significance tests	The cumulated type 1-error risk in %
1	5%
2	8%
5	14%
20	25%
100	37%
Infinitely many	100%

TSA diagram

Section for Clinical Epidemiology and Biostatistics

Definition of terms used in TSA

Term Definition

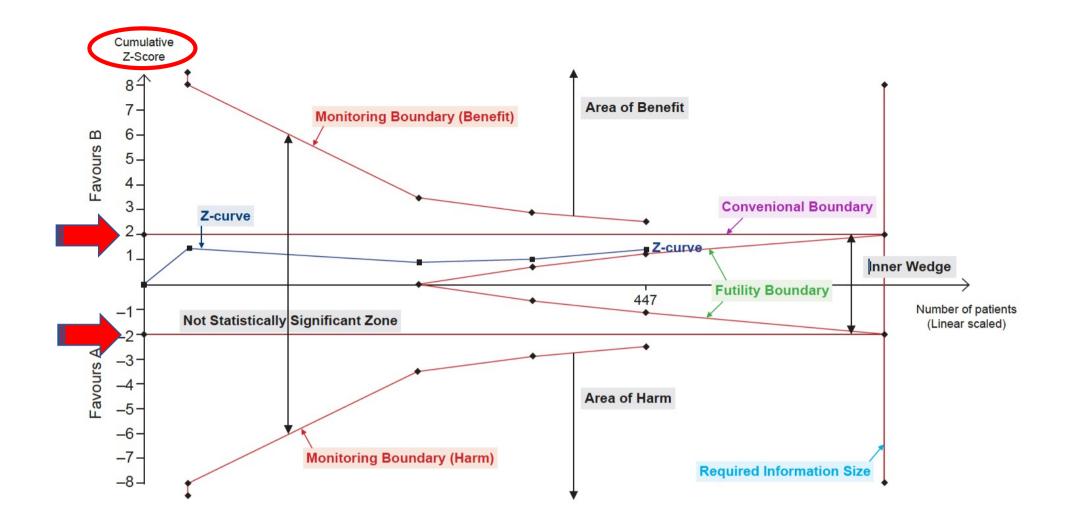
Z score

Cumulative Z curve

Conventional meta-analysis significance boundaries

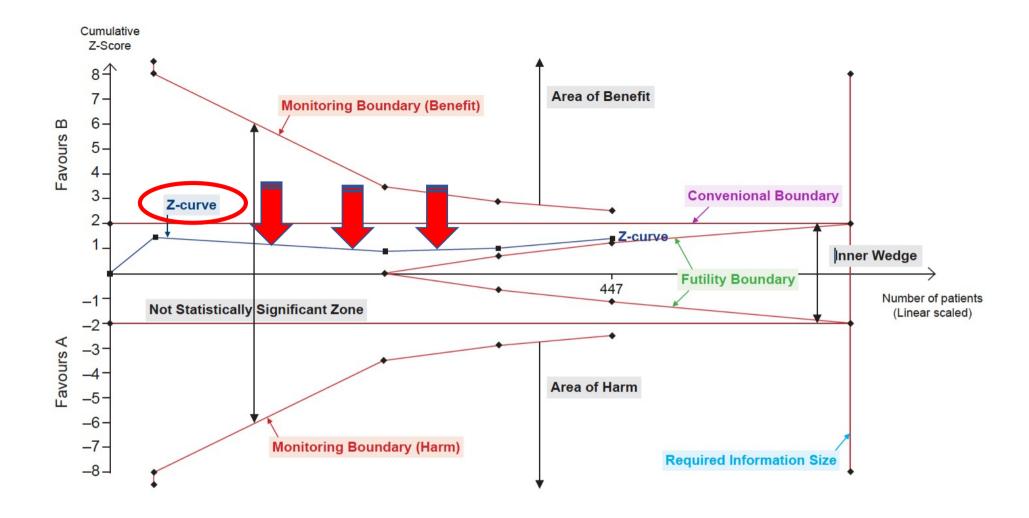
Trial sequential boundaries (significance and futility boundaries)

Required meta-analysis sample size


A statistic test under the null hypothesis (H₀) that two interventions do not differ.

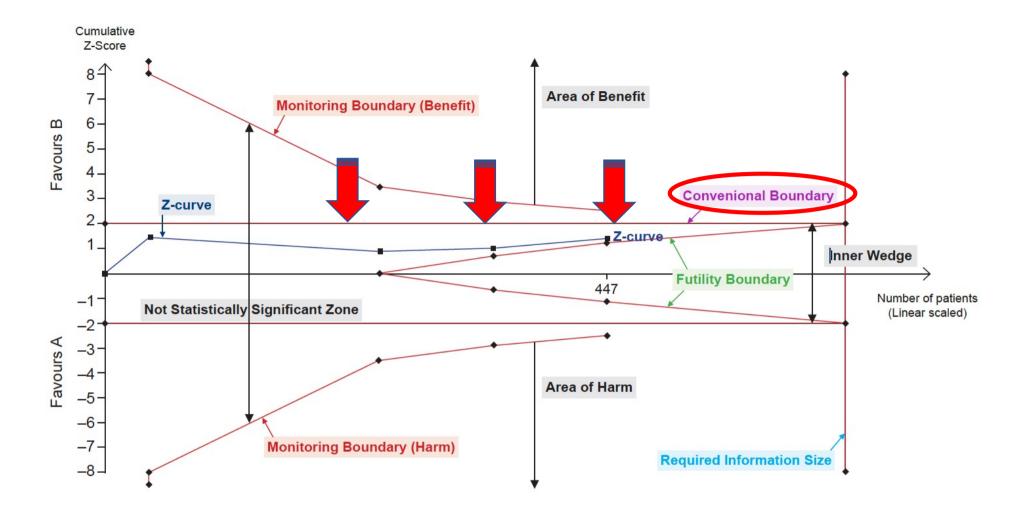
The series of Z scores plotted every time when a meta-analysis is updated. Z curve is plotted with respect to the time the new information is added (X axis).

The horizontal dashed lines at Z + 1.96 and -1.96 represent significant threshold given the Type I error is equal to 5% (two-sided test). The cumulative Z curve that crosses this dashed line is considered significant effect (corresponding to p < 0.05) in conventional meta-analysis (unadjusted significant test).


The converged dot lines represent trial sequential boundaries (significance boundaries). The diverged dot lines represent futility boundaries. Both are adjustments to the thresholds for statistically concluding superiority or nonsuperiority and that these adjustments are made in such a way that the total Type I error (false-positive test %) and the total Type II error (false-negative test %) remain at the level prescribed in the sample size calculation once the total evidence-base reaches the calculated required sample size.

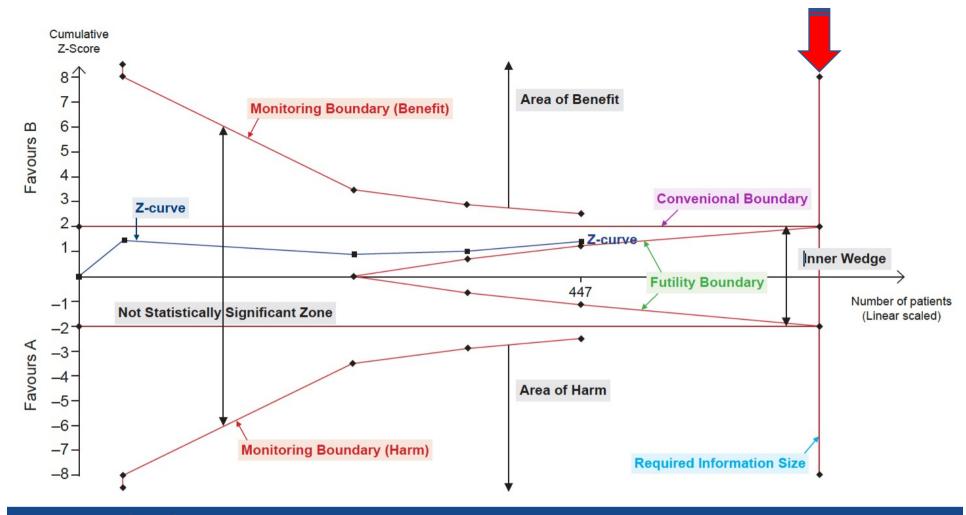
The vertical dot line represents required meta-analysis sample size. This sample size threshold is calculated to determine whether individual meta-analysis is able to make a conclusive inference or not.

Z score:

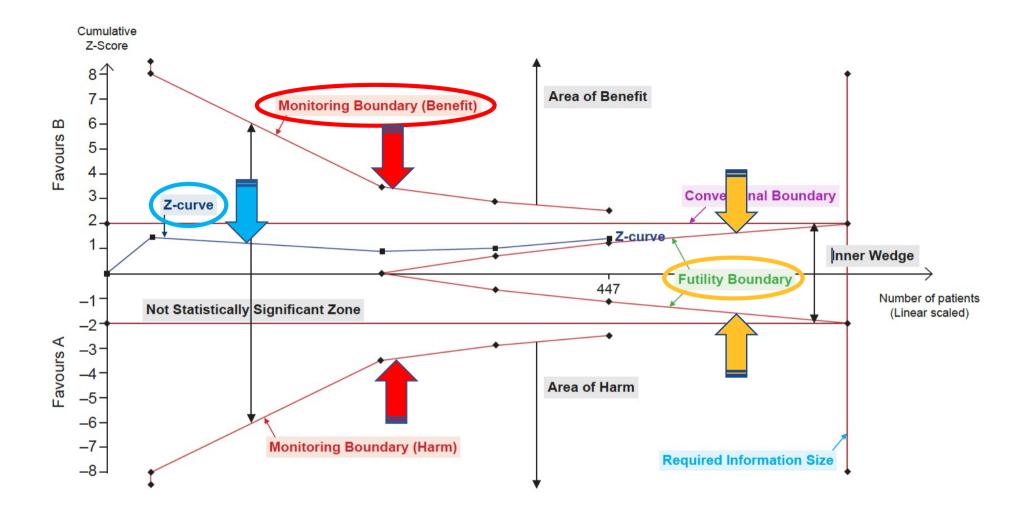

A statistic test under the null hypothesis (H0) that two interventions do not differ.

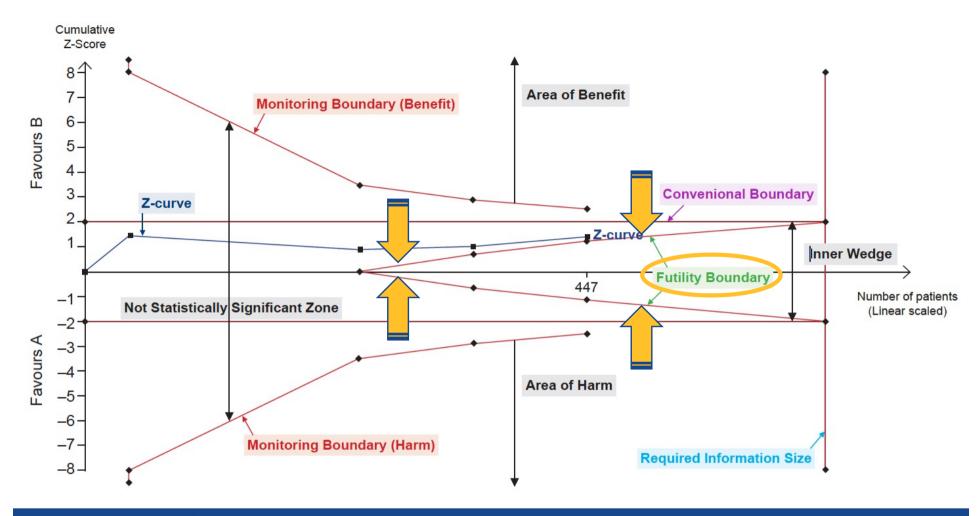
Cumulative Z curve:

The series of Z scores plotted every time when a meta-analysis is updated.


Z curve is plotted with respect to the time the new information is added (X axis).

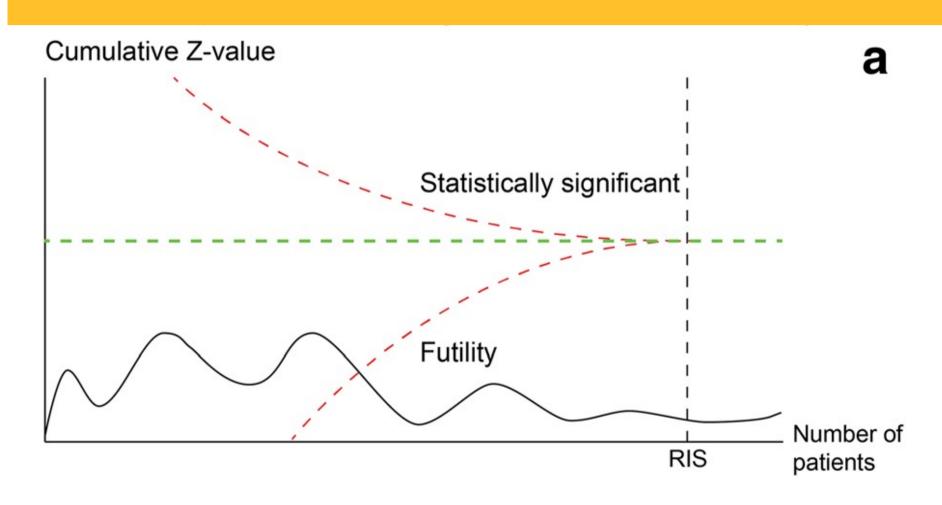
Conventional meta-analysis significance boundaries:

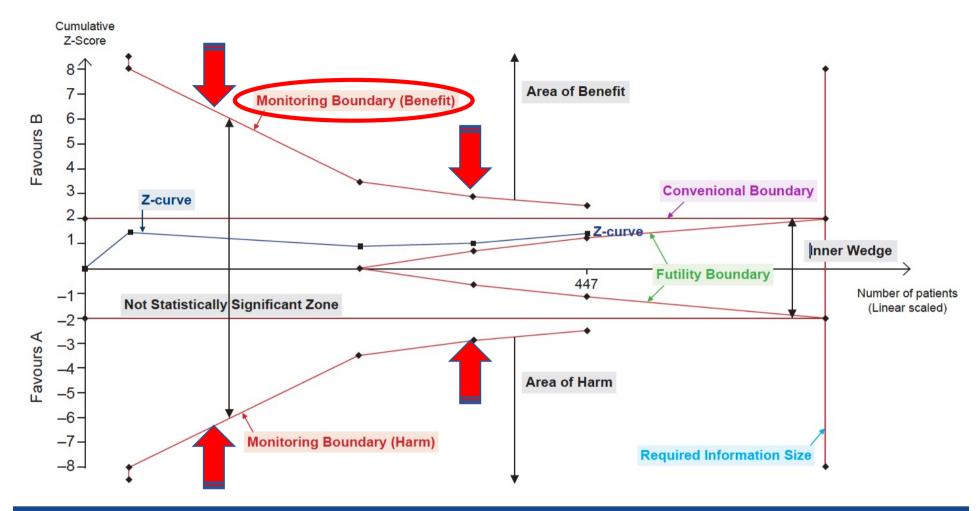

The horizontal dashed lines at Z + 1.96 and - 1.96 represent significant threshold given the Type I error is equal to 5% (two-sided test).


The cumulative Z curve that crosses this dashed line is considered significant effect (corresponding to p < 0.05) in conventional meta-analysis (unadjusted significant test).

Required information size:

- The number of participants and events necessary to detect or reject an a priori assumed intervention effect in a meta-analysis
- The calculation is performed considering the variability (heterogeneity variance) between the estimates of the intervention effects of the included trials.

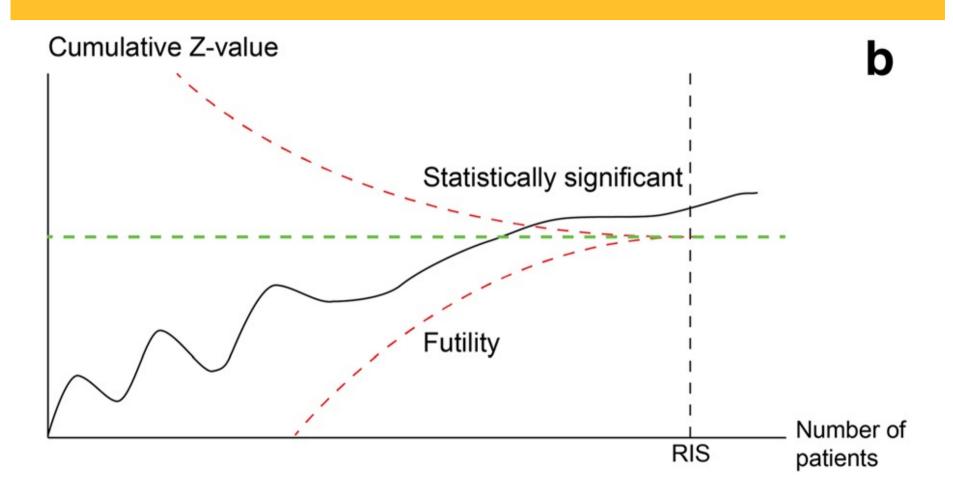




Futility boundaries:

indicating that it will be unlikely to reach a statistical significant P < 0.05, even if we proceed to include trials randomizing patients until the required information size of 2040 is reached.

Trial sequential monitoring boundaries for futility



Monitoring boundaries:

The cumulative Z curve that is greater than the trial sequential boundary is considered a significant effect.

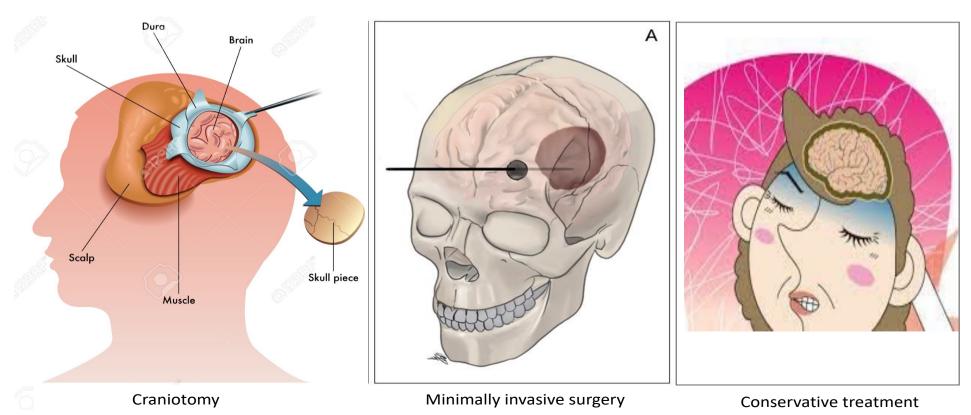
Trial sequential monitoring boundaries for benefit

Assessment of Evidence Regarding Minimally Invasive Surgery vs. Conservative Treatment on Intracerebral Hemorrhage: A Trial Sequential Analysis of Randomized Controlled Trials

Xiang Zhou 17, Li Xie 27, Yuksel Altinel 3 and Nidan Qiao 1,4,5*

Introduction

 Stroke contributes 5% to all DALYs loss and 10% to all deaths worldwide


 Hemorrhagic stroke accounts for more DALYs loss than ischemic stroke

Introduction

- Several randomized trials failed to prove effectiveness of surgical evacuation of hemorrhage
- More and more patients were treated with these minimally invasive surgeries, but benefit by MIS were controversial

Introduction

TABLE 2 | Summary of previous published meta-amylases on the similar topic.

References	Treatment	Control	Included studies	Primary outcomes	Limits	Conclusion
Zhou et al. (9)	MIS	Conservative treatment or craniotomy	RCT	Death or dependence	The selection of MIS in Zuccarello Mendelow studies was biased; mixture control	MIS better
Akhigbe et al. (8)	MIS	Z 0		The selection of MIS in Zuccarello study was biased; only include five studies	Inconclusive	
Yao et al. (7)	Endoscope	Stereotactic evacuation, conservative treatment or craniotomy	RCT + non-RCT	Mortality	Biased due to non-randomized studies; mixture control	Endoscope better
Xia et al. (6)	MIS	Craniotomy	RCT + non-RCT	Mortality	Biased due to non-randomized studies	MIS better
Tang et al. (5)	g et al. (5) MIS Conservative treatment or craniotomy		RCT + non-RCT	Death or dependence	Only include Eastern Asian patients; biased due to non-randomized studies; mixture control	MIS better
Scaggiante et al. (10)	MIS	Conservative treatment or craniotomy	RCT	Death or dependence	The selection of MIS in Zuccarello studies was biased; mixture control	MIS better

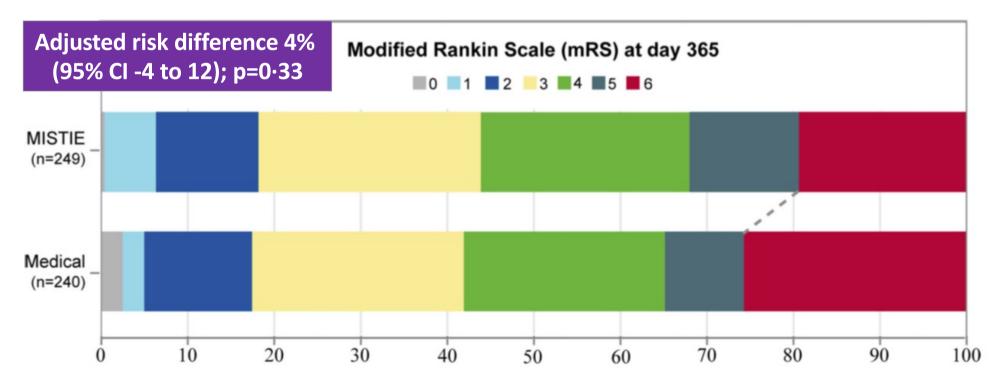
MIS, Minimal invasive surgery; RCT, randomized control trial.

Previous SR and MA of MIS

- potential confounding and bias
- different outcome measurements and control group selections

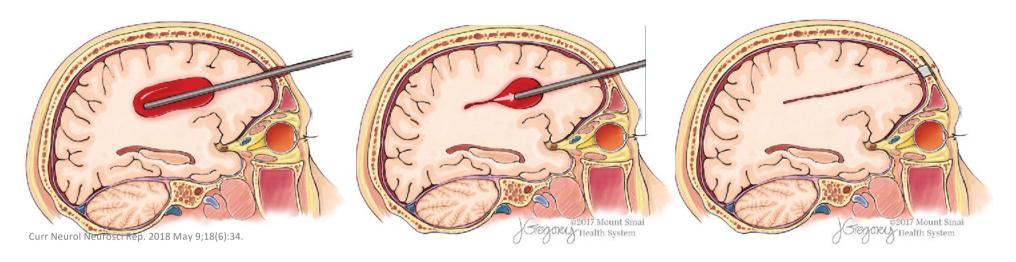
MISTIE-III

THE LANCET


Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial

Prof Daniel F Hanley, MD & Serichard E Thompson, PhD Serichard E Rosenblum, PhD Serichard E Thompson, PhD Serichard E Show all authors Serichard E Show footnotes

- P Patients with intracerebral hemorrhage
- | Minimally invasive catheter evacuation followed by thrombolysis (MISTIE)
- **C** Standard medical care
- O Good functional outcome (mRS 0-3) at 365 days


MISTIE-III

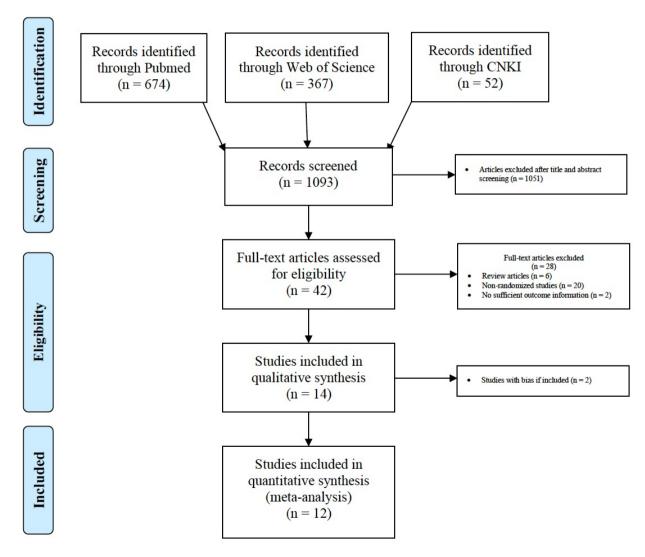
- P Patients with intracerebral hemorrhage
- | Minimally invasive catheter evacuation followed by thrombolysis (MISTIE)
- **C** Standard medical care
- O Good functional outcome (mRS 0-3) at 1 year

Lancet. 2019 Mar 9;393(10175):1021-1032.

Assessment of Evidence Regarding Minimally Invasive Surgery vs. Conservative Treatment on Intracerebral Hemorrhage: A Trial Sequential Analysis of Randomized Controlled Trials

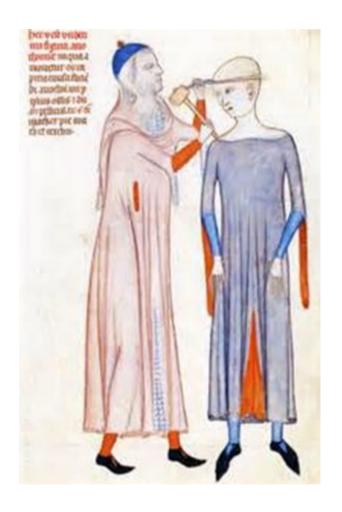
Xiang Zhou 17, Li Xie 27, Yuksel Altinel 3 and Nidan Qiao 1,4,5*

Section for Clinical Epidemiology and Biostatistics


Objective

To answer the question:

Do we need more trials to compare MIS vs. conservative treatment in patients with intracerebral hemorrhage?


METHODS

Search Strategy and Selection Criteria

Section for Clinical Epidemiology and Biostatistics

- P Patients with intracerebral hemorrhage
- I Minimally invasive surgery (MIS)
- **C** Conservative treatment
- O Significant neurological debilitation or death

METHODS Detailed search strategy

Pubmed	("intracerebral hemorrhage" or "intracranial hemorrhage" or "cerebral hemorrhage" or "brain hemorrhage" or "basal ganglia hemorrhage" or "thalamic hemorrhage" or "hemorrhagic stroke" and "hemorrhage" or "hematoma") and ("minimally invasive" or "minimal surgical procedures" or "endoscopy" or "endoscopic" or "stereotaxic" or "stereotaxic" or "aspiration" or "keyhole" or								
	"craniopuncture" or "surgery")								
	Filters: Randomized Controlled Trial								
Web of	TS("intracerebral hemorrhage" or "intracranial hemorrhage" or "cerebral hemorrhage" or "brain hemorrhage" or "basal ganglia								
Science/CNKI	hemorrhage" or "thalamic hemorrhage" or "hemorrhagic stroke" and "hemorrhage" or "hematoma")								
A 1000 A 16 16 16 16 16 16 16 16 16 16 16 16 16	AND								
	TS=("minimally invasive" or "minimal surgical procedures" or "endoscopy" or "endoscopic" or "stereotaxic" or "stereotaxic" or								
	"aspiration" or "keyhole" or "craniopuncture" or "surgery")								

Exclusion criteria:

- Studies with brain hemorrhage due to traumatic brain injury, tumor, coagulopathy, or vascular disease
- Studies with both craniotomy and MIS, but the decision of craniotomy or MIS was made at the discretion of surgeons
- Nonrandomized studies
- Trials in which outcome information was not available

METHODS Outcomes

1º outcome:

proportion of patients with significant neurological debilitation or death (mRS >3 or GOS <4) at the postrandomization follow-up

2º outcome:

proportion of patients who died at the postrandomization follow-up

- Regarding crossover in the included trials, we used the intention-to-treat effect.
- We also imputed the loss to follow-up data as the worst outcome.

METHODS Data Extraction

- X.Z. and L.X. independently screened the literature, selected studies, extracted the relevant information, and assessed the risk of bias with the Cochrane risk of bias tool.
- Any controversies were resolved by consensus and arbitration by the entire review team.

METHODS Data Synthesis and Statistical Methods

- A conventional MA was used to pool risk ratios comparing MIS with conservative treatment
- We initially used random-effects models to aggregate data and the I² tests to examine heterogeneity
- Subgroup analysis by
 - Different mean ages (<60 or >60 years old)
 - Follow-up period (≤ 1 year)
 - Study quality (blind or unblind outcome assessment
 - Publication year (before 2010 or after 2010)
 - Study location (Eastern Asia or Western)
 - Surgical modality (endoscopic surgery or stereotactic evacuation)

METHODS Trial sequential analysis

We conducted a TSA assuming 5% as an acceptable risk of type I error (α).

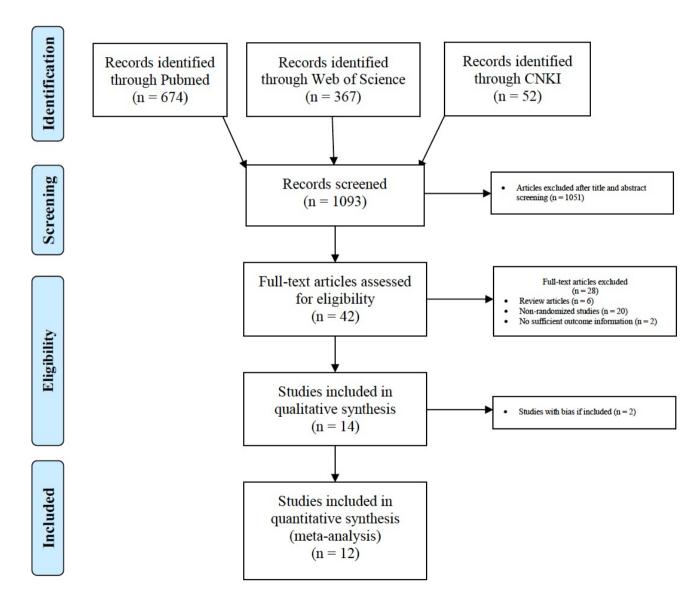
We set several prior to the TSA:

- 1) Effect size: 18.8% RRR as a priori (from the conventional MA)
- 2) Statistical power: 80%
- 3) Event proportion in the control arm: 67.4% (from the pooled 1° outcome from all the control groups)
- 4) Amount of heterogeneity: 81.9% as the observed diversity across the included trials

METHODS Sensitivity analyses

- 1. We used more conservative analyses prior, such as a
 - reduced risk reduction (15 and 10%)
 - increased power (90%)
 - decreased event proportion in the control arm (58%) according to the most recent trial
- We repeated the analysis only in trials with high quality (blind outcome assessment).
- We further assumed the result of the ongoing RCT (NCT02880878) to be futile to discern the impact on the analysis.

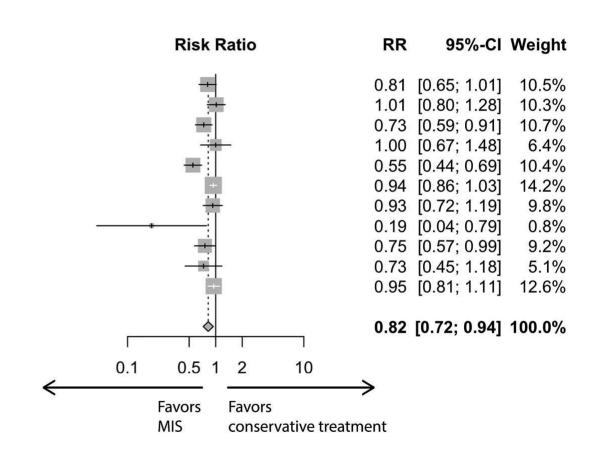
METHODS


Statistical analyses were performed with RStudio version 1.0.143 (Boston, MA) for the conventional meta-analysis and Trial Sequential Analysis software 0.9 (Copenhagen Trials Unit, Copenhagen, Denmark) for the TSA.

Section for Clinical Epidemiology and Biostatistics

RESULTS

PRISMA flow chart

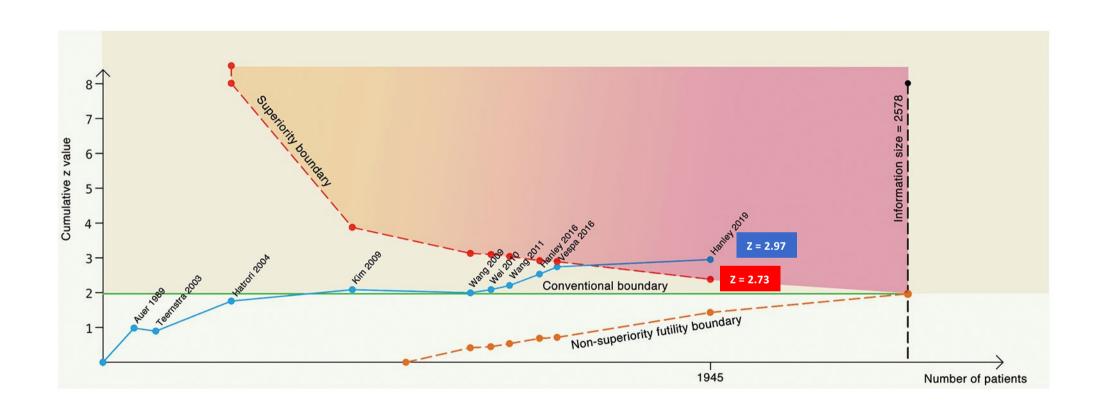

Characteristics of included studies

	50					18	
Year	Author	Location	Treatment/control (Male: Female)	Age	Treatment	Outcome	Results
1989	Auer	Graz, Australia	50(28:22)/50(33:17)	46.1	Endoscope	6 months mRS	Futile
2003	Teemstra	Maastricht, Netherland	36(19:17)/34(21:13)	68.0	Stereotactic evacuation + urokinase	6 months mRS	Futile
2004	Hattori	Tokyo, Japan	121(71:50)/121(77:44)	60.5	Stereotactic evacuation	12 months ADL	Superior
2008	Luo	Guangzhou, China	36(21:15)/39(23:16)	55.3	Stereotactic evacuation + urokinase	6 months ADL	Superior
2008	Miller	Los Angeles, USA	6(6:0)/4(3:1)	59.0	Endoscope	3 months mRS	Futile
2009	Kim	Masan, Korea	204(257:47)/183(132:51)	65.8	Stereotactic evacuation	6 months mRS	Superior
2009	Wang	Beijing, China	195(114:81)/182(122:60)	56.7	Stereotactic evacuation + urokinase	14 days mRS	Superior
2010	Wei	Sichuan, China	36(19:17)/39(22:17)	57.0	Stereotactic evacuation	3 months GOS	Superior
2011	Wang	Tianjin, China	32(18:14)/30(16:14)	46.0	stereotactic evacuation + urokinase	6 months ADL	Superior
2016	Hanley	Multicenter	54(35:19)/42(28:14)	60.9	Stereotactic evacuation + urokinase	12 months mRS	Futile
2016	Vespa	Multicenter	14(9:5)/42(28:14)	61.0	Endoscope	12 months mRS	Futile
2019	Hanley	Multicenter	250(159:91)/249(146:103)	62.0	Stereotactic evacuation + alteplase	12 months mRS	Futile

mRS: modified Rankins Score; ADL: Activities of Daily Living; GOS: Glasgow outcome scale

Conventional meta-analysis

	Experim	nental	Co	ontrol
Study	Events	Total	Events	Total
Augr 1000	24	5 0	40	5 0
Auer 1989	34	50	42	50
Teernstra 2003	29	36	27	34
Hattori 2004	60	121	82	121
Miller 2008	6	6	4	4
Kim 2009	67	204	109	183
Wang 2009	159	195	158	182
Wei 2010	25	33	27	33
Wang 2011	2	32	10	30
Hanley 2016	32	54	33	42
Vespa 2016	8	14	33	42
Hanley 2019	138	249	140	240
Random effects model		004		064
		994		961
Heterogeneity: $I^2 = 72\%$, τ	² = 0.0301	, p < 0	.01	



Subgroup analysis in conventional MA

	Sample size	Risk ratio [95% CI]		
Publication year				
before or at 2010	1186	0.82[0.67-1.01]		
after 2010	769	0.84[0.70-1.02]		_
Mean age				
less than or euqal to 60	605	0.89[0.77-1.04]		_
more than 60	1340	0.78[0.64-0.95]		
Follow-up			_	
3 or 6 months	1072	0.83[0.67-1.03]		_
12 months	883	0.82[0.70-0.96]		
Outcome assessment				
Unblind	695	0.79[0.59-1.06]		
Blind	1260	0.86[0.77-0.97]	_	
Study location				
Eastern Asia	1134	0.73[0.54-0.99]		
Western	821	0.90[0.81-0.99]		
Surgical modality			_	
Endoscope	166	0.83[0.70-1.00]		
Stereotactic evacuation	1789	0.81[0.69-0.96]	_	
			1	l l
			0.5	1.2
			←	\longrightarrow
			Favors	Favors
			MIS	conservative treatment

Trial sequential analysis

with α = 5%, β = 80% to detect 18.8% RRR

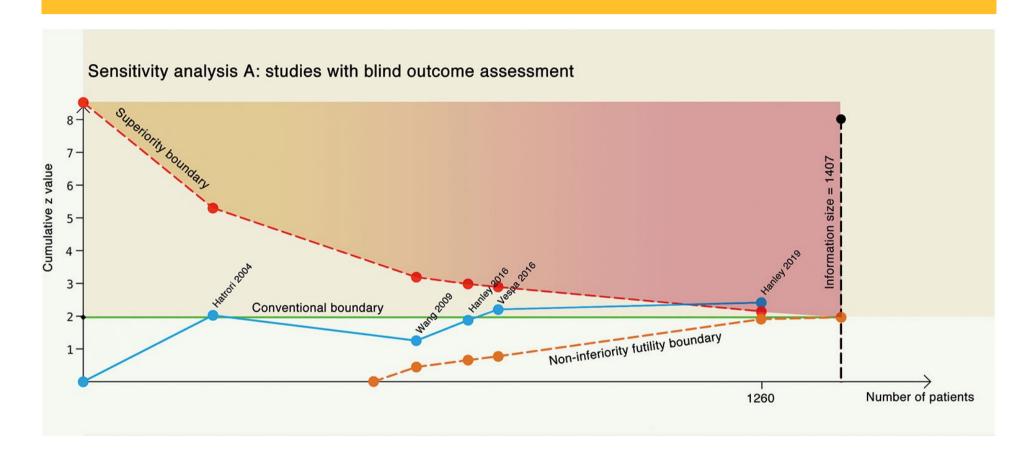
TSA on 1° and 2° outcome with different prior

	Relative risk reduction	Power	Incidence in the control	Heterogeneity (diversity)	Information size	Risk ratio	Boundary	Explanation
(A) TRIAL SEQU	ENTIAL ANALYSIS ON PRIMA	RY OUTCOME	(PROPORTION OF PA	TIENTS WITH MODIFIED	rANKIN SCORE > 3)			
Conventional meta	a-analysis with random-effects m	odel				0.82 (0.72-0.94)		
TSA	18.8 (Estimated)	80%	67.4%	81.9% (Estimated)	2578, not reached	0.81 (0.69–0.96)	Superiority crossed	MIS better
	15	80%	67.4%	81.9% (Estimated)	3994, not reached	0.81 (0.66–1.01)	Superiority nearly cross	Inconclusive
	10	80%	67.4%	81.9% (Estimated)	8807, not reached	0.81 (0.65–1.02)	Superiority not crossed	Inconclusive
	18.8 (Estimated)	90%	67.4%	81.9% (Estimated)	3452, not reached	0.81 (0.67–0.99)	Superiority crossed	MIS better
	18.8 (Estimated)	80%	58.0% (Latest study)	81.9% (Estimated)	4885, not reached	0.81 (0.66–1.00)	Superiority crossed	MIS better
(B) TRIAL SEQU	ENTIAL ANALYSIS ON SECON	NDARY OUTCO	ME (MORTALITY)					
Conventional meta	a-analysis with fix-effects model					0.76 (0.64-0.89)		
TSA	24.3 (Estimated)	80%	25.3%	0.0% (Estimated)	1435, reached	0.76 (0.63–0.90)	Superiority crossed	MIS better
	20	80%	25.3%	0.0% (Estimated)	2157, not reached	0.76 (0.63–0.91)	Superiority crossed	MIS better
	15	80%	25.3%	0.0% (Estimated)	3898, not reached	0.76 (0.61–0.94)	Superiority crossed	MIS better
	10	80%	25.3%	0.0% (Estimated)	8956, not reached	0.76 (0.60–0.96)	Superiority crossed	MIS better
	24.3 (Estimated)	90%	25.3%	0.0% (Estimated)	1921, reached	0.76 (0.62–0.93)	Superiority crossed	MIS better
	24.3 (Estimated)	80%	25.3%	30.0%	2050, not reached	0.76 (0.64–0.90)	Superiority crossed	MIS better

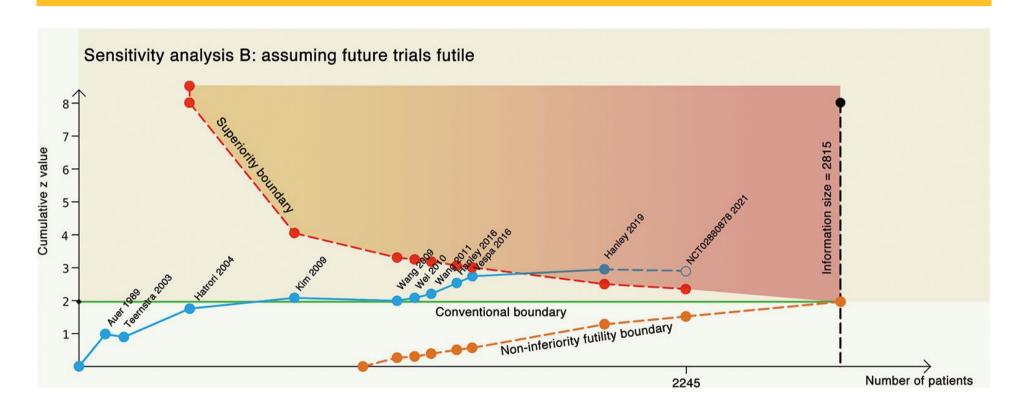
MIS, Minimal invasive surgery; TSA, Trial sequential analysis.

TSA on 1° and 2° outcome with different prior

	Relative risk reduction	Power	Incidence in the control	Heterogeneity (diversity)	Information size	Risk ratio	Boundary	Explanation
(A) TRIAL SEQU	ENTIAL ANALYSIS ON PRIMA	RY OUTCOME	(PROPORTION OF PA	TIENTS WITH MODIFIED	rANKIN SCORE > 3)			
Conventional meta	a-analysis with random-effects m	odel				0.82 (0.72-0.94)		
TSA	18.8 (Estimated)	80%	67.4%	81.9% (Estimated)	2578, not reached	0.81 (0.69–0.96)	Superiority crossed	MIS better
	15	80%	67.4%	81.9% (Estimated)	3994, not reached	0.81 (0.66–1.01)	Superiority nearly cross	Inconclusive
	10	80%	67.4%	81.9% (Estimated)	8807, not reached	0.81 (0.65–1.02)	Superiority not crossed	Inconclusive
	18.8 (Estimated)	90%	67.4%	81.9% (Estimated)	3452, not reached	0.81 (0.67–0.99)	Superiority crossed	MIS better
	18.8 (Estimated)	80%	58.0% (Latest study)	81.9% (Estimated)	4885, not reached	0.81 (0.66–1.00)	Superiority crossed	MIS better
(B) TRIAL SEQU	ENTIAL ANALYSIS ON SECON	NDARY OUTCO	ME (MORTALITY)					
Conventional meta	a-analysis with fix-effects model					0.76 (0.64-0.89)		
TSA	24.3 (Estimated)	80%	25.3%	0.0% (Estimated)	1435, reached	0.76 (0.63–0.90)	Superiority crossed	MIS better
	20	80%	25.3%	0.0% (Estimated)	2157, not reached	0.76 (0.63–0.91)	Superiority crossed	MIS better
	15	80%	25.3%	0.0% (Estimated)	3898, not reached	0.76 (0.61–0.94)	Superiority crossed	MIS better
	10	80%	25.3%	0.0% (Estimated)	8956, not reached	0.76 (0.60–0.96)	Superiority crossed	MIS better
	24.3 (Estimated)	90%	25.3%	0.0% (Estimated)	1921, reached	0.76 (0.62–0.93)	Superiority crossed	MIS better
	24.3 (Estimated)	80%	25.3%	30.0%	2050, not reached	0.76 (0.64–0.90)	Superiority crossed	MIS better


MIS, Minimal invasive surgery; TSA, Trial sequential analysis.

TSA on 1° and 2° outcome with different prior


	Relative risk reduction	Power	Incidence in the control	Heterogeneity (diversity)	Information size	Risk ratio	Boundary	Explanation
(A) TRIAL SEQU	ENTIAL ANALYSIS ON PRIMA	RY OUTCOME	(PROPORTION OF PA	TIENTS WITH MODIFIED	Prankin Score > 3)			,
Conventional meta	a-analysis with random-effects m	odel				0.82 (0.72-0.94)		
TSA	18.8 (Estimated)	80%	67.4%	81.9% (Estimated)	2578, not reached	0.81 (0.69–0.96)	Superiority crossed	MIS better
	15	80%	67.4%	81.9% (Estimated)	3994, not reached	0.81 (0.66–1.01)	Superiority nearly cross	Inconclusive
	10	80%	67.4%	81.9% (Estimated)	8807, not reached	0.81 (0.65–1.02)	Superiority not crossed	Inconclusive
	18.8 (Estimated)	90%	67.4%	81.9% (Estimated)	3452, not reached	0.81 (0.67–0.99)	Superiority crossed	MIS better
	18.8 (Estimated)	80%	58.0% (Latest study)	81.9% (Estimated)	4885, not reached	0.81 (0.66–1.00)	Superiority crossed	MIS better
(B) TRIAL SEQU	ENTIAL ANALYSIS ON SECON	NDARY OUTCO	ME (MORTALITY)					
Conventional meta	a-analysis with fix-effects model					0.76 (0.64-0.89)		
TSA	24.3 (Estimated)	80%	25.3%	0.0% (Estimated)	1435, reached	0.76 (0.63–0.90)	Superiority crossed	MIS better
	20	80%	25.3%	0.0% (Estimated)	2157, not reached	0.76 (0.63–0.91)	Superiority crossed	MIS better
	15	80%	25.3%	0.0% (Estimated)	3898, not reached	0.76 (0.61–0.94)	Superiority crossed	MIS better
	10	80%	25.3%	0.0% (Estimated)	8956, not reached	0.76 (0.60–0.96)	Superiority crossed	MIS better
	24.3 (Estimated)	90%	25.3%	0.0% (Estimated)	1921, reached	0.76 (0.62-0.93)	Superiority crossed	MIS better
	24.3 (Estimated)	80%	25.3%	30.0%	2050, not reached	0.76 (0.64-0.90)	Superiority	MIS better
							crossed	

MIS, Minimal invasive surgery; TSA, Trial sequential analysis.

Sensitivity analysis: Studies with blind outcome assessment

Sensitivity analysis: Assuming future trial futile

Section for Clinical Epidemiology and Biostatistics

DISCUSSION

Discussion

The analysis answered the question of

- 1. which treatment is better, especially in the circumstances that the latest trial was futile
- whether we need more trials to compare MIS vs. conservative treatment in patients with intracerebral hemorrhage

STUDY CONCLUSION

- Minimally invasive surgery seems to be more effective than conservative treatment
- Sensitivity analyses show that our results were robust
- We answered the question whether we need more trials to save the cost of future unnecessary trials

Advantages of TSA

- Avoid premature conclusion when meta-analyses based on traditional hypothesis testing would have falsely identified the effect as significant (12, 15)
- Estimate the sample size of future trials if the current result is inconclusive

Limitation of TSA

 Prespecified prior may have a significant impact on the result, which requires many sensitivity analyses to test the robustness

CONCLUSION

- TSA can be a powerful tool capable of assessing the conclusiveness of meta-analytical findings
- Updating the MA in a SR each time a new trial is published is a rational decision
- Previous trial results ought to be considered whenever we evaluate the cons and pros of designing new trials, as the evidence on a given intervention may already be sufficient